
ISPRS Int. J. Geo-Inf. 2013, 2, 729-748; doi:10.3390/ijgi2030729

ISPRS International
Journal of

Geo-Information
ISSN 2220-9964

www.mdpi.com/journal/ijgi/

Article

HCTNav: A Path Planning Algorithm for Low-Cost
Autonomous Robot Navigation in Indoor Environments

Marco Pala, Nafiseh Osati, Fernando López-Colino *, Alberto Sanchez, Angel de Castro

and Javier Garrido

Human Computer Technology Laboratory, EPS, Universidad Autónoma de Madrid.

Francisco Tomás y Valiente 11, E-28049 Madrid, Spain; E-Mails: marco.pala@hctlab.com (M.P.);

n.osati@hctlab.com (N.O.); alberto.sanchezgonzalez@uam.es (A.S.); angel.decastro@uam.es (A.C.);

javier.garrido@uam.es (J.C.)

* Author to whom correspondence should be addressed; E-Mail: fj.lopez@uam.es;

Tel.: +34-91-497-3613.

Received: 25 June 2013; in revised form: 29 July 2013 / Accepted: 31 July 2013 /

Published: 9 August 2013

Abstract: Low-cost robots are characterized by low computational resources and limited

energy supply. Path planning algorithms aim to find the optimal path between two points

so the robot consumes as little energy as possible. However, these algorithms were not

developed considering computational limitations (i.e., processing and memory capacity).

This paper presents the HCTNav path-planning algorithm (HCTLab research group’s

navigation algorithm). This algorithm was designed to be run in low-cost robots for indoor

navigation. The results of the comparison between HCTNav and the Dijkstra’s algorithms

show that HCTNav’s memory peak is nine times lower than Dijkstra’s in maps with more

than 150,000 cells.

Keywords: low-cost indoor navigation; path planning algorithm; autonomous robot

1. Introduction

The path-planning efficiency for the autonomous robot navigation problem is still an open

challenge in robotics. In the last two decades, the efforts to reach an intelligent motion behavior,

suitable for robotic vehicles, lead to two of the most-known approaches in literature and industry: the

OPEN ACCESS

ISPRS Int. J. Geo-Inf. 2013, 2 730

deterministic solution, based on heuristic graph search, and the reactive one, based on environment

sensor sampling [1]. When choosing between the former approaches, it is important to figure out

which performance factor is critical for the real case scenario. For example, the deterministic

algorithms offer a very fast execution and the optimum solution, although they are penalized by map

scalability; on the other hand, the reactive algorithms are independent to map scaling and can handle

dynamic changes, but do not guarantee the minimum path solution [2].

The Dijkstra’s algorithm [3] is the very reference for the deterministic solutions, due to its

mathematical robustness when planning the shortest path. Nevertheless, Dijkstra’s approach presents

two known problems: (1) spanning the whole search frontier increases the algorithm execution time,

resulting in decreased speed performance; (2) dynamic memory usage exhibits quadratic growth, thus

requiring a large amount of RAM in massive graphs [4].

To reduce the “overhead problem”, i.e., the unnecessary exploration of map areas that does not lead

to the target, many authors have improved Dijkstra’s concept, by adding a heuristic estimation of

remaining distance to the target. The estimation applies when choosing the next node from the search

frontier. These Dijkstra’s evolutions are known as the A* family (A-star) and they are largely

employed to solve the path-planning problem [5]. The Euclidean heuristic [6] uses straight distance as

estimation of the remaining distance, whereas the Manhattan heuristic [7] uses the sum of the

Cartesian projections of the distance vector. Dijkstra’s algorithms implement an optimum

path-search [8] and always return the shortest path, which is why they still continue to represent the

first choice in the market of route guidance systems (like GPS navigators) [9], logistic planners [10],

and even for autonomous mobile robot navigation [11–13].

The reactive approaches can be referenced by the Bugs type algorithms [14], which combine the

sensory-based obstacle detection during motion towards the target. These algorithms have evolved in

different version through years, starting from the VisBug [15]. The DistBug [16] has improved Bugs’

final-path quality, by adding a set of formal rules to choose the best obstacle surrounding direction and

the proper leaving condition during obstacle boundary following.

The most valuable feature for this family is that robots can move in a totally unknown environment,

reacting to obstacles according to the proximity sensors information (processed in real-time) [17]. This

is known as local convergence approach [18]; despite its performance, this solution does not guarantee

the minimum path (because of the local minimum “traps”). In the opposite one, known as global

convergence approach [19], the working map will be constructed at a global scope, thus, avoiding the

“dead-ends” and providing a better (but not minimal) path, although with a more expensive on-board

resources usage.

In this work we present our own algorithm for indoor robot navigation, called HCTNav (HCTLab

research group’s navigation algorithm).. The main goal of the algorithm is to find, if it exists, an

effective route between two cells in the given binary map, such as the occupancy-grid matrix discussed

in González-Arjona et al. [20]. Regarding to performance requirements, the purposes of this research

are (1) to increase the scalability in larger maps by controlling the dynamic memory usage at run-time

and (2) to grant acceptable execution time. We conceived HCTNav as a hybrid algorithm, combining

the graph-search techniques of the deterministic family with the logical rules of the reactive one.

The article is structured as follows: Section 2 describes the environment model and the logical

navigation rules; they are the basis for the algorithm discussion in Section 3, which focuses on the

ISPRS Int. J. Geo-Inf. 2013, 2 731

HCTNav execution flow and the final path building; the experimental results and the comparison with

the state-of-the-art solutions are discussed in Section 4, followed by a brief conclusion.

2. Environment and System Model

The HCTNav environment model has been shaped as a two dimensional map. The robot motion is

holonomic and as it is limited to indoor areas we assume the ground to be always horizontal. So our

scenario falls into the 2D modeling commonly employed in Real-Time Strategy videogames [21]. The

terrain is represented by a grid of uniform cells and the movement range is bound to the valid (no

obstacles in the trajectory) hops from a cell to another one. Following these principles, the navigation

map can be reduced to a logical matrix with entries from the Boolean domain (∶=	 [0,1]). Every cell

is identified by its coordinates (,) in the matrix. The cell’s status is stored in the correspondent

entry: a logical ‘0’ states that the cell is free, whereas a ‘1’ represents an obstructed cell.

The cell is defined by the robot’s size and the robot will always position itself in the geometric

center of the cell; thus, any partially occupied cell will be considered an obstructed cell. The tiles’

coordinates belong to the natural numbers domain (∶=	 {0, 1, 2, … }) and are in the ranges ∈[0, − 1], ∈ [0, − 1], where c represents the number of columns and r the number of rows. The

reference is the origin (,), which is fixed in the upper left corner (see Figure 1).

Figure 1. Equivalence between a 2D map and its correspondent binary matrix model. The

diagonal-stripes area depicts the real obstacle shapes, whereas the dark tiles are the

correspondent obstructed cells. The circles represent all possible coordinates the robot may

occupy in the map.

So, the resultant navigation data structure represents only the initial graph’s node-set ∶= { }
covering the free cells in the 2D grid. Another required abstraction is to normalize the map measure

unit to simplify the mathematical notation; in this article we are assuming a cell as a unitary square

(≡ =1).

3. The HCTNav Algorithm

In this section we will discuss our algorithm’s processing, by explaining the four main modules that

compose the robot’s motion-planning system.

ISPRS Int. J. Geo-Inf. 2013, 2 732

According to our purpose, we started from a set of logical navigation rules inspired on the Bug

family movement strategy; that is: try to go straight towards the goal and, in case of obstacles

obstructing the way, try to surround them. The Bug approach chooses a surrounding direction,

which may not be the optimal. As the HCTNav is executed prior to robot’s movement we may explore

in both boundary-following directions. This procedure will create a tree of possible paths from the

origin to the destination. Every path is optimized and the shortest one is returned when more than one

is found.

The algorithm has been divided into four main modules, each of them fulfills a specific task. The

first module implements the obstacle detection in a given straight trajectory (Subsection 3.1); the

second one defines the intermediate tile, called turning-point, adjacent to the detected obstacle used to

start the surrounding of the obstacle (Subsection 3.2); the third module solves the obstacle surrounding

(Subsection 3.3); finally, the fourth one aims at optimizations in the raw navigation graph (by pruning

redundant edges) and states the criterion to choose the best path (Subsection 3.4). The initial data

structure of the algorithm consists of the elements that model the given map and allow storing the

required cell’s properties. The same structure changes all over the execution, as long as HCTNav

updates the turning-point list and dynamically builds the intermediate edges.

3.1. Obstacle Detection

Given two generic nodes [] and [] in the map, the first module checks if the straight

trajectory between them is obstacle-free. If one or more obstacles are found along the way, then the

one representing the first “in sight” collision from robot’s perspective will be returned.

The trajectory of the robot can be modeled as a “corridor”, projecting the robot’s front width from

the start-point to the end-point; here the goal is to check all the tiles belonging to the corridor to avoid

possible collisions (forwarded obstacle detection).

For each cell into the corridor, HCTNav will check and mark all the tiles obstructed ([])
and find the nearest one to the current position. As said, we will consider the square distances from the

current []	 to []	as (,) = (−) + (−) , thus avoiding square roots.

The module will return the obstacle k such as (, ∗) = min { (,)} , representing the first

potential collision detected along the route.

To implement this feature in the HCTNav algorithm must define every cell that may be occupied in

robot’s trajectory. Considering that floating point calculations are hardware demanding for low-cost

robots, we choose neither to employ trigonometric techniques nor to solve lineal equations systems.

The remaining arithmetic operations are only additions, subtractions and multiplications. The

Bresenham’s line algorithm [22] was created to plot lines in screen monitors using additions and

subtractions to avoid floating point requirements in early computer graphics. In low-cost robots the

same limitation arises and a similar solution is also valid. The Bresenham’s algorithm defines the

pixels (equivalent to the cells of the map) that correspond to a line between two positions. The returned

information will be the list of cells that will be check for obstacles.

The major problem in the task of scanning the whole trajectory is that a single Bresenham’s line

(from now on, B-line) does not cover all the cells that belong to the corridor (see Figure 2). Hence, it is

necessary to define a set of B-lines, by considering different slopes (∈ [0, 2]) and the start-end

ISPRS Int. J. Geo-Inf. 2013, 2 733

pairs for each single line. Considering these two conditions, the corridor may require from 1 to 6 B-

lines as follows:

1. Internal B-lines: Using the 1st quadrant from Figure 3, the two B-lines from []
to	 [], changing the condition sign (see below).

2. First-level external B-lines: Using the 1st quadrant from Figure 3, the two B-lines from [] to [] and from [] to [].
3. Second-level external B-lines: Using the 1st quadrant from Figure 3, the two B-lines from [] to [] and from [] to [].

Figure 2. Obstacle detection scenario: (a) Single B-line and uncovered cells; (b) All the

cells belonging to the corridor.

(a) (b)

Figure 3 resumes the B-lines set properties and its analytic scheme, whereas in Figure 4 we offer

the result of merging the lines. Depending on the condition that is used in the Bresenham algorithm,

i.e., greater or greater than, the two internal B-lines will differ only by a tile ([68] and [83] in

Figure 4a). In case of ±90° or ±45° trajectory, they overlap one each other and it is recommendable to

use just one internal B-line. The whole obstacle detection execution flow is detailed in Code 1.

Figure 3. Definition of the Bresenham’s lines set in the four quadrants.

ISPRS Int. J. Geo-Inf. 2013, 2 734

Figure 4. The three levels of coverage of the B-lines set. (a) The corridor and the cells

covered by the internal B-lines; (b) The additional cells covered by the first-level external

B-lines; (c) The full corridor covered by the inclusion of the second-level external B-lines.

(a) (b) (c)

Code 1. Obstacle detection pseudo-instructions.

1. Initialize distance(Cell[i], Obstacle[k*]):= d2(i, k*) = ∞

2. Identify the current quadrant and the slope (m) of the corridor

3. If (m = 0) then initialize 1 B-lines /* orthogonal trajectory */

else if (m = 1) then initialize 3 B-lines /* ± 45° */

else initialize 6 B-lines /* all other pendants */

4. Merge the B-lines to get all the cells in the corridor

5. For every Cell[k] in the corridor

a. If (k < 0) then /* Obstacle[k] */

i. If d2(i,k) < d2(i,k*) then

1. update Obstacle[k*] = Obstacle[k]

2. update d(i, k*) = d(i, k)

6. Return Obstacle[k*] /* or null, if there are no obstruction */

3.2. Choosing the Next Turning-Point

The turning-point selection module, starting from the previously detected collision (see the hit-point

in Figure 5), allows the robot to select the proper tile, directly in front of the current obstacle.

Following the shortest path-search principles, the turning-point selection module returns the nearest

cell from the current position. A new edge representing the next intermediate hop is then appended to

the incremental navigation graph.

Given [∗], our strategy is to consider the four possible orthogonal tiles ([]) adjacent

to it (EAST, SOUTH, WEST and NORTH in Figure 5). The algorithm evaluates the four candidates

checking a list of conditions that asserts the validity of each candidate for the selection:

• Condition-1: obstacle contour tile;

• Condition-2: inbound and free tile;

• Condition-3: not visited and not marked as turning-point;

• Condition-4: obstacle-free trajectory (from current position).

ISPRS Int. J. Geo-Inf. 2013, 2 735

Figure 5. Selection scheme for the next turning-point: (a) The four possible cardinal

candidates; (b) The node returned by the module.

(a) (b)

Once the invalid cells are removed from the candidate list the algorithm marks the [∗] such

as (, ∗) = min { (,)} by setting its “turningPoint” flag. [∗] represents the shortest

(intermediate) hop from the current [] towards the target and it is also the cell from which to

start surrounding the leading [∗]. At this time, the new [∗] is registered into

a turning-point list and it is ready to be processed in a new iteration. The instructions to implement this

module are presented in Code 2. Depending on the output of the turning-point selection, the HCTNav

algorithm switches between one of these three cases:

1) if no valid candidate is returned, then a dead-end is detected (no new edge is created);

2) if the new turning-point [∗] is different from the current position [], then a new

edge is assigned to the path-graph. The pointer [∗ ←] is stored and its weight w is

initialized with the straight distance between [] and [∗] centers;

3) if the turning-point matches the current position then HCTNav proceeds to surround the obstacle

(see next subsection).

Code 2. Turning-point selection pseudo-instructions.

1. Initialize distance(Cell[i], Cell[c*]):= d(i, c*) = ∞

2. Identify the candidates (the four cardinal neighbors of Obstacle[k*])

3. For every candidate Node[c] in {EAST, SOUTH, WEST, NORTH}:

a. If (Condition-1 = true AND Condition-2 = true AND

 Condition-3 = true AND Condition-4 = true)

 /* Condition-4 calls module for obstacle detection */

then

i. If d(i, c) < d(i, c*) then

1. update Node[c*]:= Node[c]

2. update d(i, c*):= d(i, c)

4. Return TurningPoint[c*] /* or null, if there are no valid candidates */

ISPRS Int. J. Geo-Inf. 2013, 2 736

3.3. Surrounding Current Obstacle

Starting from the new turning point, HCTNav can determine the two surrounding alternatives to

avoid the facing obstacle in the map. Throughout the third module the route is “split” and the

navigation graph begins to grow. As result of the obstacle boundary following a list of new

turning-points, representing the corner tiles (i.e., 90° path deviations), is returned to be processed later.

To solve the obstacle-surrounding problem, it is necessary to know some information about the

tiles’ contour status. That is why we introduced the “contour” flag in the [] properties. During

the initialization of the algorithm, the map is preprocessed generating for every contour tile a list of all

the adjacent contour neighbors (from now on).

This grants that, during execution time, when the obstacle surrounding begins, a turning-point is

aware of one or more next-hops from which begin to open the current trajectory in different navigation

branches. Hence, starting from the initial of [], the contour neighbors

([]) are visited recursively and added to the list. Same as the filtering technique used in the

second module (see Subsection 3.2), the redundancies can be omitted from execution checking similar

conditions, except for the third:

• Condition-3’: not the current position and not in the initial contour list.

Code 3. Obstacles surrounding pseudo-code.

1. Retrieve /* contains [] contour neighbors */

2. External loop: While is not empty:

a. For every [] in the list

i. If (Condition-1 = true AND Condition-2 = true) then

1. Check corridor from [] to [] /* target */

2. If no obstacles ([∗] = null) then

a. Mark [] as turning-point and add to output list

b. Add [←] and [←]	to the path-graph

c. Mark [] target-found flag

3. else

a. Retrieve /* [] contour neighbors */

b. Go to Internal loop

3. Internal loop: While is not empty

 (otherwise control goes back to External loop)

a. For every [′] in the list

1. If (Condition-2 = true AND Condition-3’ = true) then

a. Check corridor from [] to [′]
b. If no obstacles ([∗] = null) then

i. Mark previous neighbor [] as turning-point

ii. Add [] to output list

iii. Add the [←] to the path-graph

2. else

a. Add [′] to /* neighbor inheritance */

4. Return output list /* or null, if there are no valid corner tiles */

ISPRS Int. J. Geo-Inf. 2013, 2 737

The second condition limits the surrounding redundancies caused by contour neighbors list’s

symmetries, whereas the fourth checks that the new [] can be reached (using the first module

of HCTNav to check the corridor). Otherwise, if the way back to the initial position is obstructed, a

corner is detected and the correspondent exploration branch ends.	 [] is marked as turning-point

and pushed into the output list, which is composed of all the turning-points discovered during

surrounding phase. HCTNav appends this partial list to the main turning-point list and then the

algorithm continues to the next iteration. This module consists of two loops: an external one, for

processing the current turning-point contour list, and an internal one, for recursively exploring the

inherited neighbors. The pseudo-instructions of the third module are shown in Code 3. As it can be

seen, in the external loop it is also necessary to check if the way to the target is obstacle free. This is

the case of a target-found turning-point (the last hop before the goal).

3.4. Building the Final Path

The three main modules described in the previous subsections allow discovering a set of

turning-points that is fed back in almost all iterations (except when no valid candidate is available).

Module two returns the next turning-point, whereas module three returns the corner cells discovered

during the surrounding. When a turning-point is marked, a new edge representing the hop from current

position is constructed and then added to the path-graph, which grows incrementally. The algorithm

ends when no more turning-points are available in the main turning-points list, even if the target is not

found (this is the case of a path with no solution).

Every turning-point identifies and is pointed by exactly one edge, except for the source (not pointed

by any edge) and the target (can be pointed by more than one edge). Hence, it is convenient to

reconstruct the path-tree backwards, because the target identifies the exact number of possible paths,

thus preventing loops between them. The raw path-graph ∶= { , } is defined by the turning-points

list and the edges set , such as: ∀	 [], [] ∈ i, j ≠ t ⇒ ∃ [←] ∈ , ∃ [] ∈ 	⇒ ∃ [←] ∈ 	, ∃ [] ∈ 	⇒ ∃{ [←], [←], … , [←]} ∈ 	. (1)

To remove the redundancies in the path-graph, due to the generalization of the navigation rules, we

developed a post-processing that filters the edges, starting from the target node and proceeding

backward until we reach the source node.

As result, a path-tree is available for choosing the shortest path. In Figure 6 a simulation scenario is

broken down to better understand HCTNav’s logics and post-processing: given the source position, [89] at position (0, 9), and the target point, [39] at (8, 3), the raw path-graph is first

constructed (Figure 6b); the number of possible paths (two) corresponds exactly to the edges that are

pointing to the target node.

Hence, the filtering begins in [39], splitting through [39 ← 36] and [39 ← 79].
These two branches correspond to the main trajectory split in [73]. The redundancies

that can occur can be classified in two classes: (1) redundant edges, when three turning-points form an

ISPRS Int. J. Geo-Inf. 2013, 2 738

unnecessary deviation that can be replaced by one straight edge, and (2) inline edges, when three or

more turning-points lie on the same direction.

Figure 6. Full HCTNav case-study: (a) Initial map scenario; (b) Raw path-graph

generated; (c) Optimized path-tree; (d) Shortest path returned.

(a) (b)

(c) (d)

Once the optimization process ends (Figure 6c) the path-tree is ready: the “redundant edges” [58 ← 67] and [67 ← 73] have been pruned and replaced by the new [58 ← 73]
(thus eliminating the corner in [67]). Same as for [74 ← 67] and [67 ← 73] ,

replaced by [74 ← 73], and for [36 ← 60] and [60 ← 58], pruned and replaced by [36 ← 58]. The “inline edges” [79 ← 77], [77 ← 75], [75 ← 74] and [74 ← 73] are normalized (by eliminating [77], [75], [74]) and replaced by the straight [79 ← 73].
A final-path is defined by the ordered sequence of edges that lead from the source node to the

target node. During the optimization, for every path , the cumulative distance is also calculated

as the sum of all edges in the sequence. When the path-tree is completed, the HCTNav ends

(Figure 6d) and returns the shortest path in the optimized tree. The formal definitions for the path-tree

structure ∗ ≔ { ∗, ∗} are presented in equation (2).

ISPRS Int. J. Geo-Inf. 2013, 2 739

∀	 [∗] ∈ ∗, ∗ ≠ {s, t} ⇒ ∃ [∗ ← ∗], [∗ ← ∗] ∈ ∗ , ≝ { [← ∗], [∗ ← ∗], … , [∗ ← ∗], [∗ ←]} ∈ ∗	, =	 ∗ ∗ , ∗ ∗ ∈ ∗. (2)

4. Experimental Section

In this section a comparison is presented between our algorithm and the two principal families,

which represent the state-of-the-art of the deterministic and the reactive approaches (discussed in the

introduction of this work). First, a brief overview on our development environment will be given, in

order to describe our methodology and testing tools (Subsection 4.1). Second, the experimental results

over the map test-suite will be discussed and directly compared to the Dijkstra’s algorithm and its

heuristic versions (Subsection 4.2). Finally, a qualitative analysis will reveal HCTNav’s improvements

with respect to Dijkstra and DistBug’s solutions (Subsection 4.3).

4.1. Test-Bench

Our map test-suite has the characteristics of the model discussed in Section 2: every map is a binary

matrix with 15 columns and 10 rows, for a total of 150 tiles. We composed the obstacles profiles of

more than 30 maps in order to cover a representative set of topologies, from the more realistic indoor

maps to the improbable worst cases maps (Figure 7 shows two maps from our test-suite that will be

used in the next subsection for scalability analysis purposes). The test-suite is provided as additional

material.

Figure 7. Two examples from the map test-suite, designed by HCTLab team: (a) A “no

obstacle” map (map-01); (b) A “labyrinth” map (map-13).

(a) (b)

The last helped us to stress the algorithm modules and find out potential bottlenecks along the

execution flow. We also generated enlarged versions of the maps to better study the scalability of our

algorithm and to compare it with Dijkstra’s. Two types of scaling have been defined: (1) topology

conservative, by maintaining the aspect ratio of the obstacles profile, and (2) topology repetitive, by

ISPRS Int. J. Geo-Inf. 2013, 2 740

replicating the map topology a given number of times. The scaling factors follow the 2-powers pattern

(exponential growth): ×2, ×4, ×8, ×16, ×32.

4.1.1. Algorithms Implementation

The code of all the tested algorithms (HCTNav, Dijkstra, A* using Euclidean heuristic) has been

implemented in ANSI-C language. The A* implementation follows the guidelines shown in [5]. The

A* graph is created using an 8-grid connectivity asserting that diagonal edges avoid collisions. Hence,

the generated graph considers the width of the robot when creating the graph. This connectivity was

chosen because is the most extended in indoor grid-map-based navigation. Larger connectivity would

lead to larger graphs requiring more memory and thus penalizing the comparison. The tie-breaking

policy for the A* randomly selects a node from the list of top f-value nodes. Finally, the path obtained

by Dijkstra and A* is optimized using the pruning module discussed in Subsection 3.4.

The command-line version of the algorithms allows better studying the dynamic memory usage at

run-time, free from graphic libraries and framework’s memory allocations. Further, it allows to launch

map-intensive searches, calculating the path for all the possible nodes pairs in all the possible maps of

a given set. Each single path-search represents an atomic execution of the given algorithm. To sample

the dynamic memory usage we relied on the Valgrind 3.8 (see http://valgrind.org) application and its

Massif-msprint tools. The output produced by this memory profiler contains the full record of the

RAM allocations, such as mallocs and callocs.

4.2. Simulation Results

In this subsection the experimental data of HCTNav will be presented and directly compared with

the Dijkstra family. The four comparison criterions are: (1) dynamic memory usage, (2) scalability

over map resizing, (3) execution time, and (4) path length.

4.2.1. Dynamic Memory Usage

As mentioned in the introduction, HCTNav’s main goal is to minimize memory usage to reduce the

design costs of the robot. So, what we are interested for is the “run-time memory peak”, as it represents

the minimum upper-bound memory requirement, critical in low-cost systems. The static memory usage

is easier to estimate, because it is represented by the executable files and its static data running into the

microprocessor. In our own implementation, the Dijkstra’s algorithms occupy about 73.7 kB, whereas

HCTNav’s is a 10% greater (about 81.1 kB). For each map in the test suite we measured the dynamic

memory required for solving every possible path, capturing the maximum memory allocation sample,

or “peak”, in every search (∀ , ∶ ≠ 	 → (,)).
During the Dijkstra family analysis we found that the dynamic memory usage is identical for all the

versions (Dijkstra and Euclidean). This means that the heuristic improvement of the A* family only

reduces the overhead problem and enhances execution time but really does not impact the memory

usage.

The main component of Dijkstra’s memory allocations grows during initialization and corresponds

to the graph building phase and its storing.

ISPRS Int. J. Geo-Inf. 2013, 2 741

In Figure 8 we present a direct comparison between the HCTNav and Dijkstra’s memory

requirements at run-time (memory peaks). On the left side of the chart, where maps have a higher rate

of free tiles, our algorithm shows a considerable advantage, whereas Dijkstra needs more memory

space.

Figure 8. Comparing the dynamic memory “peaks” (HCTNav vs. Dijkstra family). Maps

have been ordered considering the result provided by the Dijkstra solution.

4.2.2. Scalability over Map Resizing

To enforce HCTNav’s benefits in memory usage we have stressed the simulation scenario running

rescaled versions of the maps in our set and comparing the response with Dijkstra simulations. The

more the graph structures increase in number of cells, the more initial memory space is needed to run

the path search in the enlarged map.

The two interesting scenarios we want to discuss here are map-01 (Figure 7a) and map-13

(Figure 7b) as they represent the diametrically opposite map complexity case-studies. The two ways of

scaling discussed in Subsection 4.1 are employed. In Table 1 the algorithm results are presented. As it

can be seen, the Dijkstra’s algorithms are not as scalable as the HCTNav algorithm: their memory

usage is larger in all the scenarios, whereas our solution exhibits a lower growth gradient.

m
ap

-0
1

m
ap

-0
6

m
ap

-0
3

m
ap

-0
5

m
ap

-0
7

m
ap

-0
4

m
ap

-0
9

m
ap

-0
8

m
ap

-1
0

m
ap

-2
7

m
ap

-3
0

m
ap

-1
2

m
ap

-1
9

m
ap

-1
8

m
ap

-1
7

m
ap

-2
9

m
ap

-2
1

m
ap

-1
1

m
ap

-2
4

m
ap

-3
2

m
ap

-2
8

m
ap

-2
0

m
ap

-1
6

m
ap

-2
2

m
ap

-2
3

m
ap

-3
4

m
ap

-3
5

m
ap

-3
3

m
ap

-3
1

m
ap

-0
2

m
ap

-1
5

m
ap

-2
5

m
ap

-1
3

m
ap

-1
4

m
ap

-2
6

0

10

20

30

40

50

60

70

80

90

Maps

kB

HCTNav

Dijkstra family

ISPRS Int. J. Geo-Inf. 2013, 2 742

Table 1. Simulation results for the scalability analysis. The dynamic memory peaks are

expressed in MB.

Factor
map-01 Scaled map-13 Scaled map-13 Repeated

Dijkstra HCTNav Dijkstra HCTNav Dijkstra HCTNav

×1 0.08 0.01 0.02 0.02 0.02 0.02
×2 0.35 0.05 0.09 0.04 0.14 0.05
×4 1.40 0.18 0.34 0.16 0.67 0.15
×8 5.66 0.69 1.33 0.59 2.81 0.55

×16 22.08 2.68 5.31 2.25 11.65 1.95
×32 91.28 10.07 21.20 8.79 47.40 7.89

4.2.3. Execution Time Impact

Compared to the easier Dijkstra’s instructions, the execution flow of the HCTNav algorithm can be

hard to implement (and to optimize) and adds an undesired degree of complexity to the conventional

graph-search algorithms. However, simulation data analysis reveals that HCTNav’s speed performance

is acceptable. To measure the execution time we considered the average path search time (i.e., the

whole batch job duration divided by the number of available paths). The simulations have been

launched on a PC common microprocessor, namely an AMD-64 Turion X2 Dual-core at 2.00 GHz,

with 4 GB of RAM and Linux Debian SO (Ubuntu 9.10). The results exhibit that HCTNav’s execution

time is in the same order of magnitude of Dijkstra’s (milliseconds).

In complex topologies such as labyrinth-style maps HCTNav loses speed performance, especially if

the obstacles’ profile follows a stairway pattern. This is due to the increased switching between

obstacle detection and surrounding modules. It is important here to remember that, regarding to the

robot’s response time in navigation task (about 30–40 sec of motion in a common scenario), the route

planning time is negligible as it does not go beyond the fraction of second.

Figure 9. Execution time comparison (average single-path search). Maps have been

ordered considering the result provided by the Euclidean solution (A*).

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

Maps

M
ill

ise
co

nd
s

Euclidean

HCTNav

ISPRS Int. J. Geo-Inf. 2013, 2 743

In Figure 9 is presented the execution time comparison between HCTNav and the Dijkstra family

over the map test-suite. On the ordinates axis, the average single-path search time is plotted. HCTNav

is a bit slower than the A* approach but does not suffer the same speed gap when comparing it with

the Dijkstra’s algorithm.

4.2.4. Path Length Comparison

The final comparison between the proposed HCTNav algorithm and the extended Dijkstra and A*

solutions evaluates the length of the final path. HCTNav performs a path optimization, as presented in

Section 3.4, to reduce the length of the path. The optimization checks if it is possible to move between

two non-consecutive nodes shorting the solution. This optimization is also applied to the solution

provided by the Dijkstra and A* solutions to make a fair comparison.

Table 2 shows the results of a comparison in a subset of the maps. The difference in granularity of

the generated solutions and the application of the optimization algorithm makes a significant

percentage of paths to have different path lengths (i.e., up to 22% of the paths in map 11 are different).

However, it must be noted that the average difference between path lengths is lower than a third of

cell’s length. As stated in Section 2, the length of a cell is the same as the length of the robot.

Therefore, this difference is not significant. It must be noted that both the HCTNav and Dijkstra always

obtain a solution, although not the same one.

Table 2. Path-length comparison results (mean and variance). The cell’s width is unitary

(=1).

Map Name
Number of

Possible Paths
Percentage of

Different Paths
Difference

Mean
Difference

Variance

map-01 11175 0.00% 0.00 0.0
map-02 10712 0.00% 0.00 0.0
map-03 10153 3.20% 0.19 0.6
map-04 8911 4.72% 0.25 0.9
map-05 9870 7.50% 0.22 0.8
map-06 10153 6.30% 0.27 0.1
map-07 9591 5.18% 0.30 0.9
map-08 9045 4.61% 0.28 0.1
map-09 8911 6.06% 0.30 0.1
map-10 9045 12.66% 0.30 0.1
map-11 4371 22.24% 0.25 0.1
map-12 6441 6.27% 0.29 0.6
map-13 2485 9.46% 0.29 0.05

4.3. Qualitative Discussion

4.3.1 HCTNav vs. Dijkstra and A*

Regarding to the Dijkstra family and its heuristic versions (A*), we share the recursive path-graph

exploration and part of the data structure that is used during the execution, but with some differences:

ISPRS Int. J. Geo-Inf. 2013, 2 744

• HCTNav only requires a set of nodes representing the free cells in the binary map, whereas

Dijkstra also needs to know all possible edges. This simplification reflects considerable

memory saving during run-time, especially when the maps grow in cell number.

• Edges are composed during the execution and could span multiple nodes; instead, in the

common Dijkstra family implementations, used for this comparison, only one-hop edges are

evaluated and stored as a preprocessing of the map, due to the exploding cost of storing all

the possible edges in the initial graph.

• In HCTNav we introduced an obstacle control strategy to find the intermediate transit nodes

(turning-points) from which to begin to surround obstacles. Dijkstra simply does not

consider obstructions as they are implicitly removed at the construction of the initial graph.

• The difference between the path lengths between the HCTNav and the Dijkstra is lower than

a third of a cell. Considering that it is also a third of the size of the robot, it is not significant.

In Figure 10a direct comparison of HCTNav and Dijkstra family is presented in another case-study

scenario (map-11). In these simulations we are focusing on the “overhead” rate, i.e., the map’s portion

that is explored even if it is not useful to reach the target. This factor is critical because it impacts

directly the path-search performance. As it can be seen, HCTNav approximates the A* overhead

(Figure 10d), which is smaller than Dijkstra due to the proper next-hop choice.

Figure 10. Qualitative analysis in map-11: (a) Initial trajectory scenario; (b) HCTNav

solution and overhead; (c) Dijkstra’s algorithm; (d) A* algorithm.

(a) (b)

(c) (d)

ISPRS Int. J. Geo-Inf. 2013, 2 745

4.3.2. HCTNav vs. DistBug

With respect to the Bugs family, the HCTNav approach is quite different: the Bugs are based on the

complete lack of map information, whereas HCTNav has an a priori knowledge of the map model; in

consequence of that, the HCTNav navigation concept is opposite of Bugs family’s (graph exploration

vs. sensory-based motion).

Nevertheless, we have found that our navigation rules are similar to the DistBug’s operative modes

(motion towards the target and obstacle-boundary following). This is due to the fact that both

algorithms are inspired on human-based intuitive strategy to reach to a destination avoiding obstacles.

The same criterion is valid for both an unknown environment and a map-planning scenario. The

choice of which strategy to implement is bound to the trade-off between robot design costs and

algorithm’s complexity. The DistBug logical layer is simpler than the HCTNav’s but also the cost of

sensor layer of the DistBug robot is greater than the HCTNav’s.

In Figure 11 we have reproduced a simulation scenario from the Kamon and Rivlin’s work [13].

Although it represents only a theoretical result for the DistBug algorithm (not simulated), the map fits

into our simulation model, i.e., a grid with linear obstacles profile. The robot’s width is taken into

account in DistBug too, by setting a proper security range in the proximity sensor array. A clear benefit

of pre-processing the robot motion in a known indoor environment is that the trajectory found is, in

general, shorter thus extending on-board batteries lifetime in a long task scenario. As expected, our

navigation path-tree includes the DistBug solution (left branch in Figure 11b): we can observe that

even H1 and H2 points (Figure 11a) are reflected as HCTNav’s turning-points. But also, HCTNav finds

other possible solutions, which are also evaluated (which are also shorter). HCTNav also includes a

pruning module (see Subsection 3.4), taking advantage of map information, removes the unnecessary

corners by replacing them with new edges to reduce the cumulative final distance. The best solution

here is represented by the path on the right in Figure 11b.

Figure 11. Navigation results of DistBug and HCTNav. HCTNav would find a shortest

path to the right of the obstacles (red line). (a) DistBug’s theoretical solution;

(b) HCTNav’s solution.

(a)

(b)

ISPRS Int. J. Geo-Inf. 2013, 2 746

5. Conclusions

This paper has described a path-planning algorithm for low-cost robots navigating in indoor

environments. Starting from analyzing the pros and cons of the two most popular approaches in

navigation problem: the deterministic and the reactive; we proposed a hybrid solution, the HCTNav.

Our initial goal was to minimize the hardware’s requirements of the robot’s navigation layer. In

fact, in the deterministic approach, referenced by the Dijkstra family algorithms, a big amount of RAM

memory is needed to store the graph structure; in the reactive approach, referenced by the Bug family

algorithms, the major cost is represented by the intensive sensor sampling and the related control

hardware. HCTNav’s concept is to combine the shortest-path search principles of the deterministic

approach with the obstacle detection and avoidance techniques of the reactive one.

To reduce the dynamic memory upper-bound limit at runtime, we designed the data structure of the

algorithm to eliminate the edge set from the initial graph. Further, we were able to reduce the sensors

layer requirements by implementing the obstacle boundary-following as pure software, instead of

sampling the environment with proximity sensors. The main HCTNav requirement is that the robot

must be aware of the map’s topology a priori. Our map’s model is a binary matrix representing the

occupancy map-grid with the cell’s status (free or occupied). The new edges in the graph are

discovered dynamically, by scanning the desired trajectory with the Bresenham’s line algorithm. When

a potential collision is detected, a turning-point adjacent to the leading obstacle is marked as the next

hop. Starting from this new intermediate point, the initial trajectory is split into different navigation

branches allowing the robot to surround obstacles by following their boundaries. Hence, HCTNav

generates a navigation graph that leads from the initial position to the target point. To obtain the

shortest path from the obtained solutions, a post-optimization strategy eliminates the redundant edges,

due to inline turning-points and unnecessary corners, by replacing them with normalized edges.

By keeping in mind that map-grids in real scenarios can hold thousands of cells, we focused our

efforts on making the algorithm as scalable as possible. To measure the HCTNav’s performances we

developed our own test-bench, relying on the Valgrind memory profiler and on a custom map test-suite

with different topologies. As seen, the map topology and the obstacle profile represent a critical factor

in the performance of any navigation algorithm. HCTNav takes advantage from maps with a low

obstacle presence, whereas Dijkstra family is penalized in memory usage when the ratio between free

tiles and obstacles is high.

The simulations have proved that our algorithm needs less memory space than the Dijkstra’s

algorithm or its heuristic versions, especially when the map granularity grows. For example, in a 32×

rescaled map scenario (more than 150,000 cells), the HCTNav’s memory peak is nine times lower than

Dijkstra family’s. Further, the experimental results reveal that Dijkstra and the A* algorithms exhibit

the same memory usage. This means that the A* solution only improves the Dijkstra overhead and

execution time but do not reduce the memory usage, whereas HCTNav is more suitable for

implementing on a low-cost robot microprocessor with limited resources. The execution time is still

acceptable as it keeps in the same order of magnitude of Dijkstra. The differences between path lengths

are not significant in the low percentage of paths that this difference has arisen. Regarding to the

comparison with the Bug family, HCTNav reduces both the final-path length, thus granting longer

battery lifetime; and the sensory layer complexity, thus reducing the hardware costs.

ISPRS Int. J. Geo-Inf. 2013, 2 747

Acknowledgements

This work has been partially supported by the Spanish “Ministerio de Ciencia e Innovación”, under

project TEC2009-09871.

Conflict of Interest

The authors declare no conflict of interest.

References

1. Fu, L.; Sun, D.; Rilett, L.R. Heuristic shortest path algorithms for transportation applications:

State of the art. Comput. Oper. Res. 2006, 33, 3324–3343.

2. Antich, J.; Ortiz, A.; Minguez, J. A Bug-Inspired Algorithm for Efficient Anytime Path Planning.

In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems,

St. Louis, MO, USA, 10–15 October 2009; pp. 5407–5413.

3. Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; Stein, C. Dijkstra’s Algorithm. In Introduction to

Algorithms, 2nd ed.; MIT Press: Cambridge, MA, USA, 2001; pp. 595–601.

4. Idris, M.; Bakar, S.; Tamil, E.; Razak, Z.; Noor, N. High-Speed Shortest Path Co-Processor

Design. In Proceedings of Third Asia International Conference on Modelling & Simulation, Bali,

Indonesia, 25–29 May 2009; pp. 626–631.

5. Cain, T. Practical Optimizations for A* Path Generation. In AI Game Programming Wisdom,

2nd ed.; Charles River Editors: Boston, MA, USA, 2003; pp. 146–152.

6. Grant, K.; Mould, D. Combining Heuristic and Landmark Search for Path Planning. In

Proceedings of the Conference on Future Play: Research, Play, Share, Toronto, ON, Canada, 3–5

November 2008; pp. 9–16.

7. Goto, T.; Kosaka, T.; Noborio, H. On the Heuristics of A* or A Algorithm in ITS and Robot Path

Planning. In Proceedings of IEEE/RSJ International Conference on Intelligent Robot and

Systems, Las Vegas, NV, USA, 27-31 October 2003; pp. 1159–1166.

8. Bollobas, B. Modern Graph Theory; Springer: Heidelberg, Germany, 1998; pp. 252–259.

9. Selamat, A.; Zolfpour-Arokhlo, M.; Hashim, S.Z. A Fast Path Planning Algorithm for Route

Guidance System. In Proceedings of IEEE International Conference on Systems, Man, and

Cybernetics, Anchorage, AK, USA, 9–12 October 2011; pp. 2773–2778.

10. Langerwisch, M.; Wagner, B. Dynamic Path Planning for Coordinated Motion of multiple Mobile

Robots. In Proceedings of IEEE International Conference on Intelligent Transportation Systems,

Washington, DC, USA, 5–7 October 2011; pp. 1989–1994.

11. Zhou, J.; Lin, H. A Self-Localization and Path Planning Technique for Mobile Robot Navigation.

In Proceedings of the Intelligent Control and Automation (WCICA), Taipei, China, 21–25 June

2011; pp. 694–699.

12. Abdul-Jabbar, J.M.; Alwan, M.A.; Al-ebadi, M. A new hardware architecture for parallel shortest

path searching processor based-on FPGA technology. Int. J. Electron. Comput. Sci. Eng. 2012, 1,

2572–2582.

ISPRS Int. J. Geo-Inf. 2013, 2 748

13. Jiang, Z.; Wu, J. On Achieving the Shortest-Path Routing in 2-D Meshes. In Proceedings of the

Parallel and Distributed Processing Symposium, Long Beach, CA, USA, 26–30 March 2007;

pp. 26–30.

14. Lumelsky, V.J.; Stepanov, A. Path-planning strategies for a point mobile automaton moving

amidst obstacles of arbitrary shape. Algorithmica 1987, 2, 403–430.

15. Lumelsky, V.J.; Skewis, T. Incorporating range sensing in the robot navigation function. IEEE

Trans. Syst. Man Cybern. 1990, 2, 1058–1068.

16. Kamon, I.; Rivlin, E. Sensory-based motion planning with global proofs. IEEE Trans. Robot.

Autom. 1997, 13, 814–822.

17. Knudson, M.; Tumer, K. Adaptive navigation for autonomous robots. Auton. Robots 2011, 59,

410–420.

18. Sharef, S.M.; Sa’id, W.K.; Khoshaba, F.S. A Rule-Based System for Trajectory Planning of an

Indoor Mobile Robot. In Proceedings of the International Multi-Conference on Systems Signals

and Devices, Amman, Jordan, 27–30 June 2010; pp. 1–7.

19. Yu, N.; Ma, C. Mobile Robot Map Building Based on Cellular Automata. In Proceedings of the

Pacific-Asia Conference on Circuits, Communications and System, Wuhan, China, 17–18 July

2011; pp. 1–4.

20. Gonzalez-Arjona, D.; Sanchez, A.; de Castro, A.; Garrido, J. Occupancy-Grid Indoor Mapping

Using FPGA-Based Mobile Robots. In Proceedings of the Conference on Design of Circuits and

Integrated Systems, Albufeira, Portugal, 16–18 November 2011; pp. 345–350.

21. Buckland, M. Programming Game AI by Example, 1st ed.; Wordware Publishing: Plano, TX,

USA, 2005; pp. 193–248.

22. Bresenham, J.E. Algorithm for computer control of a digital plotter. IBM Syst. J. 1965, 4, 25–30.

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/3.0/).

