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Abstract: Low-cost robots are characterized by low computational resources and limited 

energy supply. Path planning algorithms aim to find the optimal path between two points 

so the robot consumes as little energy as possible. However, these algorithms were not 

developed considering computational limitations (i.e., processing and memory capacity). 

This paper presents the HCTNav path-planning algorithm (HCTLab research group’s 

navigation algorithm). This algorithm was designed to be run in low-cost robots for indoor 

navigation. The results of the comparison between HCTNav and the Dijkstra’s algorithms 

show that HCTNav’s memory peak is nine times lower than Dijkstra’s in maps with more 

than 150,000 cells. 
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1. Introduction 

The path-planning efficiency for the autonomous robot navigation problem is still an open 

challenge in robotics. In the last two decades, the efforts to reach an intelligent motion behavior, 

suitable for robotic vehicles, lead to two of the most-known approaches in literature and industry: the 
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deterministic solution, based on heuristic graph search, and the reactive one, based on environment 

sensor sampling [1]. When choosing between the former approaches, it is important to figure out 

which performance factor is critical for the real case scenario. For example, the deterministic 

algorithms offer a very fast execution and the optimum solution, although they are penalized by map 

scalability; on the other hand, the reactive algorithms are independent to map scaling and can handle 

dynamic changes, but do not guarantee the minimum path solution [2]. 

The Dijkstra’s algorithm [3] is the very reference for the deterministic solutions, due to its 

mathematical robustness when planning the shortest path. Nevertheless, Dijkstra’s approach presents 

two known problems: (1) spanning the whole search frontier increases the algorithm execution time, 

resulting in decreased speed performance; (2) dynamic memory usage exhibits quadratic growth, thus 

requiring a large amount of RAM in massive graphs [4]. 

To reduce the “overhead problem”, i.e., the unnecessary exploration of map areas that does not lead 

to the target, many authors have improved Dijkstra’s concept, by adding a heuristic estimation of 

remaining distance to the target. The estimation applies when choosing the next node from the search 

frontier. These Dijkstra’s evolutions are known as the A* family (A-star) and they are largely 

employed to solve the path-planning problem [5]. The Euclidean heuristic [6] uses straight distance as 

estimation of the remaining distance, whereas the Manhattan heuristic [7] uses the sum of the 

Cartesian projections of the distance vector. Dijkstra’s algorithms implement an optimum  

path-search [8] and always return the shortest path, which is why they still continue to represent the 

first choice in the market of route guidance systems (like GPS navigators) [9], logistic planners [10], 

and even for autonomous mobile robot navigation [11–13]. 

The reactive approaches can be referenced by the Bugs type algorithms [14], which combine the 

sensory-based obstacle detection during motion towards the target. These algorithms have evolved in 

different version through years, starting from the VisBug [15]. The DistBug [16] has improved Bugs’ 

final-path quality, by adding a set of formal rules to choose the best obstacle surrounding direction and 

the proper leaving condition during obstacle boundary following. 

The most valuable feature for this family is that robots can move in a totally unknown environment, 

reacting to obstacles according to the proximity sensors information (processed in real-time) [17]. This 

is known as local convergence approach [18]; despite its performance, this solution does not guarantee 

the minimum path (because of the local minimum “traps”). In the opposite one, known as global 

convergence approach [19], the working map will be constructed at a global scope, thus, avoiding the 

“dead-ends” and providing a better (but not minimal) path, although with a more expensive on-board 

resources usage. 

In this work we present our own algorithm for indoor robot navigation, called HCTNav (HCTLab 

research group’s navigation algorithm).. The main goal of the algorithm is to find, if it exists, an 

effective route between two cells in the given binary map, such as the occupancy-grid matrix discussed 

in González-Arjona et al. [20]. Regarding to performance requirements, the purposes of this research 

are (1) to increase the scalability in larger maps by controlling the dynamic memory usage at run-time 

and (2) to grant acceptable execution time. We conceived HCTNav as a hybrid algorithm, combining 

the graph-search techniques of the deterministic family with the logical rules of the reactive one. 

The article is structured as follows: Section 2 describes the environment model and the logical 

navigation rules; they are the basis for the algorithm discussion in Section 3, which focuses on the 
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HCTNav execution flow and the final path building; the experimental results and the comparison with 

the state-of-the-art solutions are discussed in Section 4, followed by a brief conclusion. 

2. Environment and System Model 

The HCTNav environment model has been shaped as a two dimensional map. The robot motion is 

holonomic and as it is limited to indoor areas we assume the ground to be always horizontal. So our 

scenario falls into the 2D modeling commonly employed in Real-Time Strategy videogames [21]. The 

terrain is represented by a grid of uniform cells and the movement range is bound to the valid (no 

obstacles in the trajectory) hops from a cell to another one. Following these principles, the navigation 

map can be reduced to a logical matrix with entries from the Boolean domain ( ∶=	 [0,1]). Every cell 

is identified by its coordinates ( , ) in the matrix. The cell’s status is stored in the correspondent 

entry: a logical ‘0’ states that the cell is free, whereas a ‘1’ represents an obstructed cell.  

The cell is defined by the robot’s size and the robot will always position itself in the geometric 

center of the cell; thus, any partially occupied cell will be considered an obstructed cell. The tiles’ 

coordinates belong to the natural numbers domain ( ∶=	 {0, 1, 2, … }) and are in the ranges ∈[0, − 1], ∈ [0, − 1], where c represents the number of columns and r the number of rows. The 

reference is the origin ( , ), which is fixed in the upper left corner (see Figure 1). 

Figure 1. Equivalence between a 2D map and its correspondent binary matrix model. The 

diagonal-stripes area depicts the real obstacle shapes, whereas the dark tiles are the 

correspondent obstructed cells. The circles represent all possible coordinates the robot may 

occupy in the map. 

 

So, the resultant navigation data structure represents only the initial graph’s node-set ∶= { } 
covering the free cells in the 2D grid. Another required abstraction is to normalize the map measure 

unit to simplify the mathematical notation; in this article we are assuming a cell as a unitary square 

( ≡ =1). 

3. The HCTNav Algorithm 

In this section we will discuss our algorithm’s processing, by explaining the four main modules that 

compose the robot’s motion-planning system.  
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According to our purpose, we started from a set of logical navigation rules inspired on the Bug 

family movement strategy; that is: try to go straight towards the goal and, in case of obstacles 

obstructing the way, try to surround them. The Bug approach chooses a surrounding direction,  

which may not be the optimal. As the HCTNav is executed prior to robot’s movement we may explore 

in both boundary-following directions. This procedure will create a tree of possible paths from the 

origin to the destination. Every path is optimized and the shortest one is returned when more than one 

is found. 

The algorithm has been divided into four main modules, each of them fulfills a specific task. The 

first module implements the obstacle detection in a given straight trajectory (Subsection 3.1); the 

second one defines the intermediate tile, called turning-point, adjacent to the detected obstacle used to 

start the surrounding of the obstacle (Subsection 3.2); the third module solves the obstacle surrounding 

(Subsection 3.3); finally, the fourth one aims at optimizations in the raw navigation graph (by pruning 

redundant edges) and states the criterion to choose the best path (Subsection 3.4). The initial data 

structure of the algorithm consists of the elements that model the given map and allow storing the 

required cell’s properties. The same structure changes all over the execution, as long as HCTNav 

updates the turning-point list and dynamically builds the intermediate edges. 

3.1. Obstacle Detection 

Given two generic nodes [ ] and [ ] in the map, the first module checks if the straight 

trajectory between them is obstacle-free. If one or more obstacles are found along the way, then the 

one representing the first “in sight” collision from robot’s perspective will be returned. 

The trajectory of the robot can be modeled as a “corridor”, projecting the robot’s front width from 

the start-point to the end-point; here the goal is to check all the tiles belonging to the corridor to avoid 

possible collisions (forwarded obstacle detection). 

For each cell into the corridor, HCTNav will check and mark all the tiles obstructed ( [ ]) 
and find the nearest one to the current position. As said, we will consider the square distances from the 

current [ ]	 to [ ]	as ( , ) = ( − ) + ( − ) ,  thus avoiding square roots. 

The module will return the obstacle k such as ( , ∗) = min { ( , )} , representing the first 

potential collision detected along the route. 

To implement this feature in the HCTNav algorithm must define every cell that may be occupied in 

robot’s trajectory. Considering that floating point calculations are hardware demanding for low-cost 

robots, we choose neither to employ trigonometric techniques nor to solve lineal equations systems. 

The remaining arithmetic operations are only additions, subtractions and multiplications. The 

Bresenham’s line algorithm [22] was created to plot lines in screen monitors using additions and 

subtractions to avoid floating point requirements in early computer graphics. In low-cost robots the 

same limitation arises and a similar solution is also valid. The Bresenham’s algorithm defines the 

pixels (equivalent to the cells of the map) that correspond to a line between two positions. The returned 

information will be the list of cells that will be check for obstacles. 

The major problem in the task of scanning the whole trajectory is that a single Bresenham’s line 

(from now on, B-line) does not cover all the cells that belong to the corridor (see Figure 2). Hence, it is 

necessary to define a set of B-lines, by considering different slopes ( ∈ [0, 2 ]) and the start-end 
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pairs for each single line. Considering these two conditions, the corridor may require from 1 to 6 B-

lines as follows: 

1. Internal B-lines: Using the 1st quadrant from Figure 3, the two B-lines from [ ] 
to	 [ ], changing the condition sign (see below). 

2. First-level external B-lines: Using the 1st quadrant from Figure 3, the two B-lines from [ ] to [ ] and from [ ] to [ ]. 
3. Second-level external B-lines: Using the 1st quadrant from Figure 3, the two B-lines from [ ] to [ ] and from [ ] to [ ]. 

Figure 2. Obstacle detection scenario: (a) Single B-line and uncovered cells; (b) All the 

cells belonging to the corridor. 

 

(a) (b) 

Figure 3 resumes the B-lines set properties and its analytic scheme, whereas in Figure 4 we offer 

the result of merging the lines. Depending on the condition that is used in the Bresenham algorithm, 

i.e., greater or greater than, the two internal B-lines will differ only by a tile ( [68] and [83] in 

Figure 4a). In case of ±90° or ±45° trajectory, they overlap one each other and it is recommendable to 

use just one internal B-line. The whole obstacle detection execution flow is detailed in Code 1. 

Figure 3. Definition of the Bresenham’s lines set in the four quadrants. 
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Figure 4. The three levels of coverage of the B-lines set. (a) The corridor and the cells 

covered by the internal B-lines; (b) The additional cells covered by the first-level external 

B-lines; (c) The full corridor covered by the inclusion of the second-level external B-lines. 

(a) (b) (c) 

Code 1. Obstacle detection pseudo-instructions. 

1. Initialize distance(Cell[i], Obstacle[k*]):= d2(i, k*) = ∞ 

2. Identify the current quadrant and the slope (m) of the corridor 

3. If (m = 0) then initialize 1 B-lines   /* orthogonal trajectory */ 

else if (m = 1) then initialize 3 B-lines /* ± 45° */ 

else initialize 6 B-lines        /* all other pendants */ 

4. Merge the B-lines to get all the cells in the corridor 

5. For every Cell[k] in the corridor 

a. If (k < 0) then          /* Obstacle[k] */     

i. If d2(i,k) < d2(i,k*) then  

1. update Obstacle[k*] = Obstacle[k] 

2. update d(i, k*) = d(i, k) 

6. Return Obstacle[k*]           /* or null, if there are no obstruction */ 

3.2. Choosing the Next Turning-Point 

The turning-point selection module, starting from the previously detected collision (see the hit-point 

in Figure 5), allows the robot to select the proper tile, directly in front of the current obstacle. 

Following the shortest path-search principles, the turning-point selection module returns the nearest 

cell from the current position. A new edge representing the next intermediate hop is then appended to 

the incremental navigation graph. 

Given [ ∗], our strategy is to consider the four possible orthogonal tiles ( [ ]) adjacent 

to it (EAST, SOUTH, WEST and NORTH in Figure 5). The algorithm evaluates the four candidates 

checking a list of conditions that asserts the validity of each candidate for the selection: 

• Condition-1: obstacle contour tile; 

• Condition-2: inbound and free tile; 

• Condition-3: not visited and not marked as turning-point; 

• Condition-4: obstacle-free trajectory (from current position). 
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Figure 5. Selection scheme for the next turning-point: (a) The four possible cardinal 

candidates; (b) The node returned by the module. 

(a) (b) 

Once the invalid cells are removed from the candidate list the algorithm marks the [ ∗] such 

as ( , ∗) = min { ( , )}  by setting its “turningPoint” flag. [ ∗]  represents the shortest 

(intermediate) hop from the current [ ] towards the target and it is also the cell from which to 

start surrounding the leading [ ∗]. At this time, the new [ ∗] is registered into 

a turning-point list and it is ready to be processed in a new iteration. The instructions to implement this 

module are presented in Code 2. Depending on the output of the turning-point selection, the HCTNav 

algorithm switches between one of these three cases: 

1) if no valid candidate is returned, then a dead-end is detected (no new edge is created); 

2) if the new turning-point [ ∗] is different from the current position [ ], then a new 

edge is assigned to the path-graph. The pointer [ ∗ ← ] is stored and its weight w is 

initialized with the straight distance between [ ] and [ ∗] centers; 

3) if the turning-point matches the current position then HCTNav proceeds to surround the obstacle 

(see next subsection). 

Code 2. Turning-point selection pseudo-instructions. 

1. Initialize distance(Cell[i], Cell[c*]):= d(i, c*) = ∞ 

2. Identify the candidates (the four cardinal neighbors of Obstacle[k*] ) 

3. For every candidate Node[c] in {EAST, SOUTH, WEST, NORTH}: 

a. If (Condition-1 = true AND Condition-2 = true AND 

  Condition-3 = true AND Condition-4 = true) 

  /* Condition-4 calls module for obstacle detection */ 

then 

i. If d(i, c) < d(i, c*) then 

1. update Node[c*]:= Node[c] 

2. update d(i, c*):= d(i, c) 

4. Return TurningPoint[c*]     /* or null, if there are no valid candidates */ 
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3.3. Surrounding Current Obstacle 

Starting from the new turning point, HCTNav can determine the two surrounding alternatives to 

avoid the facing obstacle in the map. Throughout the third module the route is “split” and the 

navigation graph begins to grow. As result of the obstacle boundary following a list of new  

turning-points, representing the corner tiles (i.e., 90° path deviations), is returned to be processed later. 

To solve the obstacle-surrounding problem, it is necessary to know some information about the 

tiles’ contour status. That is why we introduced the “contour” flag in the [ ] properties. During 

the initialization of the algorithm, the map is preprocessed generating for every contour tile a list of all 

the adjacent contour neighbors (from now on ). 

This grants that, during execution time, when the obstacle surrounding begins, a turning-point is 

aware of one or more next-hops from which begin to open the current trajectory in different navigation 

branches. Hence, starting from the initial  of [ ], the contour neighbors 

( [ ]) are visited recursively and added to the list. Same as the filtering technique used in the 

second module (see Subsection 3.2), the redundancies can be omitted from execution checking similar 

conditions, except for the third: 

• Condition-3’: not the current position and not in the initial contour list. 

Code 3. Obstacles surrounding pseudo-code. 

1. Retrieve  /* contains [ ] contour neighbors */ 

2. External loop: While  is not empty: 

a. For every [ ] in the list 

i. If (Condition-1 = true AND Condition-2 = true) then 

1. Check corridor from [ ] to [ ] /* target */ 

2. If no obstacles ( [ ∗] = null) then 

a. Mark [ ] as turning-point and add to output list 

b. Add [ ← ] and [ ← ]	to the path-graph 

c. Mark [ ] target-found flag 

3. else 

a. Retrieve  /* [ ] contour neighbors */ 

b. Go to Internal loop 

3. Internal loop: While  is not empty  

     (otherwise control goes back to External loop) 

a. For every [ ′] in the list 

1. If (Condition-2 = true AND Condition-3’ = true) then 

a. Check corridor from [ ] to [ ′] 
b. If no obstacles ( [ ∗] = null) then 

i. Mark previous neighbor [ ] as turning-point 

ii. Add [ ] to output list 

iii. Add the [ ← ] to the path-graph 

2. else 

a. Add [ ′] to  /* neighbor inheritance */ 

4. Return output list /* or null, if there are no valid corner tiles */ 
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The second condition limits the surrounding redundancies caused by contour neighbors list’s 

symmetries, whereas the fourth checks that the new [ ] can be reached (using the first module 

of HCTNav to check the corridor). Otherwise, if the way back to the initial position is obstructed, a 

corner is detected and the correspondent exploration branch ends.	 [ ] is marked as turning-point 

and pushed into the output list, which is composed of all the turning-points discovered during 

surrounding phase. HCTNav appends this partial list to the main turning-point list and then the 

algorithm continues to the next iteration. This module consists of two loops: an external one, for 

processing the current turning-point contour list, and an internal one, for recursively exploring the 

inherited neighbors. The pseudo-instructions of the third module are shown in Code 3. As it can be 

seen, in the external loop it is also necessary to check if the way to the target is obstacle free. This is 

the case of a target-found turning-point (the last hop before the goal). 

3.4. Building the Final Path 

The three main modules described in the previous subsections allow discovering a set of  

turning-points that is fed back in almost all iterations (except when no valid candidate is available). 

Module two returns the next turning-point, whereas module three returns the corner cells discovered 

during the surrounding. When a turning-point is marked, a new edge representing the hop from current 

position is constructed and then added to the path-graph, which grows incrementally. The algorithm 

ends when no more turning-points are available in the main turning-points list, even if the target is not 

found (this is the case of a path with no solution). 

Every turning-point identifies and is pointed by exactly one edge, except for the source (not pointed 

by any edge) and the target (can be pointed by more than one edge). Hence, it is convenient to 

reconstruct the path-tree backwards, because the target identifies the exact number of possible paths, 

thus preventing loops between them. The raw path-graph ∶= { , } is defined by the turning-points 

list  and the edges set , such as: ∀	 [ ], [ ] ∈  i, j ≠ t ⇒ ∃ [ ← ] ∈  , ∃ [ ] ∈ 	⇒ ∃ [ 	 ← ] ∈ 	, ∃ [ ] ∈ 	⇒ ∃{ [ 	 ← ], [ ← ], … , [ ← ]} ∈ 	. (1)

To remove the redundancies in the path-graph, due to the generalization of the navigation rules, we 

developed a post-processing that filters the edges, starting from the target node and proceeding 

backward until we reach the source node.  

As result, a path-tree is available for choosing the shortest path. In Figure 6 a simulation scenario is 

broken down to better understand HCTNav’s logics and post-processing: given the source position, [89] at position (0, 9), and the target point, [39] at (8, 3), the raw path-graph is first 

constructed (Figure 6b); the number of possible paths (two) corresponds exactly to the edges that are 

pointing to the target node. 

Hence, the filtering begins in [39], splitting through [39 ← 36] and [39 ← 79]. 
These two branches correspond to the main trajectory split in [73]. The redundancies 

that can occur can be classified in two classes: (1) redundant edges, when three turning-points form an 
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unnecessary deviation that can be replaced by one straight edge, and (2) inline edges, when three or 

more turning-points lie on the same direction. 

Figure 6. Full HCTNav case-study: (a) Initial map scenario; (b) Raw path-graph 

generated; (c) Optimized path-tree; (d) Shortest path returned. 

(a) (b) 

(c) (d) 

Once the optimization process ends (Figure 6c) the path-tree is ready: the “redundant edges” [58 ← 67]  and [67 ← 73]  have been pruned and replaced by the new [58 ← 73] 
(thus eliminating the corner in [67] ). Same as for [74 ← 67]  and [67 ← 73] , 

replaced by [74 ← 73], and for [36 ← 60] and [60 ← 58], pruned and replaced by [36 ← 58].  The “inline edges” [79 ← 77],  [77 ← 75],  [75 ← 74]  and [74 ← 73]  are normalized (by eliminating [77],  [75], [74]) and replaced by the straight [79 ← 73]. 
A final-path  is defined by the ordered sequence of edges that lead from the source node to the 

target node. During the optimization, for every path , the cumulative distance  is also calculated 

as the sum of all edges in the sequence. When the path-tree is completed, the HCTNav ends  

(Figure 6d) and returns the shortest path in the optimized tree. The formal definitions for the path-tree 

structure ∗ ≔ { ∗, ∗} are presented in equation (2). 
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∀	 [ ∗] ∈ ∗, ∗ ≠ {s, t} ⇒ ∃ [ ∗ ← ∗], [ ∗ ← ∗] ∈ ∗ , ≝ { [ 	 ← ∗], [ ∗ ← ∗], … , [ ∗ ← ∗], [ ∗ ← ]} ∈ ∗	, =	 ∗ ∗ , ∗ ∗ ∈ ∗. (2)

4. Experimental Section  

In this section a comparison is presented between our algorithm and the two principal families, 

which represent the state-of-the-art of the deterministic and the reactive approaches (discussed in the 

introduction of this work). First, a brief overview on our development environment will be given, in 

order to describe our methodology and testing tools (Subsection 4.1). Second, the experimental results 

over the map test-suite will be discussed and directly compared to the Dijkstra’s algorithm and its 

heuristic versions (Subsection 4.2). Finally, a qualitative analysis will reveal HCTNav’s improvements 

with respect to Dijkstra and DistBug’s solutions (Subsection 4.3).  

4.1. Test-Bench 

Our map test-suite has the characteristics of the model discussed in Section 2: every map is a binary 

matrix with 15 columns and 10 rows, for a total of 150 tiles. We composed the obstacles profiles of 

more than 30 maps in order to cover a representative set of topologies, from the more realistic indoor 

maps to the improbable worst cases maps (Figure 7 shows two maps from our test-suite that will be 

used in the next subsection for scalability analysis purposes). The test-suite is provided as additional 

material. 

Figure 7. Two examples from the map test-suite, designed by HCTLab team: (a) A “no 

obstacle” map (map-01); (b) A “labyrinth” map (map-13). 

(a)  (b)  

The last helped us to stress the algorithm modules and find out potential bottlenecks along the 

execution flow. We also generated enlarged versions of the maps to better study the scalability of our 

algorithm and to compare it with Dijkstra’s. Two types of scaling have been defined: (1) topology 

conservative, by maintaining the aspect ratio of the obstacles profile, and (2) topology repetitive, by 
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replicating the map topology a given number of times. The scaling factors follow the 2-powers pattern 

(exponential growth): ×2, ×4, ×8, ×16, ×32.  

4.1.1. Algorithms Implementation 

The code of all the tested algorithms (HCTNav, Dijkstra, A* using Euclidean heuristic) has been 

implemented in ANSI-C language. The A* implementation follows the guidelines shown in [5]. The 

A* graph is created using an 8-grid connectivity asserting that diagonal edges avoid collisions. Hence, 

the generated graph considers the width of the robot when creating the graph. This connectivity was 

chosen because is the most extended in indoor grid-map-based navigation. Larger connectivity would 

lead to larger graphs requiring more memory and thus penalizing the comparison. The tie-breaking 

policy for the A* randomly selects a node from the list of top f-value nodes. Finally, the path obtained 

by Dijkstra and A* is optimized using the pruning module discussed in Subsection 3.4. 

The command-line version of the algorithms allows better studying the dynamic memory usage at 

run-time, free from graphic libraries and framework’s memory allocations. Further, it allows to launch 

map-intensive searches, calculating the path for all the possible nodes pairs in all the possible maps of 

a given set. Each single path-search represents an atomic execution of the given algorithm. To sample 

the dynamic memory usage we relied on the Valgrind 3.8 (see http://valgrind.org) application and its 

Massif-msprint tools. The output produced by this memory profiler contains the full record of the 

RAM allocations, such as mallocs and callocs. 

4.2. Simulation Results 

In this subsection the experimental data of HCTNav will be presented and directly compared with 

the Dijkstra family. The four comparison criterions are: (1) dynamic memory usage, (2) scalability 

over map resizing, (3) execution time, and (4) path length. 

4.2.1. Dynamic Memory Usage 

As mentioned in the introduction, HCTNav’s main goal is to minimize memory usage to reduce the 

design costs of the robot. So, what we are interested for is the “run-time memory peak”, as it represents 

the minimum upper-bound memory requirement, critical in low-cost systems. The static memory usage 

is easier to estimate, because it is represented by the executable files and its static data running into the 

microprocessor. In our own implementation, the Dijkstra’s algorithms occupy about 73.7 kB, whereas 

HCTNav’s is a 10% greater (about 81.1 kB). For each map in the test suite we measured the dynamic 

memory required for solving every possible path, capturing the maximum memory allocation sample, 

or “peak”, in every search (∀ , ∶ ≠ 	 → ( , )). 
During the Dijkstra family analysis we found that the dynamic memory usage is identical for all the 

versions (Dijkstra and Euclidean). This means that the heuristic improvement of the A* family only 

reduces the overhead problem and enhances execution time but really does not impact the memory 

usage. 

The main component of Dijkstra’s memory allocations grows during initialization and corresponds 

to the graph building phase and its storing. 
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In Figure 8 we present a direct comparison between the HCTNav and Dijkstra’s memory 

requirements at run-time (memory peaks). On the left side of the chart, where maps have a higher rate 

of free tiles, our algorithm shows a considerable advantage, whereas Dijkstra needs more memory 

space. 

Figure 8. Comparing the dynamic memory “peaks” (HCTNav vs. Dijkstra family). Maps 

have been ordered considering the result provided by the Dijkstra solution. 

 

4.2.2. Scalability over Map Resizing 

To enforce HCTNav’s benefits in memory usage we have stressed the simulation scenario running 

rescaled versions of the maps in our set and comparing the response with Dijkstra simulations. The 

more the graph structures increase in number of cells, the more initial memory space is needed to run 

the path search in the enlarged map. 

The two interesting scenarios we want to discuss here are map-01 (Figure 7a) and map-13  

(Figure 7b) as they represent the diametrically opposite map complexity case-studies. The two ways of 

scaling discussed in Subsection 4.1 are employed. In Table 1 the algorithm results are presented. As it 

can be seen, the Dijkstra’s algorithms are not as scalable as the HCTNav algorithm: their memory 

usage is larger in all the scenarios, whereas our solution exhibits a lower growth gradient. 
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Table 1. Simulation results for the scalability analysis. The dynamic memory peaks are 

expressed in MB. 

Factor 
map-01 Scaled map-13 Scaled map-13 Repeated 

Dijkstra HCTNav Dijkstra HCTNav Dijkstra HCTNav 

×1 0.08 0.01 0.02 0.02 0.02 0.02 
×2 0.35 0.05 0.09 0.04 0.14 0.05 
×4 1.40 0.18 0.34 0.16 0.67 0.15 
×8 5.66 0.69 1.33 0.59 2.81 0.55 

×16 22.08 2.68 5.31 2.25 11.65 1.95 
×32 91.28 10.07 21.20 8.79 47.40 7.89 

4.2.3. Execution Time Impact 

Compared to the easier Dijkstra’s instructions, the execution flow of the HCTNav algorithm can be 

hard to implement (and to optimize) and adds an undesired degree of complexity to the conventional 

graph-search algorithms. However, simulation data analysis reveals that HCTNav’s speed performance 

is acceptable. To measure the execution time we considered the average path search time (i.e., the 

whole batch job duration divided by the number of available paths). The simulations have been 

launched on a PC common microprocessor, namely an AMD-64 Turion X2 Dual-core at 2.00 GHz, 

with 4 GB of RAM and Linux Debian SO (Ubuntu 9.10). The results exhibit that HCTNav’s execution 

time is in the same order of magnitude of Dijkstra’s (milliseconds). 

In complex topologies such as labyrinth-style maps HCTNav loses speed performance, especially if 

the obstacles’ profile follows a stairway pattern. This is due to the increased switching between 

obstacle detection and surrounding modules. It is important here to remember that, regarding to the 

robot’s response time in navigation task (about 30–40 sec of motion in a common scenario), the route 

planning time is negligible as it does not go beyond the fraction of second.  

Figure 9. Execution time comparison (average single-path search). Maps have been 

ordered considering the result provided by the Euclidean solution (A*). 
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In Figure 9 is presented the execution time comparison between HCTNav and the Dijkstra family 

over the map test-suite. On the ordinates axis, the average single-path search time is plotted. HCTNav 

is a bit slower than the A* approach but does not suffer the same speed gap when comparing it with 

the Dijkstra’s algorithm. 

4.2.4. Path Length Comparison 

The final comparison between the proposed HCTNav algorithm and the extended Dijkstra and A* 

solutions evaluates the length of the final path. HCTNav performs a path optimization, as presented in 

Section 3.4, to reduce the length of the path. The optimization checks if it is possible to move between 

two non-consecutive nodes shorting the solution. This optimization is also applied to the solution 

provided by the Dijkstra and A* solutions to make a fair comparison. 

Table 2 shows the results of a comparison in a subset of the maps. The difference in granularity of 

the generated solutions and the application of the optimization algorithm makes a significant 

percentage of paths to have different path lengths (i.e., up to 22% of the paths in map 11 are different). 

However, it must be noted that the average difference between path lengths is lower than a third of 

cell’s length. As stated in Section 2, the length of a cell is the same as the length of the robot. 

Therefore, this difference is not significant. It must be noted that both the HCTNav and Dijkstra always 

obtain a solution, although not the same one. 

Table 2. Path-length comparison results (mean and variance). The cell’s width is unitary 

( =1). 

Map Name 
Number of 

Possible Paths 
Percentage of 

Different Paths 
Difference 

Mean 
Difference 

Variance 

map-01 11175 0.00% 0.00 0.0 
map-02 10712 0.00% 0.00 0.0 
map-03 10153 3.20% 0.19 0.6 
map-04 8911 4.72% 0.25 0.9 
map-05 9870 7.50% 0.22 0.8 
map-06 10153 6.30% 0.27 0.1 
map-07 9591 5.18% 0.30 0.9 
map-08 9045 4.61% 0.28 0.1 
map-09 8911 6.06% 0.30 0.1 
map-10 9045 12.66% 0.30 0.1 
map-11 4371 22.24% 0.25 0.1 
map-12 6441 6.27% 0.29 0.6 
map-13 2485 9.46% 0.29 0.05 

4.3. Qualitative Discussion 

4.3.1 HCTNav vs. Dijkstra and A*  

Regarding to the Dijkstra family and its heuristic versions (A*), we share the recursive path-graph 

exploration and part of the data structure that is used during the execution, but with some differences: 
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• HCTNav only requires a set of nodes representing the free cells in the binary map, whereas 

Dijkstra also needs to know all possible edges. This simplification reflects considerable 

memory saving during run-time, especially when the maps grow in cell number. 

• Edges are composed during the execution and could span multiple nodes; instead, in the 

common Dijkstra family implementations, used for this comparison, only one-hop edges are 

evaluated and stored as a preprocessing of the map, due to the exploding cost of storing all 

the possible edges in the initial graph. 

• In HCTNav we introduced an obstacle control strategy to find the intermediate transit nodes 

(turning-points) from which to begin to surround obstacles. Dijkstra simply does not 

consider obstructions as they are implicitly removed at the construction of the initial graph. 

• The difference between the path lengths between the HCTNav and the Dijkstra is lower than 

a third of a cell. Considering that it is also a third of the size of the robot, it is not significant. 

In Figure 10a direct comparison of HCTNav and Dijkstra family is presented in another case-study 

scenario (map-11). In these simulations we are focusing on the “overhead” rate, i.e., the map’s portion 

that is explored even if it is not useful to reach the target. This factor is critical because it impacts 

directly the path-search performance. As it can be seen, HCTNav approximates the A* overhead 

(Figure 10d), which is smaller than Dijkstra due to the proper next-hop choice. 

Figure 10. Qualitative analysis in map-11: (a) Initial trajectory scenario; (b) HCTNav 

solution and overhead; (c) Dijkstra’s algorithm; (d) A* algorithm. 

(a) (b) 

(c) (d) 
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4.3.2. HCTNav vs. DistBug 

With respect to the Bugs family, the HCTNav approach is quite different: the Bugs are based on the 

complete lack of map information, whereas HCTNav has an a priori knowledge of the map model; in 

consequence of that, the HCTNav navigation concept is opposite of Bugs family’s (graph exploration 

vs. sensory-based motion). 

Nevertheless, we have found that our navigation rules are similar to the DistBug’s operative modes 

(motion towards the target and obstacle-boundary following). This is due to the fact that both 

algorithms are inspired on human-based intuitive strategy to reach to a destination avoiding obstacles. 

The same criterion is valid for both an unknown environment and a map-planning scenario. The 

choice of which strategy to implement is bound to the trade-off between robot design costs and 

algorithm’s complexity. The DistBug logical layer is simpler than the HCTNav’s but also the cost of 

sensor layer of the DistBug robot is greater than the HCTNav’s. 

In Figure 11 we have reproduced a simulation scenario from the Kamon and Rivlin’s work [13]. 

Although it represents only a theoretical result for the DistBug algorithm (not simulated), the map fits 

into our simulation model, i.e., a grid with linear obstacles profile. The robot’s width is taken into 

account in DistBug too, by setting a proper security range in the proximity sensor array. A clear benefit 

of pre-processing the robot motion in a known indoor environment is that the trajectory found is, in 

general, shorter thus extending on-board batteries lifetime in a long task scenario. As expected, our 

navigation path-tree includes the DistBug solution (left branch in Figure 11b): we can observe that 

even H1 and H2 points (Figure 11a) are reflected as HCTNav’s turning-points. But also, HCTNav finds 

other possible solutions, which are also evaluated (which are also shorter). HCTNav also includes a 

pruning module (see Subsection 3.4), taking advantage of map information, removes the unnecessary 

corners by replacing them with new edges to reduce the cumulative final distance. The best solution 

here is represented by the path on the right in Figure 11b. 

Figure 11. Navigation results of DistBug and HCTNav. HCTNav would find a shortest 

path to the right of the obstacles (red line). (a) DistBug’s theoretical solution; 

(b) HCTNav’s solution. 

 
(a) 

 
(b) 
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5. Conclusions 

This paper has described a path-planning algorithm for low-cost robots navigating in indoor 

environments. Starting from analyzing the pros and cons of the two most popular approaches in 

navigation problem: the deterministic and the reactive; we proposed a hybrid solution, the HCTNav. 

Our initial goal was to minimize the hardware’s requirements of the robot’s navigation layer. In 

fact, in the deterministic approach, referenced by the Dijkstra family algorithms, a big amount of RAM 

memory is needed to store the graph structure; in the reactive approach, referenced by the Bug family 

algorithms, the major cost is represented by the intensive sensor sampling and the related control 

hardware. HCTNav’s concept is to combine the shortest-path search principles of the deterministic 

approach with the obstacle detection and avoidance techniques of the reactive one. 

To reduce the dynamic memory upper-bound limit at runtime, we designed the data structure of the 

algorithm to eliminate the edge set from the initial graph. Further, we were able to reduce the sensors 

layer requirements by implementing the obstacle boundary-following as pure software, instead of 

sampling the environment with proximity sensors. The main HCTNav requirement is that the robot 

must be aware of the map’s topology a priori. Our map’s model is a binary matrix representing the 

occupancy map-grid with the cell’s status (free or occupied). The new edges in the graph are 

discovered dynamically, by scanning the desired trajectory with the Bresenham’s line algorithm. When 

a potential collision is detected, a turning-point adjacent to the leading obstacle is marked as the next 

hop. Starting from this new intermediate point, the initial trajectory is split into different navigation 

branches allowing the robot to surround obstacles by following their boundaries. Hence, HCTNav 

generates a navigation graph that leads from the initial position to the target point. To obtain the 

shortest path from the obtained solutions, a post-optimization strategy eliminates the redundant edges, 

due to inline turning-points and unnecessary corners, by replacing them with normalized edges. 

By keeping in mind that map-grids in real scenarios can hold thousands of cells, we focused our 

efforts on making the algorithm as scalable as possible. To measure the HCTNav’s performances we 

developed our own test-bench, relying on the Valgrind memory profiler and on a custom map test-suite 

with different topologies. As seen, the map topology and the obstacle profile represent a critical factor 

in the performance of any navigation algorithm. HCTNav takes advantage from maps with a low 

obstacle presence, whereas Dijkstra family is penalized in memory usage when the ratio between free 

tiles and obstacles is high. 

The simulations have proved that our algorithm needs less memory space than the Dijkstra’s 

algorithm or its heuristic versions, especially when the map granularity grows. For example, in a 32× 

rescaled map scenario (more than 150,000 cells), the HCTNav’s memory peak is nine times lower than 

Dijkstra family’s. Further, the experimental results reveal that Dijkstra and the A* algorithms exhibit 

the same memory usage. This means that the A* solution only improves the Dijkstra overhead and 

execution time but do not reduce the memory usage, whereas HCTNav is more suitable for 

implementing on a low-cost robot microprocessor with limited resources. The execution time is still 

acceptable as it keeps in the same order of magnitude of Dijkstra. The differences between path lengths 

are not significant in the low percentage of paths that this difference has arisen. Regarding to the 

comparison with the Bug family, HCTNav reduces both the final-path length, thus granting longer 

battery lifetime; and the sensory layer complexity, thus reducing the hardware costs. 



ISPRS Int. J. Geo-Inf. 2013, 2 747 

 

 

Acknowledgements 

This work has been partially supported by the Spanish “Ministerio de Ciencia e Innovación”, under 

project TEC2009-09871. 

Conflict of Interest  

The authors declare no conflict of interest. 

References  

1. Fu, L.; Sun, D.; Rilett, L.R. Heuristic shortest path algorithms for transportation applications: 

State of the art. Comput. Oper. Res. 2006, 33, 3324–3343.  

2. Antich, J.; Ortiz, A.; Minguez, J. A Bug-Inspired Algorithm for Efficient Anytime Path Planning. 

In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems,  

St. Louis, MO, USA, 10–15 October 2009; pp. 5407–5413.  

3. Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; Stein, C. Dijkstra’s Algorithm. In Introduction to 

Algorithms, 2nd ed.; MIT Press: Cambridge, MA, USA, 2001; pp. 595–601. 

4. Idris, M.; Bakar, S.; Tamil, E.; Razak, Z.; Noor, N. High-Speed Shortest Path Co-Processor 

Design. In Proceedings of Third Asia International Conference on Modelling & Simulation, Bali, 

Indonesia, 25–29 May 2009; pp. 626–631. 

5. Cain, T. Practical Optimizations for A* Path Generation. In AI Game Programming Wisdom,  

2nd ed.; Charles River Editors: Boston, MA, USA, 2003; pp. 146–152. 

6. Grant, K.; Mould, D. Combining Heuristic and Landmark Search for Path Planning. In 

Proceedings of the Conference on Future Play: Research, Play, Share, Toronto, ON, Canada, 3–5 

November 2008; pp. 9–16. 

7. Goto, T.; Kosaka, T.; Noborio, H. On the Heuristics of A* or A Algorithm in ITS and Robot Path 

Planning. In Proceedings of IEEE/RSJ International Conference on Intelligent Robot and 

Systems, Las Vegas, NV, USA, 27-31 October 2003; pp. 1159–1166. 

8. Bollobas, B. Modern Graph Theory; Springer: Heidelberg, Germany, 1998; pp. 252–259. 

9. Selamat, A.; Zolfpour-Arokhlo, M.; Hashim, S.Z. A Fast Path Planning Algorithm for Route 

Guidance System. In Proceedings of IEEE International Conference on Systems, Man, and 

Cybernetics, Anchorage, AK, USA, 9–12 October 2011; pp. 2773–2778. 

10. Langerwisch, M.; Wagner, B. Dynamic Path Planning for Coordinated Motion of multiple Mobile 

Robots. In Proceedings of IEEE International Conference on Intelligent Transportation Systems, 

Washington, DC, USA, 5–7 October 2011; pp. 1989–1994. 

11. Zhou, J.; Lin, H. A Self-Localization and Path Planning Technique for Mobile Robot Navigation. 

In Proceedings of the Intelligent Control and Automation (WCICA), Taipei, China, 21–25 June 

2011; pp. 694–699. 

12. Abdul-Jabbar, J.M.; Alwan, M.A.; Al-ebadi, M. A new hardware architecture for parallel shortest 

path searching processor based-on FPGA technology. Int. J. Electron. Comput. Sci. Eng. 2012, 1, 

2572–2582. 



ISPRS Int. J. Geo-Inf. 2013, 2 748 

 

 

13. Jiang, Z.; Wu, J. On Achieving the Shortest-Path Routing in 2-D Meshes. In Proceedings of the 

Parallel and Distributed Processing Symposium, Long Beach, CA, USA, 26–30 March 2007;  

pp. 26–30. 

14. Lumelsky, V.J.; Stepanov, A. Path-planning strategies for a point mobile automaton moving 

amidst obstacles of arbitrary shape. Algorithmica 1987, 2, 403–430. 

15. Lumelsky, V.J.; Skewis, T. Incorporating range sensing in the robot navigation function. IEEE 

Trans. Syst. Man Cybern. 1990, 2, 1058–1068. 

16. Kamon, I.; Rivlin, E. Sensory-based motion planning with global proofs. IEEE Trans. Robot. 

Autom. 1997, 13, 814–822. 

17. Knudson, M.; Tumer, K. Adaptive navigation for autonomous robots. Auton. Robots 2011, 59, 

410–420. 

18. Sharef, S.M.; Sa’id, W.K.; Khoshaba, F.S. A Rule-Based System for Trajectory Planning of an 

Indoor Mobile Robot. In Proceedings of the International Multi-Conference on Systems Signals 

and Devices, Amman, Jordan, 27–30 June 2010; pp. 1–7. 

19. Yu, N.; Ma, C. Mobile Robot Map Building Based on Cellular Automata. In Proceedings of the 

Pacific-Asia Conference on Circuits, Communications and System, Wuhan, China, 17–18 July 

2011; pp. 1–4. 

20. Gonzalez-Arjona, D.; Sanchez, A.; de Castro, A.; Garrido, J. Occupancy-Grid Indoor Mapping 

Using FPGA-Based Mobile Robots. In Proceedings of the Conference on Design of Circuits and 

Integrated Systems, Albufeira, Portugal, 16–18 November 2011; pp. 345–350. 

21. Buckland, M. Programming Game AI by Example, 1st ed.; Wordware Publishing: Plano, TX, 

USA, 2005; pp. 193–248. 

22. Bresenham, J.E. Algorithm for computer control of a digital plotter. IBM Syst. J. 1965, 4, 25–30. 

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


