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Abstract: Considering the importance of spatial issues in transport planning, the main 

objective of this study was to analyze the results obtained from different approaches of 

spatial regression models. In the case of spatial autocorrelation, spatial dependence patterns 

should be incorporated in the models, since that dependence may affect the predictive 

power of these models. The results obtained with the spatial regression models were also 

compared with the results of a multiple linear regression model that is typically used in 

trips generation estimations. The findings support the hypothesis that the inclusion of 

spatial effects in regression models is important, since the best results were obtained with 

alternative models (spatial regression models or the ones with spatial variables included). 

This was observed in a case study carried out in the city of Porto Alegre, in the state of  

Rio Grande do Sul, Brazil, in the stages of specification and calibration of the models, with 

two distinct datasets. 
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1. Introduction 

Spatial relationships play an important role in transport. Even though, there are not so many studies 

focusing on the explicit introduction of spatial issues in transport planning modeling. Thus, as a 

contribution to the field, the objective of this study is to analyze the results obtained from different 

approaches of spatial regression models. Next, the outcomes of these spatial models are also compared 

with the results of a multiple linear regression model that is typically used in trips generation estimations. 

The key research question of this study was thus whether or not the inclusion of spatial variables 

improves transport demand models. Many researchers have already discussed the importance of 

considering spatial effects in urban and transportation analyses. Páez and Scott [1], for instance, have 

made a review of techniques and examples of applications illustrating how spatial statistics can be used 

in urban transportation and land use planning. The objective of that study was to discuss some of the 

major technical issues in spatial analysis (i.e., spatial association, heterogeneity and the modifiable 

areal unit problem) and the authors indicated a promising trend for the application of increasingly 

sophisticated spatial statistical methods in urban analyses. These topics are still timely, as recently 

discussed by Wang et al. [2]. 

Spatial dependence and its effects on transportation demand models, which are the focus of this study, 

are undoubtedly among the issues concerning spatial analysis that have not been fully explored in 

transport planning yet. This can be seen in Table 1, in which a review of studies conducted in the past 

three decades about spatial effects on transportation and urban analysis was summarized. The table is 

organized in such a way that the references are shown in the central column, the spatial analytical 

issues explored are listed on the left side of the table and the fields of application are listed on the right 

side of the table. Regarding the spatial analytical issues, most of the selected studies focused on issues 

of spatial association (i.e., spatial dependence or spatial autocorrelation). Regarding the applications, 

only a few of them dealt with transportation demand analyses. It is worth mentioning that almost all 

studies have reached a common conclusion: the inclusion of spatial effects improved the analyses 

results. This is not really a surprise, but it calls the attention to the fact that many studies that are not 

listed in Table 1 still do not explicitly include spatial analysis elements in their analyses. 

Regression models, for example, are commonly used in the trip generation phase of transport planning. 

They are statistical tools that explore the existing relationships among two or more variables, so that 

one of them can be explained (and therefore its value can be estimated) by the other(s). However, in 

the presence of a significant spatial autocorrelation, model estimations have to consider and to 

incorporate the spatial structure of data. Spatial regressions, or regression analyses incorporating the 

existing spatial dependence of data, are likely to improve the predictive power of the regression models.  

Bolduc et al. [3–5], Haider and Miller [6], Wang [7], Czado and Prokopenko [8], Kawamura and 

Mahajan [9], Vichiensan et al. [10], Zhou and Kockelman [11], Ribeiro and Antunes [12], 

Chalermpong [13], Hackney et al. [14,15], and Novak et al. [16] provide examples of applications of 

spatial regression, some of them in urban and transportation planning. In general, the spatial models 

tested had a better fit to the actual data than the respective non-spatial models.  
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Table 1. Applications of spatial statistics in transport analysis. 

Spatial Analytical Issues Explored 

Studies Reviewed 

Fields Of Application 

Spatial 

Association 

(Spatial 

Dependence) 

Spatial 

Heterogeneity 

Modifiable 

Areal Unit 

Problem 

(MAUP) 

Travel 

Demand 

Estimations 

Travel 

Behavior 

Transportation-

Land Use 

Modeling and 

Data Estimation 

 X  Bender and Hwang [17]   X 

X   
Bolduc et al. [3], Eom et al. [18], 

Wang and Kockelman [19] 
X   

X X  

Bolduc et al. [4,5], Bhat and  

Zhao [20], Czado and  

Prokopenko [8] 

X   

X   

Kwan [21],  

Steenberghen et al. [22], Li and 

Zhang [23], Hackney et al. [14],  

Hackney et al. [15],  

Gundogdu et al. [24],  

Khan et al. [25], Guo et al. [26],  

Páez et al. [27] 

 X  

X   

Haider and Miller [6], Wang [7], 

Kawamura and Mahajan [9], 

Victoria et al. [28],  

Chalermpong [13], Zhou and 

Kockelman [11], Ibeas et al. [29], 

Efthymiou and Antoniou [30] 

  X 

  X Horner and Murray [31]   X 

X X  
Vichiensan et al. [10], Ribeiro and 

Antunes [12] 
  X 

X   Novak et al. [16]    

This study focus on the results of the trip generation phase of the four-step model (i.e., trip 

generation, trip distribution, transport mode choice and route choice). Thus, it aims to contribute to the 

evaluation of the benefits in the application of spatial statistics tools in the analysis of demand for 

transport and for sustainable transport planning. 

Lopes and Rodrigues da Silva [32] assessed the impacts of the introduction of global and local 

indicators of spatial dependence in demand forecast models. Models with spatial characteristics, which 

were called ―alternative‖ models, were compared with ―traditional‖ models, in which the variables 

were not treated in spatial terms. The method was applied in the city of Porto Alegre, which is the 

capital of the state of Rio Grande do Sul, Brazil. The data for the analyses came from origin-destination 

(O-D) surveys obtained through household interviews (hereafter called EDOM, which is the acronym 

for household interviews in Portuguese) in two distinct years (1974 and 1986). The 1974 dataset was 

used for calibration and adjustment of the models. The 1986 dataset provided the information needed 

for analyzing the estimates based on the 1974 models. Several models were tested and the most 
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efficient one was that in which Global and Local spatial variables were introduced. These years were 

selected because these are the datasets available in the city of Porto Alegre. 

In this study, we further developed our own previous studies by analyzing the results obtained with 

the model that was best adjusted to the 1974 dataset. The so-called AGL74 model, which stands for 

Alternative, Global and Local model for the year 1974, was a multiple regression model that received 

the ―alternative‖ designation because of the spatial variables that represented indicators of global and 

local spatial dependence. In addition to the model AGL74, we used the same datasets from Porto 

Alegre to analyze the results of the following alternative regression models that consider global spatial 

effects: the Spatial Auto-Regressive Model and the Spatial Error Model (Anselin [33] and 

Fotheringham et al. [34]).  

The performance of the models was also tested with data of a more recent origin-destination survey 

in the phases of validation and forecast. Those data, which were obtained through household interviews 

in 2003 (EDOM, 2003), were not available when the previous studies were conducted. Thus, in this 

article we presented the results obtained with the implementation of the alternative models calibrated 

with the 1974 and 2003 datasets. In addition, we carried out comparative analyses with the results of 

traditional models that were also calibrated with the same datasets.  

Two topics that are relevant to this study were discussed in a brief literature review right after  

this introduction. Initially, Exploratory Spatial Data Analysis (ESDA, as described by Anselin [35]) 

tools were discussed in Section 2. Those tools served to generate the indicators that were introduced as 

spatial variables in the alternative models. They were also essential in the analysis of the models results. 

Next, Confirmatory Spatial Data Analysis (CSDA) tools were also treated in Section 2. We focused 

specifically on Spatial Regression, as follows: first we have provided an overview of the subject and 

we subsequently presented the structure of the models we have selected for use. In Section 3, we 

presented details of the methodology used in the study, followed by an analysis of the results of our 

application in Section 4, and the main conclusions of the study in Section 5. 

2. Exploratory and Confirmatory Spatial Data Analysis Tools  

Exploratory Spatial Data Analysis (ESDA) tools can be used to: (i) visualize and describe spatial 

distributions; (ii) identify standards of spatial association (spatial agglomerations or clusters); (iii) identify 

atypical observations (extreme values or outliers); and (iv) identify the existence of spatial instabilities 

(non-stationarity). ESDA methods are descriptive and not confirmatory. Therefore, they are not meant to 

be used to patterns detection, hypotheses elaboration, and estimation of spatial models (Anselin [35]). 

Spatial autocorrelation is among the analyses conducted with ESDA tools. A value of spatial 

autocorrelation can show how much the value of a variable in one region is dependent on the values of 

the same variable in neighborhood locations. For example, the Moran’s I Index indicates, through 

values that vary from −1 to +1, how similar each area is to its immediate neighbor in relation to a 

particular variable. While zero means no spatial autocorrelation, values close to −1 or +1 indicate the 

presence of negative or positive autocorrelation, respectively. As a result, by allowing the identification 

of nonrandom distributions of the variables, Moran’s I can be useful in the analyses at the initial stages 

of transport modeling, when regression equations are extensively used in the four-step model. 
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The Moran Scatterplot can be used to obtain global spatial variables (or global indicators of  

spatial dependence). It is a two-dimensional graph divided into four quadrants, in which normalized 

values of the analysis variable (Z) are compared with the average of the values in neighboring zones (Wz). 

The Moran’s I value is equivalent to the coefficient that indicates the slope (α) of a regression line of 

Wz in Z. The quadrants can be interpreted as proposed by Anselin [36]:  

• Q1 (positive value for the zone and positive value for the average of the values in  

neighboring zones) and Q2 (negative value for the zone and negative value for the average of the values 

in neighboring zones). It indicates points of positive spatial association, what means that a zone has 

neighbor zones with similar values. Also called High-High and Low-Low, respectively. 

• Q3 (negative value for the zone and positive value for the average of the values in  

neighboring zones) and Q4 (positive value for the zone and negative value for the average of the 

values in neighboring zones). It indicates points of negative spatial association, what means that a zone 

has distinct values from its neighbors. Also called Low-High and High-Low, respectively. 

Moran’s Scatterplot values can also be presented in the so-called Box Maps. In such a map, each 

polygon is classified according to the quadrant it belongs to in the scatter diagram. While the  

global indicators, like Moran’s I, provide a unique value as a measure of data spatial association, the 

local indicators produce a specific value for each area. They allow the identification of regions with: 

similar attribute values (clusters), outliers, and more than a spatial regime. Anselin [35] refers to them 

as LISA (Local Indicators of Spatial Association) statistics. 

The statistical significance of Moran’s local indicators can be computed as follows. The process 

starts with the calculation of the indexes for each area. The values of all areas are then randomly 

permuted until a pseudo distribution is obtained, for which significant parameters can be calculated. In 

this case, the LISA Map and the Moran Map indicate the regions that present local correlation 

significantly different from the rest of the data. They are areas with their own spatial dynamics  

(i.e., pockets of local non-stationarity) that require detailed analysis. Significant autocorrelations to a 

level of 5% indicate very similar areas in comparison to their neighbors. 

The spatial variables were introduced into the transport demand models in the present study through 

Local Moran statistics. They were obtained as local indicators of spatial dependence and denominated local 

spatial variables. The ESDA indices and tools were also very useful in the evaluation of the models 

performance, since they can be used in the analysis of the spatial distribution of the estimation errors.  

Confirmatory Spatial Data Analysis (CSDA) tools group the quantitative processes of modeling, 

estimation and validation necessary for the analysis of spatial components. It can be highlighted, in this 

group, the ―toolkit‖ available for spatial statistics and spatial econometrics as spatial regression, or the 

introduction of indicators of spatial autocorrelation as spatial variables in regression models.  

Typically, when performing regression analysis, the aim is to find a good fit between predicted and 

observed values of the dependent variable in the model. In addition, it is important to find which of the 

variables significantly contribute to the linear relationship. The standard hypothesis is that the observations 

are not correlated and, as such, the residuals εi of the model, which follow a Normal Distribution with a 

zero average and constant variance, are independent and uncorrelated to the dependent variable. 

However, in the case of data that are spatially dependent, it is very unlikely that the standard hypothesis 

of uncorrelated observations is true. In the most common case, the residues continue to display spatial 
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autocorrelation in the data that can be manifested in systematic regional differences, or even through a 

continuous spatial trend. 

Regression analyses of spatial data improve the predictive power of a model by incorporating the 

spatial dependence between data into the model. Initially, an exploratory analysis must be conducted 

with the aim of identifying the structure of dependence in the data. This is very important for the 

definition on how to incorporate this dependence into the regression model. Two basic types of spatial 

regression allow the incorporation of the spatial effects: those of Global form and those of Local form 

(Anselin [33] and Fotheringham et al. [34]). The Global models capture the spatial structure through a 

unique parameter that is added to the traditional regression model. The simplest spatial regression models, 

formally presented by Anselin [33], are the Spatial Auto Regressive (SAR) or Spatial Lag Model and 

the Conditional Auto Regressive (CAR) or Spatial Error Model. 

2.1. SAR (Spatial Auto Regressive)  

In the model SAR (or LAG, as it is called in this study) the ignored spatial autocorrelation is attributed 

to the Y variable. The spatial dependence is incorporated into the linear regression model by the addition of 

a new term in the form of a spatial relationship to the dependent variable. Formally, Anselin [33] 

introduced the model SAR by Equation (1). The null hypothesis for non-existence of autocorrelation is that 

ρ = 0. The basic idea is to incorporate spatial autocorrelation as a component of the model. 

  XWYY  (1) 

where: Y = dependent variable; X = independent variable; β = regression coefficients; ε = random 

errors with average zero and variance σ
2
; W = contiguity matrix or spatial weighted matrix; ρ = spatial 

autoregressive coefficient. 

According to Getis and Griffith [37], these models depend on one or more spatial structural matrices 

that account for spatial autocorrelation in the georeferenced data from which model parameters  

are estimated. The same authors also mentioned that spatial autoregressive models almost exclusively 

assume normality, and are nonlinear in nature. In this way, for these models, it is inappropriate to use 

ordinary least squares (OLS) estimation procedures for model development and testing. Furthermore, 

these models provide global measures of spatial dependence, but they do not reveal individual spatial 

and nonspatial contributions of the components. 

2.2. CAR (Conditional Auto Regressive)  

In the second type of spatial regression model with global parameters, also referred to as Spatial Error 

Model, the spatial effects are considered as a noise, or disturbance, i.e., a factor that needs to be removed. 

In this case, the effects of spatial autocorrelation are associated with the error term ε and the model can 

be expressed by Equation (2). The null hypothesis for non-existence of autocorrelation is that λ = 0, i.e., the 

error term is not spatially correlated. 

  WXY ,  (2) 

where: Wε = errors with spatial effects; ξ = random errors with average zero and variance σ
2
;  

λ = autoregressive coefficient. 
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2.3. Models with Local and Global Indicators of Spatial Dependence  

Another way to consider the spatial dependence in the regression models, which is called in the 

present study the alternative transport model, consists in the introduction of indicators of spatial 

autocorrelation (Global and Local) as variables. They are added to the traditional variables in the 

multiple regression model, or traditional model (as suggested by Lopes and Rodrigues da Silva [32]). 

In this way, the global and local spatial variables are defined and obtained through spatial analysis of 

the socioeconomic variables with the use of ESDA tools through spatial statistics computer packages. 

The global spatial variables are binary (dummy) variables associated to the quadrants of the Moran 

Scatterplot (global indicator). For an independent variable ―X‖, three variables (X_Q1, X_Q2 and X_Q3) 

are defined to represent the spatial regime of each Traffic Analysis Zone (TAZ). For the definition of 

the local spatial variables (LISA_X), LISA indicators are considered. In the existence of spatial dependence 

influencing the results of the traditional models, Lopes and Rodrigues da Silva [32] showed that the 

alternative models were more efficient than the Global spatial regression models (SAR and CAR) in 

the prediction of home-based trip productions (HBTP) for the data of Porto Alegre.  

Alternative models also require rigorous analyses of the significance of the included variables, in order 

to avoid the addition of unnecessary variables. A stepwise forward regression method was used, in addition 

to the tools available in the GIS-T software package, to analyze the changes produced in the models with 

the inclusion of spatial variables. The process is presented in detail in Sections 4.3 and 4.8. Briefly stated, 

the method verifies if the addition of a new variable to the model causes a significant increase in the 

adjusted R-squared. The method does not exclude, however, the evaluation of model results by analysts, 

since in some cases the tools used may not be able to identify multicollinearity problems. However, the 

approach allows the use of traditional linear regression techniques while insuring that regression residuals 

behave according to required model assumptions, such as uncorrelated errors.  

2.4. Evaluation of Spatial Models 

A visual analysis of the residuals on a graph is an important step for assessing the adjustment of  

a regression. Mapping residuals is also useful, given that a high concentration of either positive or 

negative values in a part of the map is a good indicator of the presence of spatial autocorrelation. 

The Moran’s I index of residuals is commonly used as a quantitative test. 

Maximum likelihood values weighted by the difference in the number of estimated parameters are 

commonly used to select regression models. In the models with a dependence structure (spatial or 

temporal), the evaluation of the adjustment is penalized by the number of parameters. Usually, the 

comparison of models uses the log-likelihood that represents the best adjustment to the observed data. 

The Akaike Information Criterion is expressed in Equation (3). The best model is the one that has the 

lowest AIC value. Many other information criteria are available in GIS packages with spatial statistics, 

through CSDA tools. Most of them are variations of AIC, with changes in the penalization of 

parameters or observations. 

kLIKAIC 22   (3) 

where: LIK = log-likelihood; k = number of regression coefficients. 
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3. Method 

Most procedures were carried out in a GIS environment, with the additional use of the software 

package GeoDA [37], given it contains ESDA and CSDA tools (e.g., spatial regression modeling) that 

can be used for obtaining the spatial variables and for the calibration of the models. 

The calibration and validation of the models was based on data of two origin and destination 

surveys conducted in the city of Porto Alegre, Brazil, in 1974 and 2003, as follows. 

• ―Base-year‖—the 1974 dataset (EDOM 74) was used for the calibration and also for checking 

the performance of the best demand models. They could be either traditional or alternative models. 

While the former relied on traditional methods, the latter used variables that incorporate the degree of 

spatial dependence. In both cases, though, they were used to forecast transport demand. 

• ―Target-year‖—as 2003 was taken as the forecast year, the EDOM 2003 dataset was used for 

comparison with the future trip estimations, which were obtained through the application of traditional 

and alternative models. The dataset contained information of the latest O-D survey and it was obtained 

through household interviews. That database, which was here used to measure the performance of the 

model, was not available for the previous studies of Lopes and Rodrigues da Silva [32]. 

The goodness-of-fit of the models was evaluated through statistical tests, such as the Adjusted  

R-Squared and AIC (Akaike Information Criterion), among others. The predictive power was 

evaluated by some measures of performance, such as MRE (mean relative error) and the Moran’s I for 

the errors. For the variables, the significance (t-Student), the presence of multicollinearity 

(multicollinearity condition number), and the condition of spatial autocorrelation were analyzed. 

Spatial autocorrelation values were also examined for the residuals. They were also tested to confirm the 

conditions of normal distribution and homoscedasticity. 

The applied method can be summarized in four steps. First, the efficiency of the alternative models 

studied here was analyzed through a comparison of their results with those provided by the multiple 

regression model named T74. The T74 model best fits the 1974 data, but did not include any 

information about the spatial distribution of the data. The second step was to apply the best alternative 

model for estimating future trips. The 2003 O-D survey dataset provided the actual information for 

comparison with the estimations produced with the T74 model for the same year. In the third step, new 

models were calibrated for 2003 using the same structure of the models adjusted for 1974. Given the 

time span of nearly 30 years, changes in the relationships between variables would have been expected. 

Therefore, any variations in the coefficients of the variables were carefully analyzed. This phase was 

also meant to find which of the models tested for 1974 best fitted the data of 2003.  

The last step was to find the most significant variables for 2003 and the model with the best 

adjustment to the actual data, based on the assumption that the introduction of spatial indicators would 

improve the model performance. A stepwise forward regression method was also used, in addition to 

the tools available in the GIS-T software package, to analyze the changes produced in the models with 

the inclusion of spatial variables.  

It should be noted that the focus of the study was restricted to the stage of home-based trip 

productions (HBTP), which is just a part of the first step of the four-step model or urban transportation 

planning (UTP) procedure. Also, the trips were not separated by mode or purpose, because that 
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information was not available in the base-year dataset. Hence, the proposed method does not intend to 

end the discussions on the subject. On the contrary, the idea is to foster research about the use of spatial 

analysis tools and techniques in transport planning, as suggested by Wang et al. [2]. 

4. Results and Discussion 

The results are presented in this section in the same order that the models were built, starting with 

conventional variables and the 1974 dataset. 

4.1. Multiple Regression-Traditional Model with the 1974 Dataset (T74) 

The main outcomes of model T74, which was the multiple regression model initially adjusted to the 

1974 dataset with the computer program GeoDA, are summarized in Table 2. The standardized values 

of population (POPst) and car fleet (CARst) were used as independent variables. They have been 

previously established as the most significant among the traditional explanatory variables for HBTP in 

1974 by Lopes and Rodrigues da Silva [32], who also discussed the details of choice and 

standardization of these variables. The model explains well the variance of the dependent variable 

(HBTP), as indicated by the adjusted R-squared value of 0.91. Also, the Student’s t tests showed that all 

parameters of the model are significant at a significance level of 5%. 

GeoDA also provides the multicollinearity condition number as a possible indicator of multicollinearity. 

Values above 30 indicate that the variables are highly correlated. In that case, the information obtained if 

the variables are treated separately may be insufficient for analysis. The multicollinearity condition number 

obtained was equal to 2.309. Therefore, there was no indication that the independent variables would be 

correlated. Another evidence of multicollinearity would have been a significant difference between the 

values of R-squared and adjusted R-squared, which was also not found. 

The analysis of normality of the residuals was examined through the Jarque-Bera test. For the  

T74 model, the value of this statistic was equal to 27.52, indicating that the hypothesis of normal 

distribution was rejected at a significance level of 5%. The values of the statistics for homoscedasticity 

of the error test were conflicting. While the Breusch-Pagan and the White tests rejected the hypothesis 

of homoscedasticity, the Koenker-Bassett test did not reject this hypothesis, in all cases for a significance 

level of 5%. According to Greene [38], in the absence of normality, there is some evidence that  

the Koenker-Bassett test provides a more powerful test for homoscedasticity. By this way, the 

homoscedasticity hypotheses cannot be rejected. 

The next step of the model analysis was to search for spatial dependence, by looking at the 

following statistics: Lagrange Multiplier (error), Robust Lagrange Multiplier (error), Lagrange 

Multiplier (SARMA), Lagrange Multiplier (lag), Robust Lagrange Multiplier (lag) and Moran’s I 

(error). From these statistics, only the Robust Lagrange Multiplier (lag) was not considered significant. 

Thus, the hypothesis of the existence of spatial autocorrelation was not rejected. The statistical 

significance of Lagrange Multiplier (error) suggested the specification of a Spatial Error Model 

(ERR74), which is presented in Table 2 and discussed in the sequence. Anselin [36] suggests that the 

robust versions of the statistics may be considered only if the standard versions (LM-Lag or LM-Error) 

are significant. If the standard form is significant but the robust form is not, misspecification problems 

are present. 
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Table 2. Summary of the studied models and estimations results for HBTP. 

Results of the Calibration 

Models Adjusted to the 1974 Dataset Models of 1974 Calibrated for 2003 

Traditional Alternative Traditional Alternative 

T74 ERR74 AGL74 T03 LAG03 ERR03 AGL03 

C
o
ef

fi
ci

en
ts

 

―Traditional‖ 

variables 

Constant 
12195.39 

(<0.0001) 

12228.53 

(<0.0001) 

13208.62 

(<0.0001) 

22297.67 

(<0.0001) 

24187.01 

(<0.0001) 

22267.34 

(<0.0001) 

23544.71 

(<0.0001) 

POPst 
3911.28 

(<0.0001) 

4024.45 

(<0.0001) 

4222.64 

(<0.0001) 

13313.16 

(<0.0001) 

13371.81 

(<0.0001) 

14307.39 

(<0.0001) 

14347.30 

(<0.0001) 

FLEETst 
2576.06 

(<0.0001) 

2224.64 

(<0.0001) 

2121.47 

(<0.0001) 

2784.55 

(<0.0001) 

2983.45 

(<0.0001) 

2116.31 

(<0.0001) 

2215.73 

(<0.0001) 

Spatial 

autoregressive 

coefficient 

W HBTP ρ     
−0.08428 

(0.0100) 
  

LAMBDA λ  
0.64521 

(<0.0001) 
   

0.45726 

(0.0002) 
 

Global and 

local indicators 

of spatial 

dependence 

DFLEET_Q2   
−1753.66 

(<0.0001) 
   

−2737.39 

(<0.0001) 

LISA_DPOPst   
1819.50 

(0.0040) 
   

202.05 

(0.8553) 

LISA_DHHst   
−2930.96 

(<0.0001) 
   

469.29 

(0.6707) 

Goodness-of-fit 

R2 0.92 0.95 0.96 0.97 0.97 0.98 0.98 

Adjusted R2 0.91 * 0.95 0.97 * * 0.98 

LIK −802.34 −787.01 −773.20 −838.70 −835.54 −833.58 −824.05 

SC 1618.18 1587.52 1573.40 1690.91 1689.07 1680.65 1675.09 

AIC 1610.68 1580.02 1588.40 1683.41 1679.07 1673.15 1660.09 

MRE 12% 15% 10% 12% 14% 12% 12% 

Presence of 

multicollinearity 

Multicollinearity 

condition number 
2.309 * 9.047 2.975 * * 9.386 

Absence of spatial 

dependence 

supposition  

(α = 5%) 

LM (error) 
Rejected  

(<0.0001) 
* 

Accepted 

(0.322) 

Rejected 

(0.001) 
* * 

Accepted 

(0.874) 

Robust LM (error) 
Rejected  

(<0.0001) 
* 

Accepted 

(0.470) 

Rejected 

(<0.0001) 
* * 

Accepted 

(0.946) 

LM (SARMA) 
Rejected  

(<0.0001) 
* 

Accepted 

(0.489) 

Rejected 

(<0.0001) 
* * 

Accepted 

(0.499) 

LM (Lag) 
Rejected  

(0.001) 
* 

Accepted 

(0.340) 

Rejected 

(0.017) 
* * 

Accepted 

(0.239) 

Robust LM (Lag) 
Accepted 

(0.338) 
* 

Accepted 

(0.502) 

Rejected 

(0.002) 
* * 

Accepted 

(0.243) 

Identification of 

spatial dependence  

(α = 5%) 

Moran’s I (error) 
0.43 

(<0.0001) 

0.46 

(*) 

0.06 

(0.087) 

0.22 

(<0.0001) 

0.17 

(*) 

0.32 

(*) 

-0.01 

(0.687) 

Likelihood Ratio * 
30.66 

(<0.0001) 
* * 

6.33 

(0.012) 

10.25 

(0.001) 
* 

Normal distribution 

supposition (α = 5%) 
Jarque-Bera  

Rejected 

(0.000) 
* 

Accepted 

(0.699) 

Accepted 

(0.416) 
* * 

Accepted 

(0.527) 

Homoscedasticity 

(α = 5%) 

Breusch-Pagan 
Rejected 

(0.030) 

Rejected 

(0.002) 

Accepted 

(0.191) 

Rejected 

(0.043) 

Rejected 

(0.014) 

Rejected 

(0.013) 

Accepted 

(0.180) 

Koenker-Bassett 
Accepted 

(0.217) 
* 

Accepted 

(0.285) 

Accepted 

(0.074) 
* * 

Accepted 

(0.299) 

White 
Rejected 

(0.002) 
* * 

Rejected 

(0.005) 
* * * 

Notes: ( ) p-value of the respective significance test; *—nonexistent for that particular case; values in bold—the best results obtained for 

each aspect under analysis. 
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4.2. Spatial Regression-Spatial Error Model with the 1974 Dataset (ERR74) 

In the ERR74 model, the estimated value of λ, which is the spatial autoregressive coefficient, was 0.645. 

The z test indicated λ as highly significant, as well as other parameters of the model. The log-likelihood 

value (LIK) found for this model was equal to −787.01, a small improvement in comparison to the 

value of −802.34 obtained for the T74 model. Other variations in favor of the model ERR74 were 

found in the values of the statistics AIC and SC (Schuarz Criterion), from 1610.68 (T74 model) to 

1580.02 (ERR74 model) and 1618.18 (T74 model) to 1587.52 (ERR74 model), respectively. Those 

results suggest that the model ERR74 was better adjusted to the 1974 data than the model T74. 

However, the Breusch-Pagan test rejected the hypothesis of homoscedasticity, and the Likelihood 

Ratio test suggested the existence of spatial dependence. That indicated that, despite the relative 

improvement in comparison to the T74 model, the ERR74 model still was not good enough. 

4.3. Multiple Regression Model-Alternative Global Local Model with the 1974 Dataset (AGL74) 

The next step consisted in setting up a model with local and global indicators of spatial dependence 

included as spatial variables. A model of this type, called AGL, was the one that best fitted the data of 

1974 in a previous study conducted by Lopes and Rodrigues da Silva [32]. The spatial variables 

included were: LISA_DPOPst and LISA_DHHst, which represent the standardized local indicators of 

spatial dependence for the variables population density (DPOP) and density of households (DHH), 

respectively; and also the variable DFLEET_Q2, which is a binary representation associated to the 

quadrant Low-Low of the Moran scatterplot for the variable density of the car fleet. The adjusted  

R-squared for the AGL74 model was 0.95 (Table 2). 

Student’s t-tests indicated that all parameters of the AGL74 model were statistically significant at 

the 0.05 level. The multicollinearity condition number was 9.047, suggesting that the independent 

variables were not highly correlated. The Jarque-Bera test did not reject the hypothesis of normal 

distribution of the residuals, and the Breusch-Pagan and Koenker-Bassett tests did not reject the 

hypothesis of constant variance for the errors. 

Moreover, it was noted an increase in the log-likelihood value (LIK) to −773.2 and a reduction in 

the values of the statistics AIC and SC to 1558.4 and 1573.4, respectively. These values indicate the 

superiority of the model AGL74, when compared to the previously adjusted models T74 and ERR74. 

As one could anticipate by the results discussed hitherto, the hypothesis of spatial autocorrelation of 

the residuals was rejected. The superiority of the AGL model can also be confirmed by a visual 

analysis of Figure 1, in which the Moran Maps with the dispersion of residuals of the three tested 

models are shown. 

4.4. Validation of the Alternative Global Local Model (AGL74) 

The sequence of the study was the application of the model AGL74 for future estimations. The 

dataset of the 2003 O-D survey was then used to check the performance of the model. Those actual 

values were also compared to the estimates obtained with the model T74. The HBTP values estimated 

with the two models for 2003 were considerably lower. They represented 59% (model AGL74) and 

55% (T74 model) from those observed in reality (EDOM 2003). Those results may indicate that the 
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coefficients of the variables in the two models adjusted for 1974 are underestimating the phenomenon 

under analysis. The high values of errors in the estimations for 2003 can be confirmed by the analysis 

of Figure 2, in which clusters of zones with significant High-High residual values (high values surrounded 

by high values) were found. That could have been caused by the dynamics of urban development, in two 

ways: through changes in the relationships between different variables affecting the phenomena  

under study, and also through changes in the spatial patterns over that period of nearly 30 years. The 

thematic maps of Figure 3 show the changes in spatial patterns of home-based trip productions that 

actually occurred from 1974 to 2003. While in 1974 the areas with the largest number of trips were 

predominantly concentrated around the CBD, in 2003 they were distributed over the eastern, southwestern 

and southeastern parts of the city. 

Figure 1. Spatial distribution of the residuals of the estimates obtained with models T74, 

ERR74 and AGL74 when compared with the actual data of 1974 (α = 5%; calibration phase). 

   

4.5. Multiple Regression-Traditional Model with the 2003 Dataset (T03) 

The traditional modeling approach applied to the 1974 dataset, and described in Section 4.1, was also 

used to build the model T03 with the 2003 dataset (as shown in the right part of Table 2). 

The comparison of the coefficients of the two models, however, has shown large differences in the 

values. There was a considerable difference for the variable POPst (3.4 times higher for T03 than for 

T74) and for the constant term of the model (1.8 times higher for T03 than for T74). The variable 

FLEETst, which was the second traditional variable included in the model, however, had similar values for  

both models, in terms of magnitude. Considering that the values of the variables were standardized in 

both periods, these results indicate that the impact of the population (POPst) on transport demand was 

larger in 2003 than in 1974, while the impact of the car fleet (FLEETst) was nearly the same in both 

time periods. 

As can be seen in Table 2, the adjusted R-squared value of model T03 was equal to 0.97. This is an 

indication that the variance of the dependent variable HBTP is satisfactorily captured by the model. 

Student’s t-tests indicated that all parameters of the T03 model were statistically significant at the 0.05 

level. The multicollinearity condition number was 2.975, suggesting that the independent variables 

were not highly correlated. The same tests used to analyze the errors of the other models were also 

applied to model T03. The results of these tests confirmed that the hypotheses of normal distribution 
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and homoscedasticity were not rejected at a level of 5% of significance. As the hypothesis of no spatial 

autocorrelation was rejected, the formulation of spatial models was indicated. A spatial lag model and 

another spatial error model, called LAG03 and ERR03, respectively, were built (as detailed in Table 2). 

Figure 2. Spatial distribution of the residuals of the estimates obtained with models T74 

and AGL74 when compared with the actual data of 2003 (α = 5%; validation phase). 

  

Figure 3. Spatial distribution of home-based trip productions HBTP in 1974 and 2003. 

Map based on the Box Plot with outliers above and below 1.5 times the interquartile range. 

  

4.6. Spatial Regression-Spatial Autoregressive Model with the 2003 Dataset (LAG03) 

The estimated value of the spatial autoregressive coefficient (λ) for the LAG03 model was 0.084. 

The z test has indicated λ, as well as the other parameters of the model, as significant. Moreover, the 

Breusch-Pagan test rejected the hypothesis of constant variance for the residuals and the log-likelihood 

(LIK) rejected the hypothesis of non-existence of spatial autocorrelation. Thus, the results suggested 

that this model (LAG03) was not appropriate to replicate the 2003 data. 
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4.7. Spatial Regression-Spatial Error Model with the 2003 Dataset (ERR03) 

For the ERR03 model, the λ (W_HBPT) value of 0.457 and the other estimated parameters were 

indicated as significant by the z test. The hypotheses of homoscedasticity and non-existence of spatial 

autocorrelation were rejected by the Breusch-Pagan test and by the log-likelihood (LIK), respectively. 

As a result, the model ERR03 was also not accepted for the purposes of this study. 

4.8. Multiple Regression-Alternative Global Local Model with the 2003 Dataset (AGL03) 

The next step was the addition of local and global indicators of spatial dependence as  

independent variables, in the same way it was done for the 1974 dataset (as discussed in Section 4.3), 

what resulted in the model AGL03 (Table 2). With the exception of the estimated coefficients for 

LISA_DPOPst and LISA_DHHst, all other parameters were significant at a significance level of 5%. 

The adjusted R-squared value obtained was equal to 0.98 and the assumptions of normality and 

homoscedasticity of the errors were not rejected at a level of 5% of significance. The multicollinearity 

condition number was 9.386, suggesting that the independent variables were not highly correlated. The 

hypothesis of spatial autocorrelation was rejected. 

A summary of the models’ characteristics and the results of the respective statistical tests are 

presented in Table 2. The best results are highlighted. Given that model AGL03 presented the highest 

LIK value and the lowest AIC and SC values, the model is better than the other three attempts with the 

2003 dataset, regarding the quality of the adjustment. As in the case of the 1974 dataset, the inclusion 

of spatial variables and the subsequent adjustment by ordinaries least squares led to a better quality of 

adjustment also for the 2003 dataset. 

As discussed earlier, the idea of calibrating the models with the 2003 dataset but considering the 

same variables of the model adjusted to the 1974 dataset was to determine the impacts of the model 

structure on its coefficients and performance. However, despite the good results of model AGL03, two 

of the three spatial variables included were not significant. That suggested the need for further 

investigation in order to look for additional variables that could better represent the 2003 data. Thus, a 

model for 2003 was also built by means of a stepwise algorithm, similarly to what has been done with 

the 1974 dataset and that resulted in model AGL74. 

4.9. Alternative Global Model with the 2003 Dataset (AG03) 

The very last model tested was a multiple regression model including global indicators of spatial 

dependence as exploratory variables. The search for the best model began with 18 candidate variables. Six 

were traditional variables, three were local indicators of spatial dependence and nine were global 

indicators of spatial dependence. The process resulted in a model named AG03, which is presented  

in Table 3. After the application of the stepwise forward regression method, a global indicator of 

spatial dependence (DPOP_Q2) was also found significant. Therefore, it was included in the model,  

in addition to the traditional variables POPst, FLEETst and HHst. The traditional variables represent, 

respectively, the standardized values of population, car fleet, and households per TAZ. The spatial 

variable DPOP_Q2 represents TAZs with population density values in quadrant 2 (i.e., the Low-Low 

values in a Moran scatterplot), which is an indicator of global spatial association. The model performed 



ISPRS Int. J. Geo-Inf. 2014, 3 579 

 

 

satisfactorily in all tests, as can be seen in Table 3. Also, the values of LIK, AIC and SC, as well as  

the MRE, were better than those found for the previously adjusted model AGL03. 

Table 3. Summary of the best adjusted model for HBTP when considering 2003 data. 

Results of the Calibration 
Alternative Model 

AG03 

Coefficients 
―Traditional‖ variables 

Constant 22,947.23 (<0.0001) 
POPst 7386.85 (<0.0001) 

FLEETst 1305.66 (0.0040) 
HHst 7385.37 (<0.0001) 

Global indicator of spatial 
dependence 

DPOP_Q2 −1538.43 (0.0027) 

Goodness-of-fit 

R
2
 0.98 

Adjusted R
2
 0.98 

LIK −815.86 

SC 1654.23 
AIC 1641.73 
MRE 10% 

Presence of multicollinearity 
Multicollinearity condition 

number 
13.307 

Absence of spatial dependence supposition  
(α = 5%) 

LM (error) Accepted (0.750) 
Robust LM (error) Accepted (0.628) 

LM (SARMA) Accepted (0.577) 
LM (Lag) Accepted (0.352) 

Robust LM (Lag) Accepted (0.317) 
Identification of spatial dependence  

(α = 5%) 
Moran’s I (error) 

0.02 
(0.455) 

Normal distribution supposition (α = 5%) Jarque-Bera Accepted (0.866) 

Homoscedasticity supposition (α = 5%) 
Breusch-Pagan Accepted (0.126) 

Koenker-Bassett Accepted (0.171) 

Note: ( ) p-value of the respective significance test. 

Figure 4. Spatial distribution of the residuals of the estimates obtained with models T03, 

AGL03 and AG03 when compared with the actual data of 2003 (α = 5%). 

   

Therefore, this study confirmed the assumption that the inclusion of indicators of spatial dependence 

among the variables could improve the predictive power of the model. The Moran Maps in Figure 4,  

which highlight the areas with significant groupings of high or low values of estimation residuals, also 

show the superiority of the alternative models AGL03 and AG03 in comparison to the traditional 
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model T03. The T03 model shows several areas grouped in regions with high absolute values of residuals, 

indicating a tendency to underestimate or overestimate the number of trips in certain regions. 

5. Conclusions  

The results of the application in the city of Porto Alegre indicated that the alternative models  

(i.e., spatial regression models or regression models including spatial variables) performed better than 

the traditional models. Therefore, the effects of spatial dependence in regression models are important and 

must be explicitly considered. That was observed in the models built using both 1974 and 2003 datasets. 

AGL models are multiple regression models that contain spatial variables (both global and local) as 

independent variables. AGL74 was the model that best fitted the data of 1974. Similarly, AGL03 was 

initially the model that showed the best results for the 2003 dataset. Subsequently, however, the 

examination of the most significant variables for 2003 led to the development of model AG03, which 

become the best adjusted option for the 2003 dataset. Hence, the inclusion of spatial variables, such as 

global and local indicators of spatial dependence, in the specification of the model and a subsequent 

adjustment by Ordinaries Least Squares was the best alternative in the case analyzed. Also, according 

to Getis and Griffith [37], this approach makes results more directly comparable with those of more 

traditional statistical methods. 

However, long-term forecasts in fast growing cities, such as in the case discussed here, may not be 

well represented by the models. The significant changes observed in the urban settings of Porto Alegre 

are certainly among the reasons why the results obtained with model AGL74 were only slightly better 

(and not significantly better) than the results obtained with the other models. We believe that the 

consideration of the effects caused by the dynamics of urban development in transportation demand 

modeling can further improve the results.  

A comparison of the coefficients of the models adjusted for 2003 with those adjusted for 1974 has 

shown significant changes in the variables’ relationships in that period of nearly three decades. The 

weight of population, for example, which is an explanatory variable to home-based trip productions, 

was much higher in 2003 than in 1974. There were also changes in the spatial patterns of the trips in 

the different periods. Their analyses may help to better understand the dynamics of urban development, for 

later improving the models discussed here.  
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