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Abstract: Using a geographic transect in Central Mexico, with an elevation/climate 

gradient, but uniformity in socio-economic conditions among study sites, this study 

evaluates the applicability of three widely-used remote sensing (RS) products to link 

weather conditions with the local abundance of the dengue virus mosquito vector,  

Aedes aegypti (Ae. aegypti). Field-derived entomological measures included estimates for 

the percentage of premises with the presence of Ae. aegypti pupae and the abundance of 

Ae. aegypti pupae per premises. Data on mosquito abundance from field surveys were 

matched with RS data and analyzed for correlation. Daily daytime and nighttime land surface 

temperature (LST) values were obtained from Moderate Resolution Imaging 

Spectroradiometer (MODIS)/Aqua cloud-free images within the four weeks preceding the 

field survey. Tropical Rainfall Measuring Mission (TRMM)-estimated rainfall accumulation 

was calculated for the four weeks preceding the field survey. Elevation was estimated 

through a digital elevation model (DEM). Strong correlations were found between mosquito 

abundance and RS-derived night LST, elevation and rainfall along the elevation/climate 

gradient. These findings show that RS data can be used to predict Ae. aegypti abundance, but 

further studies are needed to define the climatic and socio-economic conditions under which 

the correlations observed herein can be assumed to apply.  

Keywords: MODIS; TRMM; DEM; Aqua; remote sensing; elevation; mosquito;  

rainfall; temperature 

 

1. Introduction 

Environmental changes potentially impacting the geographical ranges or local abundance of 

arthropod vectors transmitting infectious disease agents are among the important concerns linked to 

climate [1–6]. Associations reported in the literature show that climate-related variables can be used to 

predict local abundance and the potential for the expansion of arthropod vectors, such as mosquitoes or  

ticks [7–10]. Since field surveys are both costly and time consuming, remote sensing (RS) technology 

is increasingly used to estimate habitat suitability for a variety of vector species [11–14]. Temperature 

and rainfall are the weather parameters of special interest, because they impact both the distribution of 

suitable vector habitat and the potential for local vector proliferation. Although terrain elevation is 

strongly associated with temperature, urban heat islands might cause slight differences in the 

associations between vector abundance and climate parameters in studies conducted within urban 

environments. Thus, elevation is included among the variables of interest for this study. Aedes aegypti 

(Ae. aegypti), the primary mosquito vector of dengue and yellow fever viruses and an important vector 

of chikungunya virus to humans in urban settings, is most abundant in urban environments [15]. 

Dengue is one of the most important mosquito-borne viral diseases in the subtropics and tropics, 

with one estimate of the global infection burden reaching approximately 390 million virus infections 

and nearly 100 million cases with disease manifestations per year, over three times that estimated by 

the World Health Organization [16]. Although the presence and abundance of the mosquito vector is 

strongly influenced by the human peridomestic environment (e.g., access to water-holding containers 
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serving as larval development sites and the potential for intrusion into homes to engage in indoor 

biting), these are also affected by meteorological variables, such as temperature, rainfall, humidity and 

solar radiation. Several studies have addressed the relationship between weather or climate variability 

and the incidence of dengue disease cases [17–28]. Such relationships, however, may be influenced by 

additional factors, such as the exposure of humans to mosquitos and the intensity of virus  

transmission [29].  

The strength of the association between RS-based climate parameters and vector abundance may be 

limited by the spatial resolution of the satellite products that are freely available and more commonly 

used [7]. Environmental and socio-economic conditions can change drastically over distances of  

10–100 m of meters; therefore, spatial models designed to estimate vector presence and abundance 

developed at the regional or state level cannot reliably be down-scaled for locally-relevant risk 

predictions. To develop models to predict vector presence and abundance at the local (community or 

neighborhood) scale using RS-based environmental inputs requires consistent monitoring of recent local 

environmental conditions with RS imagery that can distinguish the differences between adjacent 

communities or neighborhoods. The present study tests if three widely used RS-based environmental 

products are able to distinguish those differences at the local level, despite having spatial resolutions 

equal or larger than 90 m. Our motivation is to evaluate the potential for using RS-based 

environmental products that are freely-available to decision-makers in developing countries, to 

monitor the presence and abundance of Ae. aegypti at the local scale. For a geographic transect of 

approximately 330 km by road, corresponding to an area of approximately 245 km (west-east) by  

98 km (north-south) in central Mexico, we describe the associations between the presence and 

abundance of the pupal life stage of Ae. aegypti and environmental conditions estimated from RS 

products, including land surface temperature (LST), rainfall, land surface properties and elevation.  

2. Methodology 

2.1. Study Site 

This study used sites from a previously published study [30] on the occurrence of Ae. aegypti along 

the elevation gradient between Veracruz at sea level and Puebla at more than 2000 m in Central 

Mexico (Figure 1). Sites were composed of groups of homes with low to middle income and small to 

medium-sized yards, distributed among 12 communities along the elevation gradient described.  

2.2. Field Survey Mosquito Data 

Data on Ae. aegypti pupal abundance were generated from field surveys conducted in the cities of 

Córdoba, Orizaba, Rio Blanco, Ciudad Mendoza, Acultzingo, Maltrata, Puebla City and Atlixco from 

11 July to 20 August 2011 and from the cities of Coatepec, Xalapa and Perote between 23 August and 

1 September of the same year. Approximately 50 study premises were examined for each one of the 

12 communities; these premises were contained within 3–4 spatially distinct clusters within each 

community. The methodologies for the selection of premises to examine, the collection of immature 

mosquitoes (larvae and pupae) from indoor and outdoor water-holding containers on the premises, the 

subsequent rearing to adults and species identification and, finally, the estimation of pupal abundance 
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for Ae. aegypti in the study sites were described previously by Lozano-Fuentes [30]. About 73% of 

collected pupae were successfully reared to adults and identified to species, compared to just 16% for 

collected larvae. Consequently, we focus only on the more robust estimates for pupal abundance.  

Figure 1. The study area with the locations of communities in Central Mexico in relation 

to elevation, as estimated by the digital elevation model (DEM) of the Shuttle Radar 

Topographic Mission (SRTM).  

 

2.3. Remotely Sensed Data 

2.3.1. Visible Infrared Scanner (VIRS) 

Data on precipitation were estimated with product 3B42 V7 derived from the Visible Infrared 

Scanner (VIRS) sensor onboard the TRMM satellite and retrieved from the TRMM Online 

Visualization and Analysis System (TOVAS) [31]. This system is maintained by the NASA Goddard 

Earth Science Data and Information Services Center. The 3B42 V7 data cover the tropical and 

subtropical regions between 50°N and 50°S with a daily temporal resolution adjusted from a 3-hourly 

temporal resolution and a spatial resolution of 0.25° by 0.25°, roughly equivalent to 27 km in the study 

area (Figure 2). TRMM is a joint mission between the U.S. National Aeronautics and Space 
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Administration (NASA) and the Japan Aerospace Exploration Agency (JAXA), launched on 

27 November of 1997 and designed to measure rainfall for weather and climate research. Data were 

processed using ArcMap 10.2 software. TRMM has been shown to reasonably reproduce rainfall 

variability at monthly timescales that are analogous to the four-week timescales used in this study [32]. 

Figure 2. Tropical Rainfall Measuring Mission (TRMM), 3B42 V7 image of 29 August 2011. 

 

2.3.2. Moderate Resolution Imaging Spectroradiometer (MODIS) 

MODIS data were downloaded from the Reverb/Echo NASA EOS Data and Information System 

(EOSDIS) website [33] and were processed using the MODIS Reprojection Tool (MRT) and 

ArcMap 10.2 software. Onboard the Terra and Aqua satellites, MODIS has been one of the most used 

instruments for the Earth Observing System (EOS), a NASA international program, which, in turn, is a 

key component of NASA’s Earth Science Enterprise [34]. Launched on 18 December 1999 (Terra), 

and 4 May 2002 (Aqua), Terra and Aqua are designed to monitor many conditions of the atmosphere, 

land, oceans, biosphere and cryosphere, although their foci are on land and ocean observations, 

respectively [35]. Both satellites have sun-synchronous orbits crossing the equator at an approximate 

local time of 10:30 AM and 10:30 PM in the case of Terra and at 1:30 PM and 1:30 AM for Aqua, in a 

northward and southward track, respectively.  

LST estimates are from the MODIS Land Surface Temperature and Emissivity product 

(MYD11A1) from the Aqua satellite. This product provides temperature and emissivity values  

per-pixel. MYD11A1 measurements along with all data generated from sensors carried by Aqua can be 
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obtained for the entire globe within two days [35]. The daily MYD11A1 product has a spatial 

resolution of 1 km (Figure 3). Previous studies have shown that MODIS LST products have generally 

been accurate within ±1 K compared to in situ temperature measurements, for a variety of sites and 

conditions [36,37]. 

2.3.3. Shuttle Radar Topography Mission (SRTM) 

Expected to be strongly associated with ambient temperature, elevation was examined as a potential 

proxy for temperature. Elevation was estimated through the Digital Elevation Model (DEM) from the 

SRTM, a collaboration between NASA and the National Imagery and Mapping Agency (NIMA) of the 

U.S. Department of Defense [38]. With a resolution of 90 m at the equator (Figure 1), the SRTM was 

designed to produce a DEM of the Earth’s land surface approximately between latitudes 60°N and 56°S. 

In an 11-day flight around the world onboard the Space Shuttle Endeavour, the mission was completed 

on 22 February 2000. The data for this study were downloaded from the Global Data Explorer  

website [39], which is maintained by the United States Geological Survey (USGS) and NASA’s Land 

Processes Distributed Active Archive Center (LPDAAC).  

Figure 3. Composite of 7 days of day LST images (MYD11A1) from August 2011. 
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2.4. Match-Up Data Procedure 

Field survey-based estimates for Ae. aegypti pupal abundance from the 607 examined premises 

were aggregated at the community and cluster levels through two approaches by estimating: (1) the 

percentages of premises with the presence of Ae. Aegypti pupae; and (2) the mean abundances of  

Ae. aegypti pupae per premises. Both types of estimates for pupal abundance were matched up with RS 

data derived from the location of the corresponding premises and, similarly, aggregated at the 

community and cluster level. RS data provided daily data for LST (nighttime and daytime), rainfall 

and elevation. The matched values of RS data were calculated as follows: Nighttime LST was 

calculated from the average nighttime cloud-free LST data for the 29 nights preceding the survey. The 

same process was repeated for daytime LST data, except that the average was calculated over the  

28 days preceding the day of the survey plus the day of the survey. After removing cloudy days, the 

average number of days with daily data used to obtain the average LST values was 7.9 for nighttime 

LST and 6.8 for daytime LST. RS estimates of rainfall were calculated using the accumulated amount 

over the period comprising the day of the survey plus the 28 preceding days. No special calculation 

was required for elevation data, since these are a snapshot of the DEM data of the 2000 flight. Each set 

of matched pairs between pupae abundance and LST (day and night), rainfall and elevation were 

analyzed for correlation at both levels of aggregation: community and cluster, using the SAS 9.3  

proc corr method. 

We also tested using a two-week period instead of a four-week period preceding the field mosquito 

surveys, and in all cases, the correlations between climatic data and mosquito presence/abundance 

were lower (data not shown). A period longer than four weeks was not analyzed, since no 

improvement was noticed by Lozano-Fuentes et al. [30] when analyzing for similar correlations, but 

using in situ temperature data from HOBO meteorological stations (Onset Computer Corporation, 

Bourne, MA, USA) and rainfall from the Climate Prediction Center Morphing Technique  

(CMORPH) dataset. 

3. Results 

Table 1 summarizes the aggregated values per community for: (1) the percentage of premises with 

the presence of Ae. aegypti pupae; and (2) mean abundances of pupae per premises, along with the 

corresponding aggregated RS values for the climate variables LST (nighttime and daytime), rainfall 

and elevation. The table is ordered by decreasing estimated mean abundance of Ae. Aegypti pupae per 

premises. In total, a mean number of 3.8 Ae. Aegypti pupae were found per examined premises.  

The overall percentage of premises with the presence of Ae. aegypti pupae was 19.44%. Perote, the 

community at the highest elevation (2400 m) out of the 12 study communities, was the only one where 

no Ae. aegypti were found. As reported by Lozano [30] using the same data set, this was also the case 

when including larvae. In general, a lower percentage of presence and mean abundance values for  

Ae. aegypti occurs at the cooler, drier sites at higher elevations. 
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Table 1. Estimates for the abundance of Aedes aegypti, by study community, in relation to 

climate variables and elevation. 

Community Percentage Mean Night LST (C°) Day LST (C°) Rainfall (mm) Elevation (m) 

Orizaba 35 14.29 16.0 33.2 354 1236 

Rio Blanco 41 10.43 15.0 30.9 334 1258 

Cordoba 24 6.04 16.7 33.1 507 860 

Veracruz 28 4.91 21.7 40.7 372 18 

Coatepec 25 3.26 16.1 32.2 208 1203 

Ciud. Mendoza 21 2.63 14.6 31.9 348 1338 

Acultzingo 14 1.68 12.8 28.9 217 1695 

Xalapa 24 0.98 15.4 31.8 209 1419 

Atlixco 12 0.28 15.0 36.6 124 1831 

Maltrata 4 0.06 10.9 29.9 210 1714 

Puebla 4 0.04 11.4 35.2 112 2141 

Perote 0 0.00 8.1 28.5 203 2417 

Percentage: the percentage of premises with the presence of Ae. aegypti pupae; mean: the mean abundance of  

Ae. aegypti pupae per premise; night LST: the MODIS estimated LST (MYD11A1, night); day LST: the 

MODIS estimated LST (MYD11A1, day); rainfall: the TRMM estimated precipitation (3B42 V7); elevation: 

the SRTM’s DEM estimated elevation.  

3.1. Correlations among RS Estimated Climate Variables  

A summary of the correlation analysis of RS estimated variables with each other is presented in 

Table 2. An obviously expected significant correlation between the estimated values of elevation and 

LST was detected when using nighttime LST data, both at the community and cluster levels. However, 

this relationship was not significant at either level of aggregation when using daytime LST data. 

Elevation was significantly and inversely correlated with estimated precipitation at both levels of 

aggregation, community and cluster. Furthermore, as expected, there was a significant positive 

correlation between the LST estimates for night and day at both scale levels. Finally, for either level of 

aggregation, significant associations between estimated precipitation and LST were only detected with 

nighttime LST, but not with daytime LST.  

Table 2. Summary of the Spearman correlations among the RS estimated climate variables. 

Climate Variables Community Cluster 

 
N = 12 N = 43 

Elevation and night LST −0.91 ** −0.87 ** 

Elevation and day LST −0.39 −0.29 

Elevation and rainfall −0.80 ** −0.80 ** 

Night LST and day LST 0.59 * 0.55 ** 

Rainfall and night LST 0.60 * 0.60 * 

Rainfall and day LST 0.11 −0.008 

** p < 0.01, * p < 0.05. 
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Figure 4. Plots at the community level. Relationships between: (a) night LST and the 

estimated percentage of premises (“sites”) with Aedes aegypti pupae present; (b) night LST 

and the estimated mean number of pupae per site; (c) elevation and the estimated percentage of 

premises with pupae present; (d) elevation and the estimated mean number of pupae per site; 

(e) the estimated precipitation and estimated percentage of premises with pupae present; (f) the 

estimated precipitation and estimated mean number of pupae per premises. 
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3.2. Correlations among RS-Estimated Climate Variables and Mosquito Presence and Abundance 

At the community and cluster levels, Table 3 summarizes the correlation results between RS 

estimated climate variables and both measures of Ae. aegypti populations: the percentage of premises  

with the presence of Ae. aegypti pupae and mean abundances of Ae. aegypti pupae per premises.  

MODIS-estimated nighttime LST was positively and significantly correlated with the percentage of 

homes with Ae. aegypti pupae or the mean abundance of Ae. aegypti pupae per premises at the 

community (Figure 4a,b) and cluster level (plot not shown). Similarly, elevation estimated through 

SRTM showed a significant, although inverse, correlation with the percentage of premises with the 

presence of Ae. aegypti pupae or a mean abundance of Ae. aegypti pupae per premises at both levels of 

aggregation, community (Figure 4c,d) and cluster (plot not shown). Positive and significant 

correlations were detected between TRMM-estimated precipitation and the percentage of premises 

with the presence of Ae. aegypti pupae or mean abundances of Ae. aegypti pupae per premises at the 

community (Figure 4e,f) and cluster level (plot not shown). No correlation was detected between 

MODIS-estimated daytime LST and the percentage of premises with the presence of Ae. aegypti pupae 

or mean abundances of Ae. aegypti pupae per premises at any level of aggregation (plots not shown).  

Table 3. Summary of Spearman correlations between RS estimated climate variables and 

the abundance of Aedes aegypti pupae. 

Climate Variables Community Cluster 

 
N = 12 N = 43 

Night LST and percentage 0.82 ** 0.56 ** 

Night LST and mean 0.78 ** 0.64 ** 

Elevation and percentage −0.84 ** −0.67 ** 

Elevation and mean −0.87 ** −0.75 ** 

Rainfall and percentage 0.61 * 0.50 ** 

Rainfall and mean 0.79 ** 0.55 ** 

Day LST and percentage 0.33 0.12 

Day LST and mean 0.29 0.21 

** p < 0.01, * p < 0.05. 

4. Discussion 

Associations between extreme weather events and mosquito outbreaks [40,41], as well as the 

weather-mediated seasonal dynamics of mosquito abundance [42] have been reported in the literature 

for Ae. aegypti. Although seasonal weather fluctuations can in large part explain intra-annual 

fluctuations in the abundance of Ae. aegypti, studies conducted at the local scale and, therefore, under very 

similar weather conditions, have revealed differences in vector abundance among nearby urban 

locations [42–44]. This likely reflects the effect of anthropogenic modifications in the urban 

environments that this mosquito prefers to inhabit [42,44]. Using a study design that takes advantage 

of a geographic transect with similar socio-economic conditions in the specific field survey areas, a 

previous cross-sectional analysis using this dataset for the abundance of Ae. aegypti and in situ weather 

data also reported significant associations between mosquito abundance and weather variables 

(temperature or rainfall) and elevation [30]. The uniformity in socio-economic conditions in the 
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specific study areas allows the opportunity to minimize the influence of the anthropogenic sources of 

variability, while at the same time studying elevation and weather variables at approximately the same 

point in time. The present study further capitalizes on such advantages by specifically focusing on 

testing the applicability of widely-used RS products to explore weather linkages with Ae. aegypti 

abundance at the local scale.  

Despite the relatively coarse spatial resolution of 1 km for nighttime LST and approximately 26 km 

for rainfall, strong correlations were found between data from the MYD11A1 product or 3B42 V7, 

respectively, and the local abundance of Ae. aegypti pupae. Conversely, the results were not 

encouraging for daytime LST. Honório et al. [45] showed a positive linear relationship between 

mosquito abundance and ambient temperature within a range of 18 °C to 24 °C. The authors did not 

detect any variation in the abundance of Ae. aegypti above this temperature threshold. Further,  

Eisen et al. [46] reported a positive linear relationship between water temperature and the development 

rate for immature Ae. aegypti between 15 °C to 30 °C. In that study, lower developmental zero 

temperatures were estimated to be in the 10 °C to 14 °C range for eggs and immature Ae. aegypti and 

the upper developmental zero temperatures in the 38 °C to 42 °C range. It is interesting to notice that 

in our study, the mean cluster level daytime LST ranged from 27.5 °C to 40.7 °C while the nighttime 

LST ranged from 7.8 °C to 24.2 °C, which included the range of positive correlation reported by 

Honório et al. [45] and partially overlapped with that reported by Eisen et al. [46]. Additional work is 

needed to assess the correlations between the abundance of Ae. aegypti and RS data for a broader 

range of temperatures than examined in the present study, especially for the higher end temperatures. 

Similar to our results with RS data, positive linear relationships with nighttime LST, but not with 

daytime LST, were detected in malaria prediction models [47].  

As expected from the strong positive correlation between the abundance of Ae. aegypti and night 

LST, there was also a strong, but negative, correlation between mosquito abundance and elevation. In 

general, a negative relationship is expected between elevation and temperature [48]; in our case, 

however, this was detected only when considering night LST, but not when considering day LST. 

Indeed, daytime LST was only associated with nighttime LST and not associated with any other 

variable, including elevation. This may be related to more cloud cover during the daytime than at 

nighttime, as suggested by the lower mean number of cloud-free images available in the daytime LST 

data (6.8 images, Figure 3) compared to 7.9 images available for nighttime LST data. The effect of 

minimum temperatures may be another contributing factor; Lozano-Fuentes et al. [30] identified the 

mean minimum daily temperature and the mean minimum daily winter temperature among the weather 

parameters with potential relevance for the biology of Ae. aegypti. Although our study did not consider 

these specific parameters, it is possible that minimum temperatures (which occur in our night LST 

data) in general may play an important role in the biology of Ae. aegypti.  

Finally, a strong correlation has been reported between median family income and surface 

temperature during the daytime, with a much weaker correlation at nighttime [49]. The specific areas 

(i.e., neighborhoods within communities) used in this study were selected under the criteria of being 

urban low- to middle-income homes with small- to medium-sized yards. The study premises often 

harbored considerable vegetation, and it is known that leaf temperatures and other vegetative features 

are a major aspect related to urban temperature [50]. Although, the possibility exists that income 

factors play a role in the differences detected between daytime and nighttime LST, such a possibility is 
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not evident in our study, since many of our communities were small and not likely to influence the 

urban heat island effect as detected in a 1-km × 1-km grid box. 

While it is possible to explain the positive correlation between RS estimated rainfall and the 

abundance of Ae. aegypti in terms of more containers being filled with rain water (or some containers 

having a greater volume of water) and, thus, more potential larval development sites when it rains, this 

could be a casual association, due to the fact that the areas with higher temperature and lower elevation 

also typically have a higher rainfall. Indeed, rainfall and nighttime LST were weakly, but significantly 

and positively correlated. It also should be noted that the impact of rainfall on the presence of larval 

development sites for Ae. aegypti is complicated by human water storage practices, with the 

importance of containers filled by rain versus human action varying both among geographic areas and 

within the year in single locations. However, the results found in this study are consistent with those of 

Lozano-Fuentes et al. [30] using meteorological data from weather stations along the same transect. 

Additionally, our results are consistent with process-based life-cycle models of Ae. aegypti; mosquito 

populations become largest when temperatures are warm and rainfall is abundant [51,52]. They are 

also consistent with studies indicating that dengue risk in humans is positively correlated with 

temperature and rainfall [53], which is likely in part due to the impacts of temperature and rainfall on 

vector populations [54,55].  

The apparent outlier of Rio Blanco and Orizaba depicted in Figure 4 is also clear in table of 

Lozano-Fuentes et al. [30], when using data on both pupae and larvae. We found that in general, the 

relationship between Ae. aegypti pupal abundance and temperature/rainfall is robust in the higher 

elevation regions (above ~1300 m ASL) and is weaker at lower elevations (below ~1300 m ASL). We 

believe the weaker relationship between temperature/rainfall and pupal abundance below ~1300 m in 

our study region is an indicator that once temperature and rainfall increase to a certain point, pupae are 

abundant no matter how much warmer or wetter it becomes; i.e., the climate is ideal for immature  

Ae. aegypti development anywhere in the warm, wet regions below ~1300 m. From a mathematical 

standpoint, this observation indicates that the relationship between pupal abundance and climate 

variability likely becomes more asymptotic below ~1300 m, so the linear fits shown in Figure 4 may 

oversimplify what is in reality a non-linear relationship. However, for the purposes of our paper, in 

which we are simply trying to show that LST, rainfall and elevation are correlated with Ae. aegypti 

pupal abundance, these linear fits are adequate. It may also be possible that the comparatively greater 

urban density of Orizaba and Rio Blanco (Rio Blanco is a dormitory city of Orizaba) may be more 

favorable for higher numbers of Ae. aegypti, perhaps because of the sheer numbers of container 

habitats. In support of this conjecture, Coatepec has similar characteristics of elevation and temperature 

(although slightly lower rainfall) compared to Orizaba and Rio Blanco, but lower urban density; and it 

has also a lower presence and abundance of Ae. aegypti pupae (Table 1).  

The findings of this study suggest the promise for future RS-based predictive models of Ae. aegypti 

population fluctuations and other applications, such as dengue outbreak prediction [56]. These results 

are even more promising when considering future remote sensing products with enhanced capabilities 

that may be available soon via new or planned NASA and/or partner missions. Of special note are the 

Visible Infrared Imaging Radiometer Suite (NPP-VIIRS), the Global Precipitation Measurement 

(GPM) mission and the Soil Moisture Active Passive (SMAP) mission. Carried onboard the Suomi 

National Polar-orbiting Partnership (NPP) satellite, the VIIRS sensor will use visible and infrared 
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wavelengths to study land, atmosphere, ice and ocean. Besides LST, VIIRS will make observations on 

active fires, vegetation, ocean color, sea surface temperature and other surface features available to the 

scientific community [57]. These observations will facilitate the study of climate change, clouds and 

aerosols; phytoplankton and sediment in the seas; forest cover and productivity; and changes in polar 

sea ice. The similarities between VIIRS and MODIS will provide continuity for monitoring programs 

conducted with MODIS. The Global Precipitation Measurement (GPM) mission will provide 

continuity to TRMM data to monitor precipitation and for other hydrological applications [58]. 

Measuring soil moisture present at the Earth’s land surface, the Soil Moisture Active Passive (SMAP) 

mission will be critical to flood assessment and drought monitoring, as well as to the study of the 

global carbon balance [59]. SMAP is expected to be another undertaking that will play an important 

role in the monitoring of environmental variables associated not just with vector transmitted diseases 

in general, but also, and especially, soil transmitted helminthes infections. Soil moisture is a critical 

determinant for the survival of helminth eggs in the soil [60–62].  

The application of the remotely-sensed products in this study was useful for identifying correlations 

between environmental variables and the presence and abundance of Ae. aegypti. This finding is 

encouraging for using these products to identify areas most at risk of high pupal abundance at local 

scales on the order of 1-km. It is tempting to speculate that if these products work at the local scale for 

cities along our topographically complex transect in Mexico, they would work even better in areas 

where the topographic variability is comparatively smaller (and therefore, environmental variables do 

not vary as much in space), for example, in the southern part of the continental United States. 

However, since the abundance of Ae. aegypti is also closely linked to the characteristics of the human 

environment, it is imperative to also consider the potential confounding effects of socioeconomic and 

human ecology (e.g., housing style, water storage, etc.) factors associated with mosquito establishment 

and proliferation [3,63]. In addition to affecting mosquito abundance, socio-economic factors can  

play a role in the vulnerability of human inhabitants to dengue virus infection; for example, 

Hagenlocher et al. [63] constructed a composite index of socioeconomic vulnerability to dengue that 

included both indicators of susceptibility, as well as a lack of resilience.  

An overarching goal, whether focusing on mosquito vector abundance, vector infection rates and 

the risk of virus transmission to humans, socioeconomic vulnerability or the risk for dengue epidemics, 

is to give public health professionals and the general public time to prepare for and attempt to prevent 

or mitigate disease outbreaks. For example, researchers have determined that the optimal lead time for 

dengue early warning for officials in Singapore would be three months in order to suppress an 

epidemic [64], and global risk maps have been developed to estimate the risk of dengue in  

Europe [65]. Better defining the linkages between environmental and climatic conditions and the 

incidence and geographic spread of mosquito vectors and dengue, together with the ability to use 

remotely-sensed observations to detect conditions signaling increased risk, would be of great value for 

future outbreak prediction and disease suppression.  

5. Conclusions 

Strong correlations were found between the abundance of the dengue virus mosquito vector,  

Ae. aegypti, and RS-derived nighttime LST, elevation or rainfall along a geographic climate/elevation 
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gradient in Central Mexico. The results were consistent with what was found by  

Lozano-Fuentes et al. [30] using data from the same mosquito field surveys, but meteorological data 

from weather stations. These findings show that data from the three analyzed RS products can be used 

to predict Ae. Aegypti abundance, but further studies are needed to define the climatic and  

socio-economic conditions under which the correlations observed herein can be assumed to apply.  
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