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Abstract: With the ever increasing volume of remote sensing imagery collected by satellite
constellations and aerial platforms, the use of automated techniques for change detection has
grown in importance, such that changes in features can be quickly identified. However, the
amount of data collected surpasses the capacity of imagery analysts. In order to improve
the effectiveness and efficiency of imagery analysts performing data maintenance activities,
we propose a method to predict relevant changes in high resolution satellite imagery based
on human annotations on selected regions of an image. We study a variety of classifiers
in order to determine which is most accurate. Additionally, we experiment with a variety
of ways in which a diverse set of training data can be constructed to improve the quality
of predictions. The proposed method aids in the analysis of change detection results by
using various classifiers to develop a relevant change model that can be used to predict the
likelihood of other analyzed areas containing a relevant change or not. These predictions of
relevant change are useful to analysts, because they speed the interrogation of automated
change detection results by leveraging their observations of areas already analyzed. A
comparison of four classifiers shows that the random forest technique slightly outperforms
other approaches.
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1. Introduction

With the proliferation of readily accessible high resolution satellite imagery, many researchers
have focused their efforts on multi-temporal imagery analysis. Bhatt and Wallgrun astutely
observe that the temporal aspect of spatial data has become an increasingly important
component for analysis applications [1], including image to image change detection. One
example of such a system is the Geospatial Change Detection and Exploitation System
(GeoCDX), a fully-automated system for large-scale change detection in high resolution
imagery [2], which was recently published in a Special Issue on multi-temporal analysis of remote
sensing data [3]. Other approaches for high resolution change detection include using neural
networks [4], hierarchical clustering [5,6], expectation maximization level sets [7], morphological
attribute profiles [8] and segmentation [9]. However, in many cases, simply identifying the changes
that have occurred is not sufficient.

Several change detection approaches focus the identification of change for very specific purposes.
A sampling of these includes mapping land cover patterns for urban growth modeling [10], identifying
areas in need of vegetation cover rehabilitation [11] and estimating seismic risk [12]. In this manuscript,
we are interested in permanent, anthropogenic changes; a more detailed description is provided in
Section 3.1.

We propose an approach for automatically identifying relevant change using a classifier that has been
trained with user-identified examples of relevant change. If a user views exemplar regions of a pair of
multi-temporal images and provides an assessment of whether or not a relevant change occurred, then
we should be able to train a system to then classify other regions within the image.

In previous work, we developed a query-by-example (QBE) system for content-based image
retrieval (CBIR) [13–15] that could identify imagery in a database that matched a given query image.
In [16], Barb and Kilicay-Ergin developed semantic models using genetic optimization of low-level
image features. Other examples of applying data mining algorithms to remote sensing imagery include
mining temporal-spatial information [17] and using association rules to extract information from the
gaze patterns of individuals viewing satellite imagery [18].

In this manuscript, Section 2 presents a high-level overview of the GeoCDX change detection system,
as this serves as the source of the imagery features and change annotations used in the prediction of
relevant change. Our definition of relevant change is given in Section 3 along with a description of the
classification algorithms used. Section 4 describes the experiments performed to evaluate the change
prediction algorithms and discusses the meaning of the results. Finally, Section 5 provides a conclusion
and a brief description of future directions of research.

2. Change Detection with GeoCDX

The Geospatial Change Detection and Exploitation System (GeoCDX) is a sensor-agnostic change
detection system for high resolution remote sensing imagery [2]. GeoCDX automatically ingests
imagery from a variety of sensors, including IKONOS, QuickBird, GeoEye-1 and WorldView-2.
Once ingested into the system’s catalog, a data-specific processing plan is developed based on the
characteristics of the imagery. The first step of this processing may involve steps, such as geometric
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correction and conversion to top-of-atmosphere (TOA) reflectance, if they are appropriate for the
imagery. The system automatically determines which temporal pairs of images can be created when new
imagery is ingested; this also creates a processing plan for each pair. This fully-automated plan includes
image-to-image coregistration, radiometric balancing, high-level feature extraction, differencing of the
extracted features and fusion of the difference images into a single change confidence image. A summary
of these processing steps can be found in Figure 1.

Figure 1. A high-level overview of the Geospatial Change Detection and Exploitation
System (GeoCDX) processing flow.

The change detection results are then subdivided by the GeoCDX system into 256 × 256-meter tiles.
A per-tile change score is then calculated for each tile based on the extent and intensity of the change.
As defined in [2], this per-tile change score is:

1

|T |

 ∑
∀(i,j)∈T

sij

 (1)

where T is the set of pixels that compose a tile and sij is a per-pixel change score calculated using a
non-linear stack filter algorithm that accounts for the intensity and morphological characteristics of the
change present at each pixel. This per pixel-change score is described in detail in Section IV.B. of [2].

Figure 2. In the GeoCDX web user interface, the far left-hand side contains the navigation
menu for the GeoCDX software. Immediately to the right of that are clickable links to sets
of change detection results in batches of twenty tiles (i.e., 1–20, 21–40, etc.). Further to the
right are three images in each row representing the before image, the after image and the
corresponding change map that highlights changed regions. Finally, on the far right side of
each row, there is a UI element that allows an analyst to tag a tile as “change” (the button
with the red text) or “no change” (the button with the green text).
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Tiles are then ranked using this change score from most change to least change and presented in
rank order in a web interface. Users are then free to exploit the tiles that have been determined to have
the most change and stop their analysis when they no longer find a relevant change in the results. An
example of highly-ranked change results in the GeoCDX web interface can be seen in Figure 2.

Additionally, the GeoCDX system also uses the per-tile feature signature and per-tile change signature
to cluster tiles based on their amount of change and the content. Complete details on the competitive
agglomerative clustering algorithm used for this task can be found in [19]. This algorithm produces
a dynamic (but bounded) number of clusters based on the degree of variance in the types of change
present in a given pair. Each cluster produced represents a distinct type of transition between land-cover,
land-use types. For example, one cluster may represent grassland that has changed to residential housing,
while another may contain examples of new buildings appearing in urban areas. Figure 3 shows several
examples of members of clusters produced by the GeoCDX system.

Figure 3. Each column depicts a representative example from a particular change cluster in
Columbia, MO, USA. Notice that each cluster depicts a different type of change. (a) Cluster
2 before. (b) Cluster 5 before. (c) Cluster 7 before. (d) Cluster 12 before. (e) Cluster 2 after.
(f) Cluster 5 after. (g) Cluster 7 after. (h) Cluster 12 after. (i) Cluster 2 change. (j) Cluster 5
change. (k) Cluster 7 change. (l) Cluster 12 change.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)



ISPRS Int. J. Geo-Inf. 2014, 3 1495

For the work presented herein, the GeoCDX system was used to perform change detection on imagery
from a variety of geographic areas. One of the results (and the only one considered in this work) of the
automated GeoCDX change detection processing is a prioritized list of tiles 256 × 256 meters in size that
are ordered in terms of most change to least change. In typical usage, an analyst would interrogate these
results in rank order, making a change versus no change assessment for each tile. As a user progresses
through the list of tiles, we seek to leverage knowledge from the tiles that have already been assessed to
make predictions about the remaining tiles in the list that contain change or not.

3. Using Classifiers to Predict Relevant Change

Using the same per-tile feature signatures that the GeoCDX system uses to organize image tiles
into clusters [19], we propose methods for predicting areas of relevant change based on prior, manual
classification of a subset of a pair. A high-level flow chart of the proposed change prediction
methodology can be seen in Figure 4.

Figure 4. Overall workflow for using binary classification to predict relevant change.

A user begins by inspecting tiles in the GeoCDX user interface and performing change analysis to
determine if a relevant change has occurred within the tile. These change/no-change annotations are
recorded on a per-tile basis in the system database. If change occurs, but is not relevant, it is to be marked
as no-change by the analyst. This information can then be used in conjunction with the per-tile features
used for change clustering that were described in Section 2 and explained in detail in Section III.A.
of [19]. These features are 16-bin histograms that encode information about the 14-pixel level features
used by the GeoCDX system. As was the case in [19], we concatenate these histograms together to
construct a single feature vector that represents the signature for each tile. We use these signatures along
with accumulated change/no change annotation data for a pair to produce a classifier (i.e., the relevant
change model) that can be used to predict relevant change for the remaining tiles within a pair.
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3.1. Definition of Relevant Change

There are many applications that call for the use of automated change detection using remotely-sensed
imagery. Each application has its own set of criteria that define types of changes that are relevant
and not relevant. For example, following a natural disaster, emergency management authorities are
likely only interested in identifying areas that have been damaged or destroyed. Additionally, insurance
companies have an interest in knowing about changes to properties for which they underwrite policies
(e.g., expansions of existing structures, new outbuildings being constructed, etc.)

Bruzzone and Bovolo propose a taxonomy of the causes of changes in [20]. In this paper, we propose
a scenario in which we are interested in the subset of anthropogenic changes that may require features
on a map to be updated that are considered relevant change; all other features are not considered relevant
change. Within this definition of relevant change, we include any new building or an extension to
an existing building that is at least 200 square meters in area (i.e., approximately the size of a small
residential house). Additionally, we consider any new road, parking lot or other impervious surface to
be a relevant change. The demolition of any existing building or road is also considered to be a relevant
change. Finally, disturbed earth that has been cleared for non-agricultural purposes (e.g., construction,
deforestation, etc.) is considered to be relevant change.

Conversely, seasonal or transitory changes are not considered to be relevant changes for this particular
experiment. For example, vehicles in parking lots or on roads, although a common sight, are not
considered to be a relevant change. Changes to road surfaces, such as repaving, do not constitute a
relevant change, because it is not a change that would require an update of features on a map. Agricultural
changes (including planting crops, plowing fields, etc.) and seasonal water body fluctuations are not
relevant for this experiment. Finally, ephemeral changes, such as shadows or building glint (due to
over-saturation of the sensor), leading to streaking, is not a relevant change.

3.2. Classification Algorithms

In this manuscript, we present change classification results from four different algorithms in order
to determine the relative efficacy of each. The input to each classification model is a real-valued
feature vector along with a binary (change/no-change) classification for each training data point. For
classification purposes, we use the same feature vectors used to cluster the tiles that were described in
Section 2. From this training dataset, a classification model is built for nearest neighbor, SVM, decision
tree (CART) and random forest classification.

3.2.1. k-Nearest Neighbors

The simplest algorithm employed in this manuscript is the k-nearest neighbors classification
algorithm [21]. For a given tile to be classified, its feature vector, x, is compared to those of all training
tiles in the set and the class of the nearest tile in the feature space is assigned.
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3.2.2. Support Vector Machines

The use of support vector machines (SVMs) has been widely discussed as a means of performing
nonlinear two-class classification. Originally developed by Cortes and Vapnik [22], SVMs are capable
of performing efficient classification of data not otherwise linearly separable by employing the “kernel
trick” to project data into a high-dimensional feature space.

For each tile in the training set, we can define feature vector xi ∈ Rd and assignment membership to
it based on whether it was marked as being relevant change (i.e., let yi = 1) or either not-relevant change
or no change (i.e., let yi = −1). If we let w represent the vector normal to the hyperplane that divides the
two sets, then we can solve the classification problem using quadratic programming. We must optimize:

argmin
(w,b)

1

2
||w||2 (2)

subject to:
yi(w ∗ xi − b) ≥ 1 (3)

for all values of i. The resulting classification is the one which maximizes the margin, or separation
between the two classes, in the high dimensional space used by the chosen kernel.

Classification is then performed by projecting each new data point into the same high dimensional
space and determining on which side of the hyperplane it falls.

3.2.3. Decision Tree Classification

Additionally, we employ the CART decision tree classification algorithm originally proposed by
Breiman et al. [23]. Decision trees are a non-parametric technique that are built by making choices
at each node in the tree regarding how to split the dataset in such a way that balances the data points and
yields the greatest predictive accuracy. These splits continue recursively until each node contains data
points belonging to a single class or some predetermined node size has been reached.

Classification can be performed by starting at the root node and walking the decision tree until a node
is reached. A class label is then assigned based on the label of the data points in the node.

3.2.4. Random Forest

The decision tree concept was extended by Breiman to create the ensemble classification method
of random forests [24]. This technique utilizes “bagging” to sample the training dataset to produce
multiple decision trees. During the classification stage, these trees are then used in concert to produce
several classification results. Each tree casts a vote for classification of the data point, and the consensus
data point (i.e., the one with the plurality of votes) is assigned.

4. Results

In this section, we will describe the experiments performed to test the predictions of relevant
change made by various algorithms. These experiments involved data from the three areas shown in
Table 1. The regions used were varied in their landscape. Columbia, Missouri, USA, contains a mix



ISPRS Int. J. Geo-Inf. 2014, 3 1498

of urban areas and rural farmland, both of which showed moderate amounts of change. The Las Vegas,
Nevada, USA, imagery was highly urbanized and contained significant amounts of change. Finally, a
sparsely-populated, mountainous area near Natanz, Iran, was used, which underwent very little change
during the time period between the two images.

Table 1. Information about the three image pairs used during the experiments
presented herein.

Before Image After Image

Location Date Sensor Date Sensor km2 No. of Tiles

Columbia, MO, USA April 30, 2000 IKONOS June 28, 2006 QuickBird 159 2528
Las Vegas, NV, USA May 10, 2002 QuickBird May 18, 2003 QuickBird 31 522
Natanz, Iran September 19, 2006 QuickBird June 11, 2007 QuickBird 250 3660

In order to generalize well, a classifier should be built with a training dataset that matches the natural
distribution of the entire dataset [25]. This is particularly challenging with imbalanced datasets in which
there are relatively few samples from one class. Methods to address the challenge of imbalanced datasets
can be grouped into three categories [26]: adapting existing algorithms, pre-processing the datasets
through sampling techniques or post-processing the classification model. While the Columbia and Las
Vegas datasets are split roughly 3:1 between no change and change tiles, the Natanz dataset is split 50:1
between no change and change tiles. Given the potential challenges of our dataset, we will investigate
dataset sampling techniques, such as those proposed in [27], to improve our classification results. The
following sections describe sampling methods that employ knowledge of the dataset to ensure that a
variety of types of data points are included in the training set. Table 2 shows the number of training
and testing samples used for each dataset as well as the percent of change and no change tiles contained
within each testing dataset.

4.1. Predictions Using High-Change Tiles

The first experiment involves using tiles that the GeoCDX system identified as being high change tiles.
Using these high change tiles, each of the four classifiers will be trained with the data corresponding to a
fixed percentage of tiles. While the selected tiles are all high-change tiles, not all of the change captured
by them is necessarily relevant change. We produced three different datasets with high change tiles; they
include the highest ranked 5%, 15% and 25% of the dataset. Table 3 shows the chosen percentages and
the corresponding number of tiles used from each pair.
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Table 2. Size of training dataset versus testing dataset.

Columbia Las Vegas Natanz

Training Testing Training Testing Training Testing

Dataset No. No. % Change % No Change No. No. % Change % No Change No. No. % Change % No Change

A1 126 2,402 28.18% 71.82% 26 496 20.36% 79.64% 183 3,477 4.80% 95.20%
A2 379 2,149 24.57% 75.43% 78 444 14.19% 85.81% 549 3,111 2.73% 97.27%
A3 632 1,896 21.89% 78.11% 130 392 11.22% 88.78% 915 2,745 1.42% 98.58%
B1 252 2,276 29.53% 70.47% 52 470 21.28% 78.72% 366 3,294 5.07% 94.93%
B2 758 1,770 28.87% 71.13% 156 366 16.39% 83.61% 1,098 2,562 3.32% 96.68%
B3 1,264 1,264 30.06% 69.94% 260 262 15.65% 84.35% 1,830 1,830 2.13% 97.87%
C1 100 2,428 31.05% 68.95% 90 432 25.69% 74.31% 90 3,570 6.75% 93.25%
C2 292 2,236 30.50% 69.50% 256 266 31.95% 68.05% 268 3,392 5.98% 94.02%
C3 477 2,051 29.64% 70.36% 368 154 36.36% 63.64% 441 3,219 5.19% 94.81%
D1 222 2,306 27.93% 72.07% 113 409 22.25% 77.75% 261 3,399 4.62% 95.38%
D2 315 2,213 27.70% 72.30% 203 319 24.76% 75.24% 335 3,325 4.42% 95.58%
D3 407 2,121 27.30% 72.70% 277 245 26.94% 73.06% 410 3,250 4.15% 95.85%
E1 466 2,062 24.35% 75.65% 162 360 15.28% 84.72% 604 3,056 2.59% 97.41%
E2 553 1,975 24.00% 76.00% 246 276 17.03% 82.97% 655 3,005 2.46% 97.54%
E3 636 1,892 23.57% 76.43% 313 209 17.70% 82.30% 710 2,950 2.31% 97.69%
F1 336 2,192 29.20% 70.80% 136 386 23.32% 76.68% 444 3,216 4.88% 95.12%
F2 420 2,108 28.89% 71.11% 224 298 26.17% 73.83% 518 3,142 4.68% 95.32%
F3 500 2,028 28.40% 71.60% 291 231 28.14% 71.86% 593 3,067 4.40% 95.60%
G1 816 1,712 28.50% 71.50% 224 298 17.79% 82.21% 1,153 2,507 3.15% 96.85%
G2 880 1,648 27.91% 72.09% 295 227 20.26% 79.74% 1,204 2,456 3.01% 96.99%
G3 941 1,587 27.41% 72.59% 347 175 20.57% 79.43% 1,259 2,401 2.83% 97.17%
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Table 3. In the Series A datasets, we selected only tiles that were highly ranked. Each row
represents a dataset with a different fraction of tiles selected.

No. of High Change Tiles

Dataset % of Tiles Columbia Las Vegas Natanz

A1 5% 126 26 183
A2 15% 379 78 549
A3 25% 632 130 915

4.2. Predictions Using High- and Low-Change Tiles

Next, we will expand the training set by also including an equal number of high and low change tiles.
As shown in Table 4, we will select a fixed percentage of high and low change tiles that will double the
number of tiles compared to those selected in the previous section. This will ideally balance the number
of tiles with change and those without relevant change to allow the classification training to create a more
discriminative classifier instead of one that has been over-fitted to the high change data.

Table 4. The Series B datasets utilize a selection of tiles that were found to have the highest
and lowest amounts of change for training. Each row represents a dataset with a different
percent of records selected for training.

No. of High/Low Change Tiles

Dataset % of High/Low Tiles Columbia Las Vegas Natanz Total % of Tiles

B1 5% 126 26 183 10%
B2 15% 379 78 549 30%
B3 25% 632 130 915 50%

4.3. Predictions Using Cluster Members

Recall that Section 2 described the clustering of change detection results. In an effort to train the
classifier with a more diverse training dataset, we can use these clusters to produce our training samples.
As was mentioned above, the number of clusters varies by pair, as does the number of members in each
cluster. We began by producing a training dataset for each pair that contained the most representative
member of each cluster in the pair. Then, we produced expanded training datasets for each pair by
including the second and then third most representative member in each cluster. Table 5 shows a
summary of the number of tiles used for each dataset.

4.4. Predictions Using Cluster Members in Addition to High- and Low-Change Tiles

Finally, we also produce datasets that combine tiles that have very high GeoCDX change scores,
very low GeoCDX change scores and representative exemplars from each GeoCDX change cluster.
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Tables 6 and 7 show a summary of the composition of these training datasets. Ideally, these tiles depict
the wide variety of land cover and land use types present in each pair to address the sampling concerns
described in the introduction to Section 4.

Table 5. In the Series C datasets, we utilize the most prototypical cluster members from each
pair for training data. Each row in this table shows the number of training tiles used as the
number of cluster members is increased.

No. of Cluster Tiles for Training Total % of Tiles

Dataset Nos. from Each Cluster Columbia Las Vegas Natanz Columbia Las Vegas Natanz

C1 1 100 90 90 3.96% 17.24% 2.46%
C2 2 292 256 268 11.55% 49.04% 7.32%
C3 3 477 368 441 18.87% 70.50% 12.05%

4.5. Prediction Results

Using all of the training datasets described in the previous subsections, we will construct a nearest
neighbor, support vector machine, decision tree and random forest classifier for each dataset. We will
use each classifier to label all of the remaining data (i.e., the test data) and compare the results to ground
truth change/no-change labels applied by an experienced imagery analyst. Based on these classification
results, we catalog the following:

• true positive results: relevant change occurred, and it was classified as such;
• false positive results: no change occurred or a change that was not relevant occurred, but was

classified by the algorithm as change;
• false negative results: a relevant change occurred, but was not correctly classified;
• true negative results: no change occurred or a change occurred that was not relevant, and the

classifier correctly indicated this condition.

Based on these four factors, we can calculate traditional assessment metrics of precision and recall
as follows:

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

An accuracy metric can also be calculated to measure the overall performance of each algorithm, as
shown in Equation (6).

Accuracy =
TP + TN

TP + FP + FN + TN
(6)

We present four tables that illustrate the precision, recall and accuracy values for each of the types
of classifiers described in Section 3. Table 8 provides results for the nearest neighbor classifier, Table 9
for support vector machine, Table 10 for the decision tree and Table 11 for the random forest classifier.
Each row in the table corresponds to one of the training datasets described in Tables 3–5, 6 and 7.
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Table 6. The D, E, F and G series datasets combine tiles with high and low amounts of
change in them with prototypical cluster members to form diverse training datasets.

Dataset % of High Tiles % of Low Tiles Nos. from Each Cluster

D1 5% 0% 1
D2 5% 0% 2
D3 5% 0% 3
E1 10% 0% 1
E2 10% 0% 2
E3 10% 0% 3
F1 5% 5% 1
F2 5% 5% 2
F3 5% 5% 3
G1 15% 15% 1
G2 15% 15% 2
G3 15% 15% 3

Table 7. This table provides more detailed information on the composition of the training
datasets introduced in Table 6.

No. of Tiles Total % of Tiles

Dataset Columbia Las Vegas Natanz Columbia Las Vegas Natanz

D1 222 113 261 8.78% 21.65% 7.13%
D2 315 203 335 12.46% 38.89% 9.15%
D3 407 277 410 16.10% 53.07% 11.20%
E1 466 162 604 18.43% 31.03% 16.50%
E2 553 246 655 21.88% 47.13% 17.90%
E3 636 313 710 25.16% 59.96% 19.40%
F1 336 136 444 13.29% 26.05% 12.13%
F2 420 224 518 16.61% 42.91% 14.15%
F3 500 291 593 19.78% 55.75% 16.20%
G1 816 224 1153 32.28% 42.91% 31.50%
G2 880 295 1204 34.81% 56.51% 32.90%
G3 941 347 1259 37.22% 66.48% 34.40%

Table 8 shows the results of change prediction using a nearest neighbor classifier. Recall rates are
highest when only using the high change tiles as training data (Datasets A1–A3); this holds true for
all three test sites. However, when using this training data, overall accuracy clearly suffers. Generally,
the highest combinations of precision, recall and accuracy values come from the training datasets that



ISPRS Int. J. Geo-Inf. 2014, 3 1503

combine high change tiles and members from each of the change clusters (the F and G series datasets).
However, overall, the results of using a nearest neighbor (NN) classifier are not compelling.

Table 8. Nearest neighbor change prediction results.

Columbia Las Vegas Natanz

Dataset Precision Recall Accuracy Precision Recall Accuracy Precision Recall Accuracy

A1 28.95% 83.60% 37.55% 21.05% 99.01% 24.19% 5.03% 70.66% 34.54%
A2 26.97% 80.49% 41.65% 14.10% 85.71% 23.87% 2.66% 43.53% 54.87%
A3 23.47% 60.96% 47.94% 11.11% 56.82% 44.13% 1.40% 25.64% 73.26%
B1 34.70% 21.43% 64.89% 27.78% 45.00% 63.40% 6.30% 34.73% 70.52%
B2 35.93% 36.99% 62.77% 20.90% 70.00% 51.64% 3.97% 27.06% 75.84%
B3 36.88% 31.05% 63.29% 16.85% 36.59% 61.83% 2.66% 17.95% 84.26%
C1 40.49% 61.27% 60.01% 44.74% 30.63% 72.45% 9.96% 21.58% 81.54%
C2 37.15% 59.97% 56.84% 40.98% 29.41% 63.91% 7.24% 25.12% 76.27%
C3 39.66% 57.40% 61.48% 44.74% 30.36% 61.04% 7.74% 27.54% 79.22%
D1 35.09% 57.40% 58.33% 38.67% 31.87% 73.59% 5.61% 40.13% 66.08%
D2 32.96% 57.92% 54.50% 37.88% 31.65% 70.22% 5.68% 37.41% 69.77%
D3 32.63% 62.15% 55.73% 35.09% 30.30% 66.12% 4.95% 34.81% 69.54%
E1 28.65% 58.38% 52.96% 22.02% 43.64% 67.78% 2.58% 35.44% 63.78%
E2 28.17% 62.55% 51.59% 27.40% 42.55% 71.01% 2.54% 33.78% 66.42%
E3 28.24% 65.61% 53.86% 20.75% 29.73% 67.46% 2.36% 32.35% 67.63%
F1 39.95% 50.94% 63.32% 40.00% 33.33% 72.80% 5.72% 23.57% 77.30%
F2 36.83% 57.14% 59.30% 37.50% 30.77% 68.46% 5.99% 24.49% 78.49%
F3 35.39% 54.69% 58.78% 34.55% 29.23% 64.50% 5.23% 25.19% 76.62%
G1 38.91% 42.42% 64.60% 27.27% 45.28% 68.79% 3.25% 20.25% 78.46%
G2 37.50% 46.30% 63.47% 29.51% 39.13% 68.72% 3.25% 20.27% 79.44%
G3 36.59% 47.36% 63.07% 21.74% 27.78% 64.57% 3.29% 22.06% 79.43%

Table 9. Support vector machine change prediction results.

Columbia Las Vegas Natanz

Dataset Precision Recall Accuracy Precision Recall Accuracy Precision Recall Accuracy

A1 28.19% 99.85% 28.27% 20.53% 100.00% 21.17% 5.13% 100.00% 11.19%
A2 27.02% 91.67% 37.13% 14.40% 88.89% 23.42% 2.55% 30.59% 66.15%
A3 26.96% 76.14% 49.63% 13.17% 61.36% 50.26% 1.05% 5.13% 91.77%
B1 38.55% 34.08% 64.50% 34.52% 29.00% 73.19% 13.30% 17.37% 90.07%
B2 52.86% 36.20% 72.26% 30.70% 58.33% 71.58% 9.38% 3.53% 95.67%
B3 50.83% 32.11% 70.25% 35.29% 29.27% 80.53% 0.00% 0.00% 97.27%
C1 51.11% 36.74% 69.44% 55.88% 17.12% 75.23% 22.95% 5.81% 92.32%
C2 47.15% 41.20% 67.98% 52.94% 31.76% 69.17% 21.05% 5.91% 93.04%
C3 49.73% 46.22% 70.21% 66.67% 53.57% 73.38% 19.15% 5.39% 93.91%
D1 33.09% 71.27% 51.73% 46.15% 19.78% 77.02% 5.97% 29.30% 75.40%
D2 36.89% 61.99% 60.10% 51.02% 31.65% 75.55% 7.94% 14.97% 88.57%
D3 41.77% 59.59% 66.29% 46.51% 30.30% 71.84% 8.95% 12.59% 91.05%
E1 32.39% 70.92% 56.89% 35.29% 32.73% 80.56% 2.22% 16.46% 79.12%
E2 33.96% 64.77% 61.32% 30.95% 27.66% 77.17% 1.95% 10.81% 84.43%
E3 36.00% 62.56% 64.96% 26.32% 27.03% 73.68% 1.83% 7.35% 88.78%
F1 53.60% 45.31% 72.58% 57.89% 24.44% 78.24% 22.22% 8.92% 94.03%
F2 52.79% 46.63% 72.53% 52.27% 29.49% 74.50% 23.08% 6.12% 94.65%
F3 49.64% 47.40% 71.40% 47.62% 30.77% 71.00% 15.79% 4.44% 94.75%
G1 53.60% 45.31% 72.58% 39.53% 32.08% 79.19% 11.54% 3.80% 96.05%
G2 52.79% 46.63% 72.53% 57.89% 24.44% 78.24% 11.54% 4.05% 96.17%
G3 49.64% 47.40% 71.40% 52.27% 29.49% 74.50% 9.52% 2.94% 96.46%
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Table 10. Decision tree (CART) change prediction results.

Columbia Las Vegas Natanz

Dataset Precision Recall Accuracy Precision Recall Accuracy Precision Recall Accuracy

A1 31.91% 93.94% 41.80% 20.36% 100.00% 20.36% 4.91% 87.43% 18.03%
A2 29.03% 79.55% 47.18% 17.41% 74.60% 46.17% 2.86% 63.53% 39.99%
A3 27.67% 69.40% 53.59% 12.13% 75.00% 36.22% 2.04% 64.10% 55.81%
B1 42.34% 41.96% 65.99% 75.00% 18.00% 81.28% 6.86% 38.32% 70.49%
B2 42.48% 41.49% 66.89% 45.83% 18.33% 83.06% 5.76% 22.35% 85.28%
B3 38.99% 22.37% 66.14% 75.00% 7.32% 85.11% 4.00% 10.26% 92.84%
C1 44.03% 56.23% 64.21% 64.95% 56.76% 81.02% 7.67% 36.10% 66.36%
C2 46.19% 42.67% 67.35% 76.74% 38.82% 76.69% 8.10% 38.92% 69.93%
C3 42.67% 53.13% 64.94% 43.40% 41.07% 59.09% 5.28% 25.75% 72.20%
D1 40.06% 65.68% 62.97% 45.05% 45.05% 75.55% 4.78% 46.50% 54.75%
D2 38.17% 53.18% 63.17% 64.58% 39.24% 79.62% 5.38% 46.26% 61.62%
D3 37.80% 54.06% 63.18% 50.00% 42.42% 73.06% 5.60% 40.74% 69.02%
E1 34.43% 60.56% 62.32% 42.86% 16.36% 83.89% 3.07% 59.49% 50.36%
E2 35.37% 57.38% 64.61% 52.94% 38.30% 83.70% 2.92% 51.35% 56.71%
E3 34.29% 58.74% 63.74% 27.59% 43.24% 69.86% 2.81% 54.41% 55.59%
F1 50.40% 39.69% 70.99% 45.05% 45.56% 74.35% 7.25% 26.75% 79.73%
F2 41.84% 50.90% 65.37% 64.58% 39.74% 78.52% 6.26% 24.49% 79.31%
F3 39.17% 53.99% 63.12% 49.15% 44.62% 71.43% 5.88% 23.70% 79.95%
G1 40.31% 43.03% 65.60% 43.75% 13.21% 81.54% 5.12% 21.52% 84.96%
G2 43.87% 45.87% 68.51% 40.00% 13.04% 78.41% 3.50% 14.86% 85.10%
G3 39.87% 42.53% 66.67% 34.21% 36.11% 72.57% 4.17% 16.18% 87.09%

Table 11. Random forest change prediction results.

Columbia Las Vegas Natanz

Dataset Precision Recall Accuracy Precision Recall Accuracy Precision Recall Accuracy

A1 28.18% 100.00% 28.18% 20.40% 100.00% 20.56% 4.98% 94.61% 13.00%
A2 28.09% 93.37% 39.65% 14.36% 93.65% 19.82% 2.94% 80.00% 27.32%
A3 26.07% 84.82% 44.04% 13.47% 75.00% 43.11% 2.31% 69.23% 57.92%
B1 47.46% 48.66% 68.94% 60.61% 20.00% 80.21% 16.67% 5.39% 93.84%
B2 47.70% 36.59% 70.11% 33.33% 15.00% 81.15% 100.00% 1.18% 96.72%
B3 48.33% 30.53% 69.30% 50.00% 7.32% 84.35% 100.00% 2.56% 97.92%
C1 56.25% 32.23% 71.17% 100.00% 2.70% 75.00% 12.50% 3.32% 91.90%
C2 55.38% 31.67% 71.38% 100.00% 1.18% 68.42% 22.41% 6.40% 93.07%
C3 56.06% 42.60% 73.09% 100.00% 12.50% 68.18% 22.00% 6.59% 93.94%
D1 35.41% 88.20% 51.78% 76.92% 10.99% 79.46% 5.94% 66.88% 49.54%
D2 41.53% 71.94% 64.17% 100.00% 6.33% 76.80% 5.28% 25.85% 76.21%
D3 46.27% 62.18% 69.97% 100.00% 12.12% 76.33% 8.86% 20.74% 87.85%
E1 31.01% 85.06% 50.29% 31.82% 12.73% 82.50% 3.19% 64.56% 48.40%
E2 34.24% 77.43% 58.89% 37.50% 6.38% 82.25% 2.80% 37.84% 66.16%
E3 36.67% 66.59% 65.01% 33.33% 5.41% 81.34% 3.43% 33.82% 76.54%
F1 51.84% 52.81% 71.90% 80.00% 8.89% 78.24% 40.00% 2.55% 95.06%
F2 53.55% 53.20% 73.15% 100.00% 8.97% 76.17% 75.00% 2.04% 95.39%
F3 52.58% 51.39% 73.03% 100.00% 13.85% 75.76% 100.00% 2.22% 95.70%
G1 48.83% 38.52% 70.97% 25.00% 3.77% 80.87% 100.00% 1.27% 96.89%
G2 50.14% 40.22% 72.15% 33.33% 4.35% 78.85% 100.00% 1.35% 97.03%
G3 49.58% 40.92% 72.40% 40.00% 5.56% 78.86% 100.00% 1.47% 97.21%

Results that quantify the performance of support vector machine (SVM) classification can be found
in Table 9. Overall, these results show a marked improvement over those of the NN classifier. Again,
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the use of training sets that combine high change tiles with representative cluster members continue
to produce the best classification results. Precision and accuracy values hover around the 50% mark,
while overall accuracy is between 70–80% for the Columbia and Las Vegas datasets. The Natanz dataset
represents an anomaly, because of the relatively small amount of actual change in the dataset; precision
and recall values typically top out no higher than 30%, but overall accuracy is in the mid-90% range.
This occurs because the classifier is able to accurately predict a large number of true negative tiles within
this pair.

Generally, the results of the CART decision tree classification shown in Table 10 indicate a slight
decrease in precision, recall and accuracy compared to those of the SVM. The notable exception was
that the D and E series datasets showed a slight improvement using the CART decision tree compared
to SVM.

Finally, change prediction results using the random forest classifier shown in Table 11 are the best
among the four algorithms presented.

4.6. Analysis of Results Using a Generalized F-Score

The F-score is a commonly-used assessment to determine a classification algorithm’s accuracy in a
way that takes into account both precision and accuracy. The traditional F1 score is calculated as the
harmonic mean of the precision and recall values and is bounded between zero and one. F1 can be
calculated as follows:

F1 = 2 · Precision ·Recall
Precision+Recall

=
2 · TP

2 · TP + FP + FN
(7)

where TP represents the number of true positive outcomes, FP the number of false positive outcomes
and FN the number of false negative outcomes.

A more generalized version of the F-score can be calculated by introducing a variable β that allows
more emphasis to be placed on the precision or recall component. This generalized F-score, Fβ , is
calculated as:

Fβ = (1 + β2) · Precision ·Recall
β2 · Precision+Recall

(8)

where a larger value of β weights recall more highly than precision and a smaller value of β emphasizes
precision at the expense of recall.

Table 12 shows values of F0.1, F1 and F10 calculated using the precision and recall values from
Table 8. The F0.1 represents a measure in which precision is 10-times more important than recall. The F10

measure weights precision and recall in a way that makes recall 10-times more important that precision.
Finally, F1 is the balanced weighting of the precision and recall values. Based on these three measures
across the various datasets, we can see that, in general, the nearest neighbor classifier can produce
satisfactory results if recall is preferred over precision, but it does not do so consistently. In particular,
the Las Vegas and Natanz datasets very rarely have values greater than 0.5.
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Table 12. Analysis of nearest neighbor change prediction results using a generalized
F-Score.

Columbia Las Vegas Natanz

Dataset F0.1 F1 F10 F0.1 F1 F10 F0.1 F1 F10

A1 0.29 0.43 0.82 0.21 0.35 0.96 0.05 0.09 0.63
A2 0.27 0.40 0.79 0.14 0.24 0.82 0.03 0.05 0.38
A3 0.24 0.34 0.60 0.11 0.19 0.55 0.01 0.03 0.22
B1 0.34 0.26 0.22 0.28 0.34 0.45 0.06 0.11 0.33
B2 0.36 0.36 0.37 0.21 0.32 0.68 0.04 0.07 0.26
B3 0.37 0.34 0.31 0.17 0.23 0.36 0.03 0.05 0.17
C1 0.41 0.49 0.61 0.45 0.36 0.31 0.10 0.14 0.21
C2 0.37 0.46 0.60 0.41 0.34 0.29 0.07 0.11 0.25
C3 0.40 0.47 0.57 0.45 0.36 0.30 0.08 0.12 0.27
D1 0.35 0.44 0.57 0.39 0.35 0.32 0.06 0.10 0.38
D2 0.33 0.42 0.57 0.38 0.34 0.32 0.06 0.10 0.35
D3 0.33 0.43 0.62 0.35 0.33 0.30 0.05 0.09 0.33
E1 0.29 0.38 0.58 0.22 0.29 0.43 0.03 0.05 0.31
E2 0.28 0.39 0.62 0.27 0.33 0.42 0.03 0.05 0.30
E3 0.28 0.39 0.65 0.21 0.24 0.30 0.02 0.04 0.29
F1 0.40 0.45 0.51 0.40 0.36 0.33 0.06 0.09 0.23
F2 0.37 0.45 0.57 0.37 0.34 0.31 0.06 0.10 0.24
F3 0.36 0.43 0.54 0.34 0.32 0.29 0.05 0.09 0.24
G1 0.39 0.41 0.42 0.27 0.34 0.45 0.03 0.06 0.19
G2 0.38 0.41 0.46 0.30 0.34 0.39 0.03 0.06 0.19
G3 0.37 0.41 0.47 0.22 0.24 0.28 0.03 0.06 0.21

Table 13. Analysis of support vector machine change prediction results using a generalized
F-Score.

Columbia Las Vegas Natanz

Dataset F0.1 F1 F10 F0.1 F1 F10 F0.1 F1 F10

A1 0.28 0.44 0.97 0.21 0.34 0.96 0.05 0.10 0.85
A2 0.27 0.42 0.90 0.15 0.25 0.85 0.03 0.05 0.28
A3 0.27 0.40 0.75 0.13 0.22 0.59 0.01 0.02 0.05
B1 0.39 0.36 0.34 0.34 0.32 0.29 0.13 0.15 0.17
B2 0.53 0.43 0.36 0.31 0.40 0.58 0.09 0.05 0.04
B3 0.51 0.39 0.32 0.35 0.32 0.29 n/a n/a n/a
C1 0.51 0.43 0.37 0.55 0.26 0.17 0.22 0.09 0.06
C2 0.47 0.44 0.41 0.53 0.40 0.32 0.21 0.09 0.06
C3 0.50 0.48 0.46 0.67 0.59 0.54 0.19 0.08 0.05
D1 0.33 0.45 0.70 0.46 0.28 0.20 0.06 0.10 0.28
D2 0.37 0.46 0.62 0.51 0.39 0.32 0.08 0.10 0.15
D3 0.42 0.49 0.59 0.46 0.37 0.30 0.09 0.10 0.13
E1 0.33 0.44 0.70 0.35 0.34 0.33 0.02 0.04 0.15
E2 0.34 0.45 0.64 0.31 0.29 0.28 0.02 0.03 0.10
E3 0.36 0.46 0.62 0.26 0.27 0.27 0.02 0.03 0.07
F1 0.54 0.49 0.45 0.57 0.34 0.25 0.22 0.13 0.09
F2 0.53 0.50 0.47 0.52 0.38 0.30 0.22 0.10 0.06
F3 0.50 0.48 0.47 0.47 0.37 0.31 0.15 0.07 0.04
G1 0.52 0.44 0.39 0.39 0.35 0.32 0.11 0.06 0.04
G2 0.52 0.47 0.42 0.29 0.25 0.22 0.11 0.06 0.04
G3 0.51 0.47 0.43 0.24 0.23 0.22 0.09 0.04 0.03
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Values for the three F-scores using the SVM classifier are shown in Table 13. In this table, we begin to
see higher scores due to the improved quality of the classification results compared to the NN classifier.
Scores for the Columbia dataset are typically greater than 0.5 for all three measures. Many F-score values
for Las Vegas pass that threshold, as well. However, the results for Natanz show little improvement using
the SVM classifier.

As we noted in Section 4.5, the results for the CART classifier generally seem to be slightly worse
than those of SVM. We see this same trend when examining the various F-score values for the CART
classifier shown in in Table 14.

Table 14. Analysis of decision tree (CART) change prediction results using a generalized
F-Score.

Columbia Las Vegas Natanz

Dataset F0.1 F1 F10 F0.1 F1 F10 F0.1 F1 F10

A1 0.32 0.48 0.92 0.21 0.34 0.96 0.05 0.09 0.75
A2 0.29 0.43 0.78 0.18 0.28 0.72 0.03 0.05 0.52
A3 0.28 0.40 0.68 0.12 0.21 0.71 0.02 0.04 0.49
B1 0.42 0.42 0.42 0.73 0.29 0.18 0.07 0.12 0.37
B2 0.42 0.42 0.41 0.45 0.26 0.18 0.06 0.09 0.22
B3 0.39 0.28 0.22 0.69 0.13 0.07 0.04 0.06 0.10
C1 0.44 0.49 0.56 0.65 0.61 0.57 0.08 0.13 0.35
C2 0.46 0.44 0.43 0.76 0.52 0.39 0.08 0.13 0.38
C3 0.43 0.47 0.53 0.43 0.42 0.41 0.05 0.09 0.25
D1 0.40 0.50 0.65 0.45 0.45 0.45 0.05 0.09 0.43
D2 0.38 0.44 0.53 0.64 0.49 0.39 0.05 0.10 0.43
D3 0.38 0.44 0.54 0.50 0.46 0.42 0.06 0.10 0.38
E1 0.35 0.44 0.60 0.42 0.24 0.16 0.03 0.06 0.50
E2 0.36 0.44 0.57 0.53 0.44 0.38 0.03 0.06 0.44
E3 0.34 0.43 0.58 0.28 0.34 0.43 0.03 0.05 0.46
F1 0.50 0.44 0.40 0.45 0.45 0.46 0.07 0.11 0.26
F2 0.42 0.46 0.51 0.64 0.49 0.40 0.06 0.10 0.24
F3 0.39 0.45 0.54 0.49 0.47 0.45 0.06 0.09 0.23
G1 0.40 0.42 0.43 0.43 0.20 0.13 0.05 0.08 0.21
G2 0.44 0.45 0.46 0.39 0.20 0.13 0.04 0.06 0.14
G3 0.40 0.41 0.43 0.34 0.35 0.36 0.04 0.07 0.16

Finally, the breakthrough comes when we examine the F-score values for the random forest classifier
shown in Table 15. In general, all training datasets for the Columbia tiles provide balanced results that
favor neither precision nor recall. The Las Vegas training datasets produce results that favor precision
over recall, as can be seen by their relatively high F0.1 scores and their relatively low F10 scores. It is
interesting to note that the G series datasets for Las Vegas (i.e., G1, G2 and G3) produce low F0.1 scores.
Referring to Table 7, we can see that those datasets employ a very large percent of the pair’s tiles. We
believe that over-fitting is occurring, which prevents the classifier from generalizing well. The F-score
values for the Natanz datasets show an interesting trend. Data Series A, C, D and E all produce low
values for the three reported F-scores. Meanwhile, Data Series B, F and G report high scores for F0.1,
which means that the precision is relatively high. Recall that Table 2 showed that the Natanz pair was
filled with an overwhelming number of no-change tiles. Only Data Series B, F and G include significant
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numbers of no-change tiles that allow the random forest classifier to produce an effective model of the
training data that generalizes to the test data.

Table 15. Analysis of random forest change prediction results using a generalized F-Score.

Columbia Las Vegas Natanz

Dataset F0.1 F1 F10 F0.1 F1 F10 F0.1 F1 F10

A1 0.28 0.44 0.98 0.21 0.34 0.96 0.05 0.09 0.80
A2 0.28 0.43 0.91 0.14 0.25 0.89 0.03 0.06 0.64
A3 0.26 0.40 0.83 0.14 0.23 0.72 0.02 0.04 0.54
B1 0.47 0.48 0.49 0.59 0.30 0.20 0.16 0.08 0.05
B2 0.48 0.41 0.37 0.33 0.21 0.15 0.55 0.02 0.01
B3 0.48 0.37 0.31 0.47 0.13 0.07 0.73 0.05 0.03
C1 0.56 0.41 0.32 0.74 0.05 0.03 0.12 0.05 0.03
C2 0.55 0.40 0.32 0.55 0.02 0.01 0.22 0.10 0.06
C3 0.56 0.48 0.43 0.94 0.22 0.13 0.22 0.10 0.07
D1 0.36 0.51 0.87 0.73 0.19 0.11 0.06 0.11 0.61
D2 0.42 0.53 0.71 0.87 0.12 0.06 0.05 0.09 0.25
D3 0.46 0.53 0.62 0.93 0.22 0.12 0.09 0.12 0.20
E1 0.31 0.45 0.84 0.31 0.18 0.13 0.03 0.06 0.54
E2 0.34 0.47 0.76 0.36 0.11 0.06 0.03 0.05 0.34
E3 0.37 0.47 0.66 0.32 0.09 0.05 0.03 0.06 0.31
F1 0.52 0.52 0.53 0.74 0.16 0.09 0.35 0.05 0.03
F2 0.54 0.53 0.53 0.91 0.16 0.09 0.55 0.04 0.02
F3 0.53 0.52 0.51 0.94 0.24 0.14 0.70 0.04 0.02
G1 0.49 0.43 0.39 0.24 0.07 0.04 0.56 0.03 0.01
G2 0.50 0.45 0.40 0.31 0.08 0.04 0.58 0.03 0.01
G3 0.49 0.45 0.41 0.38 0.10 0.06 0.60 0.03 0.01

5. Discussion and Conclusions

This manuscript presents a method for predicting areas of relevant change, within the GeoCDX
system [2]. This system combines automated change detection processing with human-in-the-loop rapid
triage of change detection results. While the GeoCDX system is agnostic to the type of change detected,
human judgment is used to conclude whether a tile should be tagged as containing “relevant” change
depending on the analyst’s task. As a user interrogates change detection results presented by GeoCDX,
we showed that we were able to use the change/no-change annotations of the imagery analyst to help
predict whether subsequent tiles contained relevant change or not. These predictions ultimately lead to
decreased analysis time for the user.

Four different classification algorithms were used to perform the prediction; in general, the random
forest classification algorithm performed the best. We also explored various schemes to construct a
well-diversified training dataset that included areas of change and areas without change to ensure that
the makeup of the training dataset reflects that of the entire dataset [25]. Generally, training datasets
that included samples from all of the GeoCDX change clusters produced the best classifiers. We
demonstrated that with an appropriate training dataset, we can produce a random forest classifier that
can typically predict relevant change with an accuracy of greater than 70% and even up to 97%. The
classifiers that are produced generally favor precision over recall, meaning that there will be relatively
few false positive change indications.
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In future work, we plan to investigate using more granular features extracted from the imagery to
predict changes at a finer scale. We recognize the limitations of using the features extracted from
256 by 256-meter tiles used by GeoCDX, but were generally pleased with the results that could be
achieved with those features. Additionally, we plan to incorporate gaze tracking information gathered
from system users [18] to better identify precisely which portions of the image are important for making
decisions about relevant change versus irrelevant change versus no change. Using this eye tracking
information along with more fine-grained image features will improve future change predictions. Finally,
additional experiments should be performed to gauge the improvement in performance offered by using
change/no change annotations from an imagery analyst to predict the existence of relevant change in
other, unseen portions of the image. We anticipate significant efficiency improvements by using our
semi-automated approach to suggest whether relevant change has occurred or not; however, this should
be verified experimentally.
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