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Abstract: In spatial disease surveillance, geographic areas with large numbers of disease
cases are to be identified, so that targeted investigations can be pursued. Geographic areas
with high disease rates are called disease clusters and statistical cluster detection tests
are used to identify geographic areas with higher disease rates than expected by chance
alone. In some situations, disease-related events rather than individuals are of interest for
geographical surveillance, and methods to detect clusters of disease-related events are called
event cluster detection methods. In this paper, we examine three distributional assumptions
for the events in cluster detection: compound Poisson, approximate normal and multiple
hypergeometric (exact). The methods differ on the choice of distributional assumption for
the potentially multiple correlated events per individual. The methods are illustrated on
emergency department (ED) presentations by children and youth (age < 18 years) because
of substance use in the province of Alberta, Canada, during 1 April 2007, to 31 March
2008. Simulation studies are conducted to investigate Type I error and the power of the
clustering methods.
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1. Introduction

In disease surveillance, statistical methods can be used to identify geographical areas that have
statistically higher numbers of cases of a disease than expected by chance. These geographical areas
with aggregations of disease are called clusters. A geographical cluster is defined as a limited area
within the general study area with a significant increase in the incidence of a disease (a hot spot cluster;
see Lawson [1], p. 104). In some situations, the disease incidence or prevalence may not be the most
or only relevant feature for analysis, and the analysis of events related to individuals with disease may
be more appropriate. For example, when examining the delivery of health services through emergency
departments (EDs), the number of presentations to EDs can be more relevant than the number of distinct
individuals seen in the ED. If there are many individuals that have multiple presentations, analysis
based solely on the number of individuals, and not the number of presentations, will only be able to
identify clusters with excess numbers of individuals and not clusters with excess presentations. Ignoring
presentations prevents the identification of clusters where more presentations, but not necessarily more
individuals, are occurring than expected. Surveillance of presentations to EDs can identify geographic
areas with high presentations, where access to other healthcare providers is limited, and statistical
detection of these areas necessitates incorporating repeated presentations by individuals.

The geographical units of analysis are generally administrative regions for which case and population
counts are available. Different methods of statistical tests have been proposed to locate and identify the
clusters of disease cases in geographical areas. Besag and Newell [2] classified these statistical cluster
detection tests as general (also called non-focused) and focused. General tests identify any cluster
with an excess number of cases, whereas focused tests identify areas of excess cases near possible
causative agents, such as environmental contaminants. There are a number of different tests that can
detect clusters of cases when the geographic area has diverse population sizes (e.g., see [2–5]). When
disease-related events are of interest, methods are required to accommodate the possibility of multiple,
correlated events per individual. Tests for detecting clusters of events (hereafter, event cluster detection)
are a relatively new research area, and a few approaches have been proposed. Rosychuk, Huston
and Prasad [6] provided an event clustering test that is similar in spirit to the Besag and Newell [2]
strategy, where areas are combined in order to contain at least a certain number of disease-related
events. In their approach, the probability of observing the number of events is based on a compound
Poisson distribution, and the relevant probabilities are obtained through a recursion relation. Building
on this work, Torabi and Rosychuk [7] proposed the use of an approximate normal distribution to the
compound Poisson distribution, and Rosychuk and Stuber [8] provided an exact test based on a multiple
hypergeometric distribution.

We evaluate the performance of the three approaches for identifying geographic clusters of events.
Section 2 describes the tests in detail, and Section 3 illustrates the methods on a dataset of ED
presentations made by children and youth for substance use. Results of a simulation study are presented
in Section 4, and a summary of the findings is provided in Section 5.
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2. Materials and Methods

We first introduce some notation that is used for all methods. We consider a geographical study region
divided into I distinct administrative areas, called cells. A crude spatial relationship amongst the cells
is characterized by calculating pairwise distances between cell centroids. For cell i, i = 1, · · · , I , the
remaining cells are ordered in increasing distance from the cell’s centroid. Specifically, we let cell ip be
the p−th closest cell to cell i, p ∈ {0, 1, . . . , i − 1, i + 1, . . . , I}. For convenience, we define i0 = i.
The population of cell i is denoted by ni, with total population N =

∑I
i=1 ni. For event clustering, we

test the null hypothesis that every individual is equally likely to have events independently of the other
individuals and the location of residence. Rejection of the null hypothesis suggests that the number of
events is higher than expected by the event distribution. For cell i, let Cix, x <∞ be the random variable
that represents the number of cases with exactly x events (observed value cix). The total number of cases
with at least one event in cell i is Ci =

∑
xCix, and the random variable Vi =

∑
x xCix denotes the

number of events (observed value vi). We assume that Ci and Vi are finite, and then, C =
∑I

i=1Ci

and V =
∑I

i=1 Vi denote the total number of cases and events for the entire region, respectively, with
observed values of c and v.

Each cell is tested separately, similar in spirit to the method of Besag and Newell [2]. The test statistics
are based on the number of cells required to be combined to include the nearest k∗ events, where k∗ is a
natural number. For cell i, the test statistic is defined as:

L∗i = min

{
q : k∗ ≤

q∑
p=0

Vip

}
(1)

The number of events in the combined cells can be considered as a sum of a random variable of the
number of events. For cell i, suppose the number of cases and population in its l nearest neighbours, are
Cil =

∑l
p=0Cip and nil =

∑l
p=0 nip , respectively. The total number of events for the nil individuals can

be written as:

Vil =
l∑

p=0

Vip =

Cil∑
j=1

Yj (2)

where Yj is a random variable that denotes the number of events of the j−th (j = 1, . . . , Cil) individual.

2.1. Compound Poisson Distribution

The compound Poisson approach (CP) is the natural choice when thinking of the number of events
in a cell and its neighbour as a random sum of random variables (Rosychuk et al. [6]). Since each case
has at least one event and potentially many events, the significance level of each cell is determined by
assuming that the number of events in the combined cells Vil has a compound Poisson distribution when
Cil has a Poisson distribution. Therefore, Vil in Equation (2) has a compound Poisson distribution under
the null hypothesis, and from Equation (1), the significance level becomes:

Pr(L∗i ≤ l) = 1 −
k∗−1∑
z=0

Pil(z) (3)
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where Pil(z) = Pr(Vil = z). Note that the probability Pil(z) in Equation (3) can be obtained through
a recursion relation (see, for example, Ross [9], p. 156) where:

Pil(0) = e−λil , (4)

Pil(z) =
λil
z

z∑
x=1

xQ(x)Pil(z − x), z ≥ 1 (5)

The probability Q(x) = Pr(Yj = x) might be known by the investigator, and λil = nilC/N is the
Poisson mean. We practically use λ̂il = nilc/N with the random variable replaced by that which is
observed. Rosychuk et al. [6] used Q(x) = cx/c, which cx is the number of cases with exactly x events.

If the population distribution within the administrative area varies on key characteristics, such as
gender and age, and these characteristics are available from both the population and case data, then
these characteristics can be added to the test in order to adjust for the varying population distribution.
Let C•s be the random variable (observed value c•s) that represents the number of cases in stratum s

(s = 1, · · · , S, S > 1) and n•s be the corresponding total population in the entire region. For cell
i, let nisl and Cisl be the number of population and cases of stratum s and its l nearest neighbours,
respectively. The random variable Cisl (observed value cisl) follows a Poisson distribution with mean
λisl = nislC•s/n•s, and:

Vil =
S∑
s=1

Cisl∑
j=1

Yjs (6)

is the total number of events for the Cil cases. Vil follows a compound Poisson distribution, with Yjs
equal to the number of events of the j−th individual in stratum s, j = 1, · · · , Cisl with probability
Qs(x) = Pr(Yjs = x) for all j and events x ≥ 1. Thus, the required probabilities can be determined from
Equations (4) and (5) with the aid ofQ(x) = Q1(x)λi1l/λil+ · · ·+QS(x)λiSl/λil, and the corresponding
significance test can be obtained by Equation (3).

2.2. Approximate Normal Distribution

When the population size is large, there may be relatively large numbers of events that can cause
the calculation of the recursion relation Equations (4) and (5) to be slow. The computation time
increases when we have strata with auxiliary information. Using an approximate normal (AN) (Torabi
and Rosychuk [7]) approach provides an alternative to the CP approach. That is, the total number of
events for the nil individuals Vil =

∑Cil

j=1 Yj in Equation (2) has a normal distribution with mean µil and
variance σ2

il, and we can write the mean and variance of Vil as:

µil = λil

∞∑
x=1

xPr(Y = x) = λil

∞∑
x=1

xQ(x) (7)

and:

σ2
il = λil

∞∑
x=1

x2Pr(Y = x) = λil

∞∑
x=1

x2Q(x) (8)
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where Q(x) = Pr(Yj = x) is discussed in Section 2.1. Therefore, the significance level becomes:

Pr(L∗i ≤ l) = 1− Φ

(
k∗ − 0.5− µil

σil

)
+ Φ

(
−0.5− µil

σil

)
(9)

where Φ(·) is the cumulative standard normal distribution. The significance level in Equation (9) can be
computed using the estimates µ̂il and σ̂2

il of the parameters mean µil and variance σ2
il. As a result,

µ̂il = λ̂il

∞∑
x=1

xQ(x) =
nilc

N
× 1

c

∑
i

∑
x

xcix =
nilv

N
(10)

and:

σ̂2
il = λ̂il

∞∑
x=1

x2Q(x) =
nilc

N
× 1

c

∑
i

∑
x

x2cix =
nilv

∗

N
(11)

with v∗i =
∑
x

x2cix and v∗ =
∑
i

v∗i .

When strata are included in the analysis, Vil in Equation (6) has a normal distribution with mean
µil =

∑S
s=1 µisl and variance σ2

il =
∑S

s=1 σ
2
isl, where µisl and σ2

isl can be obtained respectively from
Equations (7) and (8) with λisl = nislC•s/n•s defined above. Thus, a significance test similar to
Equation (9) can be obtained. In particular, for both CP and AN methods, Qs(x) can be estimated
by c•sx/c•s, where c•sx is the number of cases with exactly x events in stratum s.

2.3. Multiple Hypergeometric Distribution

For an exact approach, Rosychuk and Stuber [8] considered the event frequencies as classes,
and subjects are sampled without replacement form the classes. This approach leads to a multiple
hypergeometric distribution. The probability of observing x events among a sample of m individuals is:

M(x,m) =
∑
A

(
C•1
r1

)(
C•2
r2

)
· · ·
(
C•Y
rY

)(
n−C

m−r1−r2···rY

)(
n
m

) (12)

where C•y =
∑I

i=1Ciy is the total number of cases in the entire study region with exactly y events, and
{ry} are non-negative integers from the set A with:

A =

{
(r1, · · · , rY ) : x =

Y∑
z=1

zrz and ry ≤ C•y, y = 1, · · · , Y

}

The significance level for the tested cell i becomes:

Pr(L∗i ≤ l) = 1−
k∗−1∑
x=0

M(x, nil) (13)

Hereafter, we refer to this approach as the exact event (EE) test. In practical situations, the random
variables are replaced by their corresponding observed values, and the expected number of events nilv/N
is helpful. Further, suppose that Vis is the number of events in cell i for strata s, and the number of events
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in cell i is Vi =
∑S

s=1 Vis =
∑S

s=1

∑Y
z=1 zCisz, with Cisx as the random variable denoting the number

of cases in cell i that have exactly x events. When strata are taken into account, the test statistic in
Equation (1) applies, and a significance test similar to Equation (13) will be obtained with the relevant
probability expressed in Equation (12).

2.4. Selection of Cluster Size

The event cluster detection tests described all depend on the choice of cluster size, k∗, which will
not be known. The choice of k∗ is crucial since a too large or too small choice may result in missing
clusters. Le, Petkau and Rosychuk [10] recommend a testing algorithm that has multiple, cell-specific
cluster sizes that depend on the population of the cell and its neighbors. We provide a description of the
algorithm in the context of the different tests.

Let k∗i0, k∗i1 and k∗i2 be the selected event cluster sizes for cell i, i = 1, · · · , I . In a similar fashion to
sequential analysis, cell i is tested at k∗i0, k

∗
i1, k

∗
i2 in sequence only if an earlier cluster size fails to reach

significance. Let k∗iw − 1 be the 100(1 − α) percentile of the events probability distribution f(·) with
populations from the cell and up to its w nearest neighbours. The event cluster size k∗iw is the smallest,
integer defined as:

k∗iw = 1 + max

[
q :

q∑
z=0

f(·) ≤ 1 − α

]
(14)

A cluster size equal to k∗iw is interpreted as the minimum number of events that would have to be observed
to cause cell i and its nearest w neighbours to be significant at level α. The f(·) in Equation (14) would
be replaced by the appropriate distribution of the specific method used. For the EE method, the event
cluster size is defined as:

k∗iw = 1 + max

[
q :

q∑
z=0

M(x, niz) ≤ 1− α

]
(15)

where M(x, niz) is defined in Equation (12).

3. Application to Substance Use Data

To demonstrate the behavior among the three methods, we focus on ED presentations by children
and youth (years of age < 18) for substance use in the western Canadian province of Alberta during
1 April 2007, to 31 March 2008. Alberta has a population of over 3.5 million [11] and covers
661,848 km2 [12]. The capital city, Edmonton, is located near the geographic center of the province,
and Edmonton and Calgary are the two major urban areas, with populations over one million each. The
southwestern boundary of the province has the Rocky Mountains, and the northern areas are forested
and sparsely populated.

The data were extracted from population-based provincial administrative databases that include all
ED presentations in Alberta. Each ED presentation during the study period is considered to be an
event. A case is defined as an individual with at least one ED presentation for substance use during
the study period. Since there are well-known differences between children and adolescents and males
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and females [13], we stratified the data by gender (male or female) and age group (0–14, 15–17 years of
age). The province of Alberta (Figure 1) is divided into I = 70 sub-Regional Health Authorities (sRHAs)
with diverse population sizes. The 25th percentile, median and 75th percentile of the sRHA population
sizes are 5704, 10,832 and 18,027 residents, respectively, and ranged from 2225 to 31,828. The total
children and youth numbered N = 862,771 in the population, and the total cases numbered c = 1232.
The cases presented v = 1354 times to the ED with substance use. The majority of the individuals had
three or fewer presentations: one (1128), two (83) or three (17). The range of presentations was from one
to five. For each sRHA, the median number of cases was 14 (range zero to 52), and the median number
of events was 15.5 (range zero to 59) [13].

We chose w to be at most two for our application and used hyperev [14] and R [15] statistical software
packages to obtain the results. The statistically significant clusters (p-value < 0.05) are presented in
Table 1, along with the event cluster size k∗, test statistic l, the number of observed events vil, the
number of expected events (Eil) and the p-value.

Almost all three methods identified geographical areas in the northeast and southwest areas of the
province as statistically-significant clusters during the study period; few of the same sRHAs in the
Edmonton Municipal region were identified as clusters of ED presentations, but none of the sRHAs
were identified as a significant cluster in the Calgary Municipal region. A couple of geographical areas
in the south were identified as single-cell potential clusters among all three methods, and a few other
different sRHAs were identified as clusters from each approach (see Figures 2–4).

A few sRHAs had discrepant results among the three methods. These were likely because the CP
and EE approaches have lower 95% tails than the AN approach. If the cluster sizes differ, then there
may not be quite enough cases observed to meet statistical significance, and different numbers of cells
may need to be combined. For example, sRHA 25 is identified as a significant cluster with its first
nearest neighbour combined for the CP and EE approaches, but is not statistically significant for the AN
approach. The sequence of cluster sizes (k∗i0, k

∗
i1) tested for the CP, AN and EE approaches are (14, 42),

(15, 45) and (14, 44), respectively. There are 13 events in sRHA 25 (< k∗i0 for all approaches), and this
observed number requires testing at k∗i1. The first nearest neighbour of sRHA 25 is sRHA 26, and it
contains 31 events. In combination, these two sRHAs have 44 events, and these exceed k∗i1 for the CP
and EE approaches. With the AN approach, k∗i1 = 45, and because 44 < 45, the next test occurs for
k∗i2 = 88. Continuing to combine neighbours until at least 88 events are observed, l = 4 neighbours
need to be combined (sRHAs 26 (31 events), 21 (19 events), 17 (14 events), and 22 (20 events)), and
this combination of sRHAs has 97 observed events (>88). With a larger number of neighbours (and a
larger combined population size), the combined sRHAs do not have enough events to be identified as a
statistically-significant cluster, and the p-value is less than 0.05.

It is important to note that merely having an observed number of events above the expected number
of events does not guarantee that statistical significance is achieved. With the cluster size algorithm,
statistical significance is achieved if the observed number of events is at least as large as the k∗iw and
the l is ≤ w. For example in the AN and EE approaches, sRHA 60 needed to have at least 83 events
when combined with its two nearest neighbours (w = 2) to be statistically significant. To achieve at
least 83 events, its l = 3 nearest neighbours had to be combined with it. Although the observed number
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of events was 100 and the expected number of events was smaller at 91.26, this increase was not large
enough for the combined populations to be identified as a statistically-significant cluster.

Table 1. Event cluster results with gender and age group as strata. Significant cells (i) in any
approach along with the cluster size (k∗iw), test statistics (l), the number of observed events
(vil), the number of expected events (Eil) and corresponding p-value, with * denoting test
significant at α = 0.05. CP, compound Poisson; AN, approximate normal; EE, exact event.

CP AN EE
i k∗iw l vil Eil p-value k∗iw l vil Eil p-value k∗iw l vil Eil p-value

1 11 0 13 5.50 0.031 * 11 0 13 5.50 0.037 * 11 0 13 5.50 0.039 *
2 19 0 24 11.73 0.030 * 19 0 24 11.73 0.037 * 19 0 24 11.73 0.045 *
7 60 2 60 50.08 0.050 * 64 3 65 58.70 0.285 64 3 65 58.70 0.275

25 42 1 44 32.75 0.042 * 88 4 97 128.87 1.000 44 1 44 32.75 0.048 *
27 15 0 22 9.02 0.047 * 16 0 22 9.02 0.027 * 16 0 22 9.02 0.035 *
29 25 0 36 17.16 0.049 * 26 0 36 17.16 0.034 * 26 0 36 17.16 0.041 *
30 33 1 39 24.70 0.047 * 35 1 39 24.70 0.037 * 35 1 39 24.70 0.042 *
44 26 0 59 18.03 0.037 * 27 0 59 18.03 0.035 * 27 0 59 18.03 0.042 *
45 78 2 107 67.64 0.050 * 84 2 107 67.64 0.040 * 85 2 107 67.64 0.040 *
46 41 0 51 31.32 0.031 * 43 0 51 31.32 0.035 * 43 0 51 31.32 0.039 *
47 55 1 84 42.07 0.041 * 54 1 84 40.72 0.035 * 55 1 84 42.07 0.044 *
53 29 1 39 20.61 0.036 * 30 1 39 20.61 0.038 * 30 1 39 20.61 0.044 *
56 44 0 44 34.22 0.033 * 58 3 80 85.30 0.997 58 3 80 85.30 0.999
57 64 2 80 53.97 0.050 * 69 2 80 53.97 0.037 * 68 2 80 53.97 0.049 *
58 60 2 64 49.55 0.035 * 64 2 64 49.55 0.039 * 63 2 64 49.55 0.049 *
59 26 0 44 18.04 0.049 * 28 0 44 18.40 0.027 * 28 0 44 18.40 0.034 *
60 62 1 64 51.16 0.028 * 83 3 100 91.26 0.797 83 3 100 91.26 0.804
61 28 0 37 19.47 0.030 * 29 0 37 19.47 0.038 * 28 0 37 19.47 0.038 *
62 37 0 59 27.67 0.032 * 39 0 59 27.67 0.031 * 38 0 59 27.67 0.050 *
65 17 0 20 10.15 0.031 * 17 0 20 10.15 0.037 * 17 0 20 10.15 0.045 *
66 44 0 50 34.72 0.047 * 47 0 50 34.76 0.035 * 47 0 50 34.72 0.039 *
69 11 0 12 5.33 0.027 * 11 0 12 5.33 0.032 * 11 0 12 5.33 0.033 *
70 32 0 32 23.14 0.032 * 56 1 69 42.31 0.037 * 56 1 69 42.61 0.040 *
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Figure 1. Alberta sub-Regional Health Authorities (sRHA) and two major urban areas
(Edmonton region and Calgary region) are provided as insets.
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Figure 2. Shaded sRHAs are significant clusters alone (dark shading) and when combined
with one (medium shading) or two (light shading) nearest neighbours for the CP analysis.
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Figure 3. Shaded sRHAs are significant clusters alone (dark shading) and when
combined with one (medium shading) or two (light shading) nearest neighbours for the
AN analysis.
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Figure 4. Shaded sRHAs are significant clusters alone (dark shading) and when combined
with one (medium shading) or two (light shading) nearest neighbours for the EE analysis.
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4. Simulation Studies

We examine the Type I error and the power of the tests of the CP, AN and EE approaches through
simulation studies. The studies use Alberta’s cells and their geographic relationships. The cell
populations are set to be the Alberta population for the fiscal year 2007/2008 or the same population
(1000, 5000, or 8000) in each cell.

4.1. Type I Error Comparison

Five settings for the probability of multiple events per case were considered (Table 2) with varying
means and skewness chosen for convenience. Setting S5 is based on our substance use application.
The events rate was set to be two events per 1000 population. That is, the total number of events in
each simulated data set would be 140, 700, 1120 and 1354 for the setting with 1000, 5000 and 8000
per cell and the Alberta population, respectively. With the multiple event probabilities for scenarios
S1–S5 from Table 2 and crude event rates, the simulated data sets are created by randomly assigning the
c•1, c•2, · · · , cases based on each cell’s proportion of the total population. For each simulation setting,
we generated 1,000 datasets and applied the CP, AN and EE approaches to each dataset. We obtained
the cluster sizes k∗i0 for each approach and tested each cell only once to allow for clear comparisons.
We provide the effective significance level α∗ for each scenario (Table 3) based on the cluster size and
provide the number of simulations that had at least one cluster detected with corresponding standard
deviations (SDs).

Table 2. Event probabilities for the simulation scenarios.

Scenario Non-Zero Event Probabilities Q(x)

Q(1) Q(2) Q(3) Q(4) Q(5)

S1 0.600 0.400 0.000 0.000 0.000

S2 0.600 0.250 0.150 0.000 0.000

S3 0.800 0.100 0.100 0.000 0.000

S4 0.800 0.150 0.040 0.010 0.000

S5 0.919 0.066 0.014 0.001 0.001

For the scenarios with constant cell populations, the α∗’s and the SDs are the same among the three
methods. This result is to be expected, since the cluster sizes would be likely identical across the
approaches, and the numbers of events per cell would be quite stable over the simulations. Across
scenarios, the effective significance levels are close to 0.05. The effective significance levels are closer
to 0.05 for the non-constant cell situation, where the Alberta population was used. For this data situation,
the EE approach seems to perform slightly better than the CP and AN approaches for most of the
scenarios considered. All results show that the detection rate of false clusters is close to what is expected
by the significance level.

In practice, users of these methods will likely have datasets that have non-constant population sizes,
although the sizes may not be as divergent as the Alberta population. The results suggest that the EE
approach may be a better option to consider, although its computational requirements may be of concern
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if the population sizes are large and the number of events are high. The CP and AN approaches may
have computational advantages that may surpass the Type I error advantage of the EE approach.

Table 3. Simulation results for each cell size and scenario.

CP AN EE
ni Scenario α∗ SD α∗ SD α∗ SD

1000 S1 0.044 0.585 0.044 0.588 0.044 0.585

S2 0.029 0.506 0.029 0.501 0.029 0.506

S3 0.048 0.721 0.048 0.721 0.048 0.721

S4 0.042 0.584 0.042 0.588 0.042 0.584

S5 0.027 0.481 0.027 0.484 0.027 0.481

5000 S1 0.039 0.670 0.039 0.666 0.039 0.670

S2 0.036 0.590 0.036 0.595 0.036 0.590

S3 0.042 0.645 0.042 0.645 0.042 0.645

S4 0.037 0.529 0.037 0.530 0.037 0.529

S5 0.042 0.593 0.042 0.593 0.042 0.593

8000 S1 0.037 0.613 0.037 0.618 0.037 0.613

S2 0.037 0.561 0.037 0.562 0.037 0.561

S3 0.040 0.611 0.040 0.613 0.040 0.611

S4 0.039 0.604 0.039 0.603 0.039 0.604

S5 0.034 0.581 0.034 0.583 0.034 0.581

Alberta S1 0.041 0.761 0.041 0.772 0.043 0.779

S2 0.040 0.713 0.042 0.761 0.041 0.705

S3 0.041 0.862 0.042 0.881 0.043 0.863

S4 0.041 0.858 0.045 0.801 0.043 0.861

S5 0.040 0.841 0.041 0.733 0.041 0.834

The effective significance level α∗ is provided for each approach, and
standard deviations (SDs) for the scenarios are given as percentages (%).

4.2. Power Comparison

In order to perform power comparisons among the three event cluster detection methods, we picked
two of the sRHAs to be true clusters: sRHA 25 (in a rural area) and sRHA 44 (in an urban area). Using
the simulated datasets from Section 4.1, we inflated the number of events in sRHAs 25 and 44 to create
true clusters. The events were multiplied by two and 1.5 in sRHAs 25 and 44, respectively, and the
ceiling was used if the multiplication resulted in a fractional number of events. This simulation approach
allowed for a different distribution of events in the true clusters than the rest of the cells. A rate of
1.5-times higher than the overall rate is a commonly-used benchmark for urban areas. We calculated the
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power of the test for each true cluster separately as the number of simulations out of 1000 that correctly
rejected the null hypothesis at the significance level α = 0.05.

Table 4 shows the results of the power analysis. For the constant cell population sizes, both the CP
and EE approaches have higher power, while the power of the AN test is low. All tests perform better
for the true cluster that has a higher rate. In particular, the AN method almost always identifies sRHA
25 for the Alberta population scenario and almost always fails to identify sRHA 44. The EE approach
generally has higher power than the CP approach for all scenarios considered, but the extra computation
may not be warranted when it only performs slightly better.

Table 4. Estimated power of the CP, AN and EE methods for two different true clusters, for
1000 simulated datasets and for significance levels of 0.05.

sRHA25 sRHA44
ni Scenario CP AN EE CP AN EE

1000 S1 0.267 0.099 0.299 0.191 0.048 0.197

S2 0.236 0.114 0.238 0.221 0.054 0.221

S3 0.303 0.109 0.323 0.200 0.029 0.204

S4 0.338 0.093 0.355 0.198 0.047 0.211

S5 0.352 0.087 0.352 0.216 0.026 0.217

5000 S1 0.575 0.181 0.596 0.322 0.038 0.328

S2 0.592 0.213 0.598 0.354 0.041 0.358

S3 0.664 0.184 0.667 0.392 0.033 0.395

S4 0.672 0.195 0.670 0.362 0.034 0.364

S5 0.664 0.223 0.664 0.458 0.036 0.463

8000 S1 0.706 0.201 0.708 0.411 0.033 0.422

S2 0.682 0.239 0.686 0.432 0.043 0.440

S3 0.774 0.242 0.776 0.481 0.043 0.486

S4 0.791 0.235 0.791 0.487 0.036 0.488

S5 0.797 0.264 0.798 0.587 0.039 0.590

Alberta S1 0.997 0.976 0.998 0.621 0.081 0.622

S2 0.993 0.965 0.993 0.569 0.081 0.582

S3 0.999 0.976 0.999 0.634 0.080 0.647

S4 1.000 0.986 1.000 0.650 0.071 0.650

S5 1.000 0.993 1.000 0.742 0.070 0.743

5. Discussion

The statistical cluster detection literature focuses on the detection of clusters of disease, and relatively
few methods have been introduced to examine clusters of disease-related events, where the diseased cases
may have multiple disease-related events. We have provided a comparison of three different event cluster
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detection methods. Each method follows the same overall testing scheme with different distributional
assumptions: compound Poisson (CP), approximate normal (AN) and multiple hypergeometric (exact,
EE). We used a testing algorithm adapted for each method. Our examination included an analysis on ED
presentations for substance use in Alberta and a simulation study.

The CP method identified 23 potential clusters of ED presentations for substance use in Alberta
children and youth during the fiscal year 2007/2008. The potential clusters were identified as clusters
on their own or when combined with a small number of nearest neighbours. The other two methods
identified slightly fewer potential clusters, and this result may be related to the probability in the tail of the
relevant distributions. Based on this application, the CP method provides a greater number of potential
clusters, although it is yet to be determined if these potential clusters are real or spurious (e.g., due to
other potential factors that vary with sRHA, but are not adjusted for in the analysis). In real clusters,
the areas identified in the less urbanized areas may indicate greater substance use or less availability of
other health services. In the less urbanized areas, individuals may not be geographically close to health
services or programs and may seek the ED for care. Particularly in the northwestern area of the province,
there is a large geographic area and a relatively sparse population. Further investigation would be needed
to determine potential causes of seemingly high numbers of ED presentations for substance use.

We conducted simulation studies to examine the likelihood of falsely detecting clusters. The
simulation studies had different event probability distributions and different cell sizes that were either all
the same or followed the population of Alberta. All three approaches had effective significance levels that
were close to the specified level of 0.05. The methods seemed to be closer to 0.05 for the non-constant
cell population setting, and in that setting, the EE approach had effective significance levels that were
the closest to 0.05, compared to the other approaches for most scenarios.

We also used these simulation studies to perform a power investigation using two single-cell true
clusters. In all situations, the CP and EE approaches were better than the AN approach. The AN approach
was highly sensitive to the cell population sizes and performed well when population sizes were larger,
and the true cluster had twice the rate of events. The AN approach would be best suited for finding
clusters with high rates compared to the background. The CP and EE approaches also performed better
for higher population sizes and higher rates. The EE approach was slightly better than the CP approach,
but it is more computationally intensive and the benefit relatively small. Based on these results, the
CP approach would be recommended for use, and like all clustering methods, clusters are more easily
detected for higher rates and larger population sizes.

All methods used analogous cluster size testing algorithms. A benefit of the approach is that cluster
sizes can be specific to each tested cell, which is important for geographic areas with diverse population
sizes. A drawback of the approach is that each cell may be potentially tested at several sizes, thus
increasing the multiple testing problem. It is noted though that the Monte Carlo simulations for the
overall p-value use the same testing algorithm, and thus, the overall p-value is adjusted for multiple
testing. Another benefit of the testing algorithm is that it allows the minimum cluster size to achieve
statistical significance. For discrete distributions, this minimum may provide a number that is lower
than the desired 0.05 significance level. With some differences in the distributions chosen, there is some
variability in how close to 0.05 the p-values can be.
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These methods use pairwise distances and a nearest neighbor ordering. Most of the calculations only
involved the first few neighbors. This aspect provides advantages in the sense that the distances do
not have to be precisely known, and the simulation studies would be applicable to other geographies,
where the nearest neighbor ordering was the same. These aspects make our simulation results more
generalizable to other geographic areas.

The limitations of our study include the necessity to pick a cluster size (or maximum number of
cluster sizes to test) and the specification of scenarios for our simulation study. The testing algorithm
allows the cluster sizes to be less sensitive to user choice, but still require the user to decide the maximum
number of cells to combine as part of the selection of tested cluster sizes. This choice makes the results
from the different methods a little less easy to compare, because the tested cluster sizes may be different
among the three methods. It is also difficult to provide scenarios for the simulation study that correspond
to every real data situation. The few scenarios presented provide the flavour of the behaviour of the
methods under different conditions, and the performance may be not be illustrative for a particular data
situation. In addition, we did not examine the power of the methods.

Our study does provide guidance to potential users of these three methods of the cluster detection
of events. In the absence of strong distributional assumptions, the EE method may be the best for
users to consider. Sensitivity analyses could also be done with the other distributions and would likely
show similar results. In terms of health surveillance and policy, at least one of these methods could be
included as part of a routine surveillance program of health-related events, such as ED presentations.
If a geographic area has higher events than expected, it could be targeted for further investigation
and/or intervention.
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