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Abstract: The use of sensor technologies is standard practice in the domain of precision
farming. The variety of vendor-specific sensor systems, control units and processing software
has led to increasing efforts in establishing interoperable sensor networks and standardized
sensor data infrastructures. This study utilizes open source software and adapts the standards
of the Open Geospatial Consortium to introduce a method for the realization of a sensor data
infrastructure for precision farming applications. The infrastructure covers the control of
sensor systems, the access to sensor data, the transmission of sensor data to web services
and the standardized storage of sensor data in a sensor web-enabled server. It permits
end users and computer systems to access the sensor data in a well-defined way and to
build applications on top of the sensor web services. The infrastructure is scalable to large
scenarios, where a multitude of sensor systems and sensor web services are involved. A
real-world field trial was set-up to prove the applicability of the infrastructure.
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1. Introduction

The use of sensor technologies is more and more applicable in agriculture nowadays. In the
domain of precision farming (PF), it is an inevitable aid for the generation of site-specific spatial and
temporal information to support crop management strategies [1–3]. Within the last decade, several
agricultural machinery and sensor construction companies have established a multitude of sensor
systems for sensing soil- and plant-related parameters, as well as for sensing environmental impact
factors, influencing the development of the cultivated plants [3]. Most of these sensor systems are
designed for: (i) stationary use, e.g., soil moisture sensing networks [4,5]; (ii) hand-held use, e.g.,
fluorescence and hyper-spectral reflection sensors [6]; or (iii) mobile use on ground-based sensor
platforms, e.g., fluorescence, hyper-spectral reflection and ultrasonic sensors, which are mounted on
tractors [7–10]. Recent development added the possibility for (iv) mobile use on aerial sensor platforms,
e.g., camera systems, which are mounted on unmanned aerial vehicles (UAVs) or unmanned aircraft
systems (UASs) [11–13].

Most of these sensor systems are operated with vendor-specific control units, user interfaces and
communication protocols. As this varies from sensor system to sensor system, using sensors from
different vendors may quickly lead to complex, inconsistent and time-intensive procedures for sensor
data storage, processing and distribution. Moreover, many sensor systems are integrated into decision
support systems for site-specific online and offline applications and are implemented on tractor terminals,
e.g., the Yara N-Sensor (Yara International ASA, Germany) and the GreenSeeker (NTech Industries
Inc., Ukiah, CA, USA). Raw data access is not guaranteed in all circumstances, and users are
commonly bound to vendor-specific processing routines in order to retrieve and analyze the collected
sensor measurements.

To overcome this lack of standardized procedures for sensor control and access, as well as for sensor
data encoding and distribution, Nash et al. [14] suggest utilizing standards from the Open Geospatial
Consortium’s (OGC) initiatives to automate agricultural sensor data processing. The OGC Sensor Web
Enablement (SWE) initiative bridges the gap between sensors and processing applications, providing
a suite of standards “[...] to enable all types of Web and/or Internet-accessible sensors, instruments,
and imaging devices to be accessible and, where applicable, controllable via the Web” [15]. It consists
of several definitions of “sensor related data in a self-describing and semantically enabled way” [16].
SWE, therefore, can be utilized as the basis for a sensor web, an infrastructure that hides the underlying
architecture, the network communication mechanisms and the heterogeneous sensor hardware from the
applications built on top [17]. Although most realizations of a sensor web originate in other fields of
research and for large-scale scenarios, e.g., oil spill disasters [18], flood management [19] or general risk
management [20], recent studies proved the adaptability for the agricultural domain, operating in even
smaller contexts [21].

The first implementations for stationary wireless sensor networks (WSNs) proved the potential of
this idea for precision agriculture. Some researchers describe improved concepts for decision making
processes in agriculture by connecting WSNs with web services as part of a spatial data infrastructure
(SDI), building on the SWE specifications [22–24]. Other researchers developed applications, based
on these web services, e.g., for online spraying operations, utilizing a web feature service (WFS)
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on-the-fly [25]. Having a magnitude of possibilities to combine stationary and mobile, ground-based
and aerial, as well as temporary and permanent sensor systems, current sensor networks have become
more and more complex. As a consequence, the connection of sensor systems and entire sensor networks
with a sensor web needs to be as flexible as possible to facilitate the integration of sensor data into web
services and applications.

This study provides a simple, but effective method to embed various sensor systems into a sensor web
approach, making their data accessible for applications using well-defined and interoperable standards
of the OGC SWE initiative framework. The idea for establishing this method originates from the
various field experiments, which were conducted at the agricultural research stations of the University
of Hohenheim, Stuttgart, Germany. Many of these experiments involve sensor measurements, but lack
a general work flow with standardized mechanisms for the control and access of sensors, as well as the
storage and processing of their data. The authors show how to utilize open source software, provided by
the 52◦ North Initiative for Geospatial Open Source Software GmbH (52◦ N), and adapt it to the needs of
PF. A field trial environment was set-up to verify the method in a real use-case scenario for the adoption
of SWE for PF-sensing.

2. Materials and Methods

This section gives background information about the principles and the implementation of an actual
agricultural sensor infrastructure. The focus was set to publish sensor data to a remotely-distributed
SWE infrastructure and make it accessible for researchers and user applications in a well-defined way.
The sensor infrastructure of this study was based on the recommendations of Bröring et al. [18], who
described the implementation of an extended sensor infrastructure stack. The infrastructure stack is
shown in Figure 1 and will be explained in the following.

Sensor Layer Sensor Integration

Layer

Sensor Web

Layer

Application 

Layer

Figure 1. The extended sensor infrastructure stack as introduced by Bröring et al. [18].
It is based on three main layers for: (i) sensor control and communication (sensor layer);
(ii) Sensor Web Enablement (SWE) services as part of a sensor web (sensor web layer); and
(iii) end users and computers (application layer), which build applications on top of the SWE
services. A fourth layer is an intermediary integration layer, facilitating the connection of
sensors and services (sensor integration layer).
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The extended sensor infrastructure stack is based on three main layers and one integration layer,
covering all levels from sensor measurements to end-user applications. The sensor layer is the lowest
level layer, managing the communication within sensor networks. It consists of the different sensor
devices and one or several data acquisition systems (DAS), to control and access all sensor systems
on-the-fly. The sensor integration layer is an intermediary layer between sensors and SWE services. Its
idea is to establish an infrastructure that connects sensor web services, requesting specific sensor data,
with sensors, delivering exactly the requested data, on-the-fly [26]. The sensor web layer consists of
one or a multitude of SWE services. Each service is defined for special purposes, e.g., the sensor event
service (SES), which offers a web interface to publish and subscribe to notifications from sensors [27],
or the sensor observation service (SOS), which offers the discovery and retrieval of real-time or archived
data, produced by any kind of sensor system [28]. The application layer is the highest level layer, where
users or computer systems interact with the SWE services.

This study proposes an infrastructure that consists of a sensor layer, a sensor integration layer and a
sensor web layer. An application layer was not part of this study. The following paragraphs give insight
into the implementation of these layers.

2.1. Sensor Layer

The sensor layer represents the lowest level layer of the proposed infrastructure. It was set-up by
four different sensor systems and a DAS, to control and access the sensor systems. Communication was
enabled by a 2.4-GHz wireless local area network (WLAN) and a 3G mobile Internet connection.

2.1.1. Sensor Systems

The sensor layer involved: (i) a stationary HYT221 weather sensor (HYT221, IST AG, Wattwil,
Switzerland) for measuring temperature and relative humidity; (ii) a stationary MMS1 NIR enhanced
spectrometer (HandySpec Field, tec5 AG, Oberursel, Germany) for the registration of incident solar
radiation; (iii) a tractor, equipped with a Multiplex fluorescence sensor (Multiplex, FORCE-A, Orsay,
France) for the detection of within-field plant health; and (iv) Hexe, a prototype UAS, equipped with
a PiCam RGB camera (Raspberry Pi Camera, Raspberry Pi Foundation, Caldecote, Cambridgeshire,
UK), a self-assembled multi-spectral camera (D3, VRmagic Holding AG, Mannheim, Germany) and an
MMS1 NIR enhanced spectrometer, for the detection of plants’ spectral parameters [29]. The HandySpec
sensor system was operated by a consumer notebook, which also served as the processing unit for the
DAS. All other sensor systems were operated by individual Raspberry Pi Model B computers (Raspberry
Pi Foundation, Caldecote, Cambridgeshire, UK), which were equipped with wireless adapters to enable
communication with the DAS (see Figure 2).

All sensor systems were geo-referenced. The stationary sensor systems were placed at well-known
locations, whereas the mobile platforms were equipped with a Global Navigation Satellite System
(GNSS) to track their locations on-the-fly. The sensors were controlled by self-developed software
routines, implementing vendor-specific application programming interfaces (APIs). The software
routines were executed on the Raspberry Pi control units and the notebook.
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Figure 2. Overview of the sensor systems involved in the sensor layer. From left to right:
Hexe (unmanned aircraft system (UAS)), Multiplex fluorescence sensor (tractor), HYT221
weather sensor (weather) and HandySpec Field spectrometer with base station (radiation).

2.1.2. Data Acquisition System

As DAS software, the authors chose the java-based and open source software framework “Sensor
Platform Framework” (SPF, https://wiki.52north.org/bin/view/SensorWeb/SensorPlatformFramework).
Its main purpose is to gather and, if needed, interpolate sensor data based on a periodic time interval or
the availability of certain observations. Its generic architecture supports the inversion of control (IoC)
design, offering extension points, which act as interfaces for input and output plugins [30].

Every connection of a sensor system with the DAS was realized by implementing an individual
input-plugin and a plugin description document. As all sensor control units and the DAS share the same
network, the input-plugins were configured: (i) to establish a network connection to the appropriate
sensor control unit; (ii) to send configuration parameters; and (iii) to request sensor observations (see
Figure 3).

The plugin description document describes the plugin’s interpolation behavior, the sensor’s
observations and its meta data. The meta data were encoded in SensorML, a sensor description language,
which is specified by SWE and used to describe sensors and processes [31]. Table 1 lists the most
important parameters of each input plugin.

On the output plugins’ side, three output mechanisms were of interest: a visual control of the
geo-referenced sensor observations, a mechanism to forward the sensor observations into the sensor web
and a simple data logger in case the DAS is disconnected from the sensor web. All of these mechanisms
have already been established in three different output plugins, which can be downloaded from the
52◦N website and are displayed in Figure 3. Visualization was done by the “SensorVis—Real Time
Sensor Visualization” (https://wiki.52north.org/bin/view/SensorWeb/SensorVis) plugin, which allows
live visualization of sensor data based on a 3D virtual globe environment [32]. Logging was realized
using a slightly adapted version of the “File Writer Plugin”, which is part of the standard SPF packages.
As the forwarding mechanism, the “Sensor Bus Output Plugin”, also distributed within the standard SPF
packages, was used. It implements a sensor adapter for a logical bus for the standardized connection of
sensor data and SWE services, which will be explained in the following paragraphs [18,26].

https://wiki.52north.org/bin/view/SensorWeb/SensorPlatformFramework
https://wiki.52north.org/bin/view/SensorWeb/SensorVis
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Figure 3. Overview of the input and output plugin architecture of the Sensor Platform
Framework (SPF), which serves as the data acquisition system (DAS). Four input plugins
were implemented to control and access all sensor systems individually. The Raspberry
Pis and the notebook serve as control units, implementing vendor-specific sensor protocols.
DAS and control units communicate with each other either through wireless (dashed lines)
or wired connections (solid lines). Three output plugins were implemented for: (i) the
live-visualization of sensor observations during measurement; (ii) for the local logging of
received sensor data; and (iii) for the forwarding of the sensor data into the sensor bus.
Visualization and logging were performed on the notebook, running the DAS. Forwarding
data into the sensor bus was realized via a mobile Internet connection.
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Table 1. Summary of the the sensor systems’ observations, specified in the input plugins.

Sensor System Sensors Observations

Hexe

GNSS Lon, Lat, Alt
IMU Nick, Roll, Yaw
MMS1 NIR enhanced 256 reflection values
PiCam RGB Image identifier
VRmagic Camera Image identifier

Tractor
GNSS Lon, Lat, Alt
Multiplex 6 fluorescence indices

Weather
Preset location Lon, Lat, Alt
HYT221 Relative humidity

Temperature

Solar Preset location Lon, Lat, Alt
Radiation HandySpec 256 radiation values

2.2. Sensor Integration Layer

The authors chose the sensor bus to serve as the sensor integration layer in between sensor systems
and remotely-connected sensor web services (see Figure 4). Although it is designed to enable a sensor
plug and play infrastructure for a sensor web by incorporating semantic matchmaking functionality,
a publish/subscribe mechanism and a generic driver mechanism [18], the available sensor bus output
plugin is limited to messaging, based on the sensor bus protocol [26]. Therefore, matchmaking,
publish/subscribe and driver issues were handled manually.

A driver mechanism to control and access the connected sensors was implemented for every SPF input
plugin, individually. The sensor bus plugin was configured to publish all sensor data, gathered by the
SPF, into an Extensible Messaging and Presence Protocol (XMPP) chat channel, which ran as ejabberd
(https://www.ejabberd.im) software on an Internet-connected server at the University of Hohenheim (see
Listing 1). The chat message format follows the sensor bus protocol specifications and offers a simple
solution to distribute sensor data to a remote SWE service.

A sensor bus service adapter was implemented to forward the observations from the sensor bus to an
SOS. It was realized as a python program. It subscribed and listened to the XMPP chat channel, which
contained the published sensor data (see Listing 1). The service adapter was designed to parse the sensor
data from the sensor bus protocol format to an SOS request Extensible Markup Language (XML) format.
Related sensor observations were assembled and grouped following the predefined SensorML profiles.
Subsequently, an InsertObservation request was composed to add the observations to the SOS [28]. The
InsertObservation request is part of the transactional operations SOS profile. This optional transactional
profile allows clients to register new sensors (InsertSensor) and add observations. Observations in the
request are encoded in accordance with the Observations and Measurement (O&M) schema, a standard
to describe all observations of a sensor system [33].

https://www.ejabberd.im
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Listing 1: Exemplary listing of a sensor bus message, published by the HYT221 weather station.
The sensor adapter broadcasts a message to register the sensor (SensorRegistration) and publishes all
available sensor observations (PublishData), consequently.
(10:11:58) spf_user2: SensorRegistration>urn:sengis:id:HYT221>urn:sengis:id:HYT221 (stationary platform) connected via SPFramework>
urn:sengis:id:HYT221>
firstCoordinateName<latitude<secondCoordinateName<longitude<thirdCoordinateName<altitude>urn:ogc:def:crs:EPSG::4326>0.0>0.0>0.0>
humidity<%<altitude<m<longitude<deg<latitude<deg<temperature<Cel>SensorRegistration
(10:11:58) spf_user2: PublishData>urn:sengis:id:HYT221>2014−06−27T10:11:57.355+01:00>class java.lang.Double>36.2>humidity>
(10:11:58) spf_user2: PublishData>urn:sengis:id:HYT221>2014−06−27T10:11:57.355+01:00>class java.lang.Double>485.234>altitude>
(10:11:58) spf_user2: PublishData>urn:sengis:id:HYT221>2014−06−27T10:11:57.355+01:00>class java.lang.Double>8.9221>longitude>
(10:11:58) spf_user2: PublishData>urn:sengis:id:HYT221>2014−06−27T10:11:57.355+01:00>class java.lang.Double>48.7450>latitude>
(10:11:58) spf_user2: PublishData>urn:sengis:id:HYT221>2014−06−27T10:11:57.355+01:00>class java.lang.Double>18.54>temperature>

XMPP  

Sensor Bus Protocol

Sensor

Layer

Sensor Web 

Layer

Sensor Integration

Layer

Figure 4. Overview of the sensor bus architecture, which is designed to facilitate the
communication of sensor systems and SWE services. Any kind of sensor adapter can
register to the bus and publish its sensor data according to the sensor bus message protocol.
For subscription and receiving of sensor data, any kind of SWE services can register a
service adapter, listening to the sensor bus. The architecture is scalable to scenarios where a
multitude of sensor systems and SWE services participate.
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2.3. Sensor Web Layer

The sensor web layer consists of an SOS. It is the most common SWE service and it was used in this
study in its 52◦ N SOS 4.1 (https://wiki.52north.org/bin/view/SensorWeb/SensorObservationServiceIV)
implementation, exclusively. It was set-up on a server, running at the University of Hohenheim. It offers
a web interface for publishing operations, e.g., GetCapabilities, GetObservation and DescribeSensor,
on the one hand, and for transactional operations, e.g., InsertSensor and InsertObservation, on the other
hand. It builds on the technical frameworks of an Apache Tomcat 7 (http://tomcat.apache.org/
tomcat-7.0-doc) servlet container, a PostgreSQL 9.3 (http://www.postgresql.org/docs/9.3) Database
Management System (DBMS) and a PostGIS 2.1 (http://postgis.net/2013/08/17/postgis-2-1-0) support
for geographic objects.

Based on the SensorML descriptions of every input plugin, each sensor system was registered
once using the InsertSensor operation. After having registered the individual sensors, the sensor bus
service adapter was able to perform InsertObservation operations on-the-fly, using the Service-Oriented
Architecture Protocol (SOAP).

2.4. Field Trial

A typical PF field experiment served as test-bed for the proposed infrastructure. The field trial was
conducted on 27 June 2014 and in clear skies in a field of winter-wheat (Triticum aestivum L.), located
at Ihinger Hof (48.74◦N, 8.92◦E), a research station of the University of Hohenheim. The trial’s aim
was the acquisition and storage of sensor observations: (i) locally, on a notebook, running the DAS; and
(ii) remotely, on an Internet-connected SOS.

The sensor systems were mounted on ground, on a tractor and on a UAS. The tractor and the UAS
were configured to follow a predefined route in the field, whereas the weather station and the solar
radiation sensor were set-up at fixed locations at the field’s border. The consumer notebook, running
the DAS, was set-up at the solar radiation sensor’s location, together with a 2.4-GHz WLAN access
point and a 3G mobile Internet connection, realized by mobile phone tethering. All sensor systems were
operated simultaneously with a sampling interval of 1 Hz during a measurement period of approximately
6 min. Observation pull-requests were performed at the same rate via the 2.4-GHz WLAN connection.
A maximum distance of 180 m in between the sensor system and notebook was reached by the UAS.
The UAS covered a total area of 180 × 36 m.

Visualization and logging of the received observations took place on the notebook. Moreover,
broadcasting was performed by the sensor bus plugin via the mobile Internet connection. The sensor
bus messaging infrastructure was implemented as an ejabberd XMPP service on an Internet-connected
server at the University of Hohenheim. In addition, this server hosted the SOS, as well as the sensor bus
service adapter, which was listening to incoming messages of the XMPP chat channel. Figure 5 gives an
overview of the complete infrastructure with a UAS observation example.

https://wiki.52north.org/bin/view/SensorWeb/SensorObservationServiceIV
http://tomcat.apache.org/tomcat-7.0-doc
http://tomcat.apache.org/tomcat-7.0-doc
http://www.postgresql.org/docs/9.3
http://postgis.net/2013/08/17/postgis-2-1-0
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Figure 5. Sequence diagram of the processing of an exemplary UAS observation from
acquisition to storage on an Internet-connected SOS (lower half). The upper half gives
information about the realization of the different components of the infrastructure.

3. Results and Discussion

The infrastructure proved its ability to control all sensors, to access and forward their data and to
store them in a well-defined, standardized SOS. The field trial showed that this sensor infrastructure is
applicable to PF scenarios, although some hurdles still exist.

3.1. Sensor Layer

Despite having two connection losses of approximately 10 s due to instabilities of the WLAN,
the sensor layer behaved as expected. Under stable network conditions, all sensor systems could be
controlled flawlessly. Their data could be accessed by the DAS and forwarded to the sensor integration
layer. The mobile Internet connection was stable throughout the whole test.

Intensive work had to be invested in the programming of the control unit software of all sensor devices.
The software was designed to keep the sensors remotely controllable and accessible via network socket
communication. Every software implementation had to cope with sensor-specific drivers and protocols.
Although most sensor vendors offer APIs for software developers, some sensor protocols still have to be
implemented by one’s self, e.g., the Spectral Device Control and Transfer Protocol (SDCTP) for network
control of the MMS1 NIR enhanced spectrometer. A generic driver mechanism, e.g., the sensor interface
descriptor (SID) model, could overcome this intensive labor [34].

The SPF, which was used as DAS, served its purpose to integrate all sensor systems. Nevertheless,
implementing correct input plugins and plugin descriptions had to be done carefully. Each input plugin
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was programmed to connect to a specific network socket to communicate with its according sensor
control unit. Sensor data access was implemented with 1-Hz pull requests, which worked reliably,
apart from two times of network instability. For configurable sensors, sensor control was realized via a
graphical user interface (GUI). Sensor descriptions were realized in a standardized way with SensorML,
defining the sensors’ characteristics as part of a plugin description document. Moreover, the description
document was used to specify the input plugins’ interpolation behavior, as well as the input and output
of observations. The output plugins worked as expected. Once registered for use, the visualization
plugin was able to display all observations from every sensor on-the-fly (see Figure 6). The logging
plugin logged all incoming observations to a .csv file. The size of the .csv file summed up to 1.3 MB
during 6 min of measurement. The sensor bus output plugin worked flawlessly. It parsed the incoming
observations to the sensor bus protocol format and forwarded the data into the XMPP chat channel.

The sensor layer implementation proved its practicability. A stable network and Internet connection
is essential for this architecture. Despite potentially missing some of the sensed data due to unpolled
pull mechanisms, instabilities may be also critical for near real-time applications in scenarios where data
acquisition, data processing and application are performed online.

Figure 6. Example of the SPF “SensorVis” output plugin [32] live-visualization of Hexe, a
UAS sensor system, operating during the field trial. On the left side, visualization parameters
can be selected and configured, depending on the available sensor observations. On the right
side, the flight path and the selected sensor observation values are visualized by colored
spheres, i.e., indicating the received flight altitude information.

3.2. Sensor Integration Layer

The sensor integration layer was restricted to the sensor bus messaging mechanism, due to the limited
functionality of the sensor bus output plugin. It was able to connect to the chat channel and broadcast
all sensor data, collected by the DAS. Instead of broadcasting complete raster datasets, e.g., images, the
captured raster data description was restricted to short image identifiers. As a consequence, all sensor
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datasets could be transmitted through the wireless Internet connection. The data transfer to the XMPP
service was not encrypted. Generally, transfer encryption is desirable and available (transport layer
security, TLS). If the channel communication should be kept private, it can be restricted to certain users
and password authentication.

As this study utilizes only one sensor adapter and one service adapter, the sensor bus architecture is
not exploited in all of its possibilities. Nevertheless, the introduced infrastructure offers the scalability of
the sensor bus concept. It can be adapted to a multitude of sensor adapters and service adapters, e.g., for
multiple SOS and SES, located at different institutions. Moreover, as it is a logical concept, messaging is
not restricted to XMPP and can be replaced or extended by other communication protocols, e.g., Twitter
and Internet Relay Chat (IRC) [18]. To enable sensor plug and play, mediating, publish/subscribe and
driver mechanisms still have to be implemented.

3.3. Sensor Web Layer

The sensor web layer performed well. The Apache Tomcat server, as well as the PostgreSQL/PostGIS
DBMS were installed smoothly, following the documented standard installation routines. The SOS
package was delivered as a self-extracting file for the servlet container. The installation worked as
expected. All needed databases were created automatically after SOS configuration. The SOS supported
all operations of the implemented SOS service adapter. Here, InsertSensor and InsertObservation
were used.

4. Conclusions

This work proved the applicability of the OGC SWE initiative framework definitions for the set-up of
a sensor data infrastructure for PF applications. The proposed infrastructure guarantees a standardized
collection and storage of spatio-temporal agricultural sensor data, accessible by SWE services and user
applications. It is based on open source software, offering the possibility to deploy numerous sensor
systems and SWE services. The DAS provides a consistent method for the control, access and forwarding
of sensor observations. The sensor bus concept is scalable to more complex scenarios involving a
multitude of sensor systems, DAS and SWE services. The implemented SOS is a first step towards a
service-oriented architecture, based on further web services and OGC standards, offering functionalities
of a holistic SDI for PF. In an SDI, web clients act as interfaces in between stored sensor data and a
user, realizing the application layer of the infrastructure stack. It can be applied to machinery and sensor
systems on the farm scale or be extended with data services offered by external parties. Moreover, as
observations acquired by mobile or stationary systems share the same infrastructure, the applications and
work flows built on top of it can themselves be built for mobile or stationary devices. Future research
will be concentrated on establishing such an SDI for standardized sensor data distribution, processing
and analysis in the PF domain.
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