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Abstract: Big geospatial data are archived and made available through online web discovery and
access. However, finding the right data for scientific research and application development is still
a challenge. This paper aims to improve the data discovery by mining the user knowledge from
log files. Specifically, user web session reconstruction is focused upon in this paper as a critical
step for extracting usage patterns. However, reconstructing user sessions from raw web logs has
always been difficult, as a session identifier tends to be missing in most data portals. To address
this problem, we propose two session identification methods, including time-clustering-based and
time-referrer-based methods. We also present the workflow of session reconstruction and discuss
the approach of selecting appropriate thresholds for relevant steps in the workflow. The proposed
session identification methods and workflow are proven to be able to extract data access patterns
for further pattern analyses of user behavior and improvement of data discovery for more relevancy
data ranking, suggestion, and navigation.

Keywords: web usage mining; session identification and reconstruction; crawler detection; semantic
search; data discovery

1. Introduction and Literature Review

We are in the era of “Big Data”. Spatiotemporal data, which contains both spatial and temporal
information, such as satellite imagery captured through remote sensors, climate projections generated
from large scale simulations and geospatially tagged social media data, are ever increasing [1].
However, recent advances in remote sensing satellites and other sensors have made spatiotemporal
data growing even faster. All these developments are leading to an increase in volume, velocity,
and variety of spatiotemporal data and pose a grand challenge to researchers for both discovering
and accessing such data for research and decision support applications. In response, a number of
Spatial Data Infrastructure (SDI) components (e.g., catalogues and portals) have been developed [2,3].
For example, Common Metadata Repository (CMR) is developed by NASA to enable the science
community to more easily use and exchange NASA’s data and services. In reality most SDIs are still
using a keyword-based search, one of the most rudimentary methods of information retrieval, using
the notion of exact matching to match documents to a user query. The keyword-based search inherits
the most common information retrieval problems: synonymy and polysemy [4].
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Semantic search offers a solution to overcome the problems by understanding users’ intent and
the contextual meaning of terms using the knowledge base, also called ontology [5]. An effective and
robust semantic knowledge base is difficult to build as it is very cost intensive to keep up-to-date as
domains change. Meanwhile, the remarkable success of web usage mining in website personalization,
system improvement, and business intelligence [6,7], provides the valuable patterns (e.g., keywords
and datasets relationship) underneath users’ browsing behavior on data portals. In this regard,
we propose an approach to mine these patterns to construct a semantic base in a more effective and
efficient manner.

Our goal is to mine users’ search and usage patterns to improve the data discovery process,
which includes mining the knowledge and applying this user knowledge in data discovery. This paper
focuses on the prior step of a novel technique for revealing the intent of user searches. Prior to
extracting user knowledge (e.g., latent semantic relationship between search terms) from a massive
amount of data access logs, a necessary and critical step would be reconstructing users’ searching and
browsing behaviors by eliminating noise, identifying human users as opposed to machine users or
crawlers, as well as connections between each individual request. As an important step, web session
reconstruction is the main focus of this paper to lay the groundwork for further analysis. Research on
the later steps of what could be done based on the session reconstruction results are also discussed
in Section 6.

First, all activities performed by the same person should be grouped together. Second, all activities
belonging to the same visit should be placed into the same group [8]. According to W3C (W3C Web
Usage Characterization Activity 1999), user session refers to the group of activities performed by a
user from the moment he or she enters the site to the moment he or she leaves the site. To keep track of
user activities, many websites adopt session identifier in their network communication to ensure the
current state of user is not lost when using a stateless protocol such as HTTP. However, in most cases,
this piece of information is not available. Several user identification approaches are devised to address
this problem, and they generally fall into two categories of time-based heuristics and referrer-based
heuristic. Two variations of time-based heuristics and a basic referrer-based heuristic are given below:

‚ h1: Total session duration may not exceed a threshold α. Given t0, the timestamp for the first
request in a constructed session S, the request with timestamp t is assigned to S, if t ´ t0 ď α.

‚ h2: Total time spent on a page may not exceed a threshold α. Given t1, the timestamp for request
assigned to constructed session S, the next request with timestamp t2 is assigned to S, if t2 ´ t1 ď α.

‚ href: Given two consecutive requests p and q, with p belonging to constructed session S. Then q is
assigned to S, if the referrer for q was previously invoked in S.

Traditional time-oriented heuristic based on an empirical and fixed timeout [9] is a significant
topic. Commonly used time thresholds for h1 and h2 are 30 and 10 min, respectively [10]. The main
argument is that the timeout threshold should be site-specific and depend on website structures and
user groups. For instance, Jones and Klinkner found the 30 min threshold performed “no better than
random” in the context of identifying search tasks [11]. Some papers mentioned that the threshold
could be determined by using website usage statistics [12], but none of them explicitly addressed this
in detail. To fill this gap, we present both the theory and practice of selecting an appropriate threshold
for time-based heuristics method in this article.

It has been argued that (1) different users’ browsing speed varies from one to the other; (2) even for
the same user, he or she could spend different times on different pages. Some dynamic heuristic have
been introduced to deal with this problem with certain limitations [9]. The idea behind clustering-based
heuristic is that session identification could essentially be considered as a clustering problem on one
dimension, i.e., time. Driven by this concept, we adopted clustering analysis to automatically detect the
session break, rather than using a fixed threshold. However, the number of clusters is usually unknown
before the clustering process, which makes it difficult to apply common clustering algorithms such as
the k-means clustering method. To avoid assigning a cluster number in the beginning, we developed a
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hierarchical clustering method, also known as cluster-based heuristics, to build a hierarchy of clusters
on time dimension.

A referrer-based heuristic shows poor performance on sites with framesets due to implicit
assumptions about web architecture [8]. The sheer complexity of this strategy and its developmental
focus on task over session make it unsuitable as a replacement for time-oriented heuristics in practical
web analytics of user sessions [13]. Specifically, the first significant problem is that it only focuses on
the task rather than session and tends to generate many short sessions in some cases, where a user
performs several tasks in a certain session but starts from the first page for each individual task. On the
other hand, there is a chance that several short sessions could be merged into an unreasonably long
session when random events such as making phone calls or having lunch breaks happen and the web
page is left open during their absence. To address this challenge, we developed a time-referrer-based
heuristic by introducing a time threshold in the existing referrer-based heuristic.

Most work in this area presents their session reconstruction result with a simple table [14–16].
This presentation method makes it difficult for users and researchers to analyze the session structure.
There is also difficulty in applying and integrating each individual technique because in reality
some techniques are performed at different processing stages. For example, crawler detection is
partially performed before session identification and the rest is done after session identification.
In addition, it is typical that the content served to users comes from multiple servers in a large-scale
web system [17]. In order to keep track of users’ “inter-site” browsing behavior, it is essential to conduct
global synchronization across different servers [18]. In the absence of user and session identifiers,
referrer-based heuristic is usually used to build connection between different HTTP logs [19]. However,
none of them address the issue of connection between HTTP log and FTP log, which does not contain
referrer and user-agent information. Therefore, we describe the workflow of session reconstruction
from data import to resulting visualization and also highlight the synchronization of logs from
multiple servers.

2. Data Format and Preparation

2.1. Web Log Format

The Common Log Format is the most widely used log format maintained by W3C. It has a
number of fields including client IP address, request date/time, page requested, HTTP code, and bytes
served (W3C Extended Log File Format, Table 1). Another popular format is the Combined Log
Format that is the same as the Common Log Format except with the addition of two more fields: user
agent and referrer (Table 1). The user agent is the identifying information that the client browser
reports itself. The referrer tells where the request originated [20]. Similarly, properties included in FTP
log format are date, transfer-time, remote-host, file-size, filename, transfer-type, special-action-flag,
direction, access-mode, username, service-name, authentication-method, authenticated-user-id,
and completion-status [21] (Table 2). What makes FTP log different from HTTP log is that FTP
log does not contain referrer and user-agent information.

Table 1. Sample HTTP log data in Combined Log Format.

<IP> - - <Date> <Method> <Request> <Protocol> <Code> <Bytes> <Referrer> <User-agent>

68.180.228.99 - - [31/Jan/2015:23:59:13 -0800] "GET /datasetlist/... HTTP/1.1" 200 84779 "-" "Mozilla/5.0 ..."
185.10.104.195 - - [31/Jan/2015:23:59:19 -0800] "GET /datasetlist/... HTTP/1.1" 200 83486 "-" "Mozilla/5.0 ..."
185.10.104.196 - - [31/Jan/2015:23:59:25 -0800] "GET /datasetlist... HTTP/1.1" 200 84357 "-" "Mozilla/5.0 ..."
198.118.243.101 - - [31/Jan/2015:23:59:37 -0800] "GET /dataset/... HTTP/1.0" 200 117223 "-" "gsa-crawler..."
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Table 2. Sample FTP log data in FTP Log Format.

<Date > <Transfer-time > <IP > <File-size > <File-name > <Transfer-type >_< Transfer-direction >
< Access-mode > < User-name >< Service > < Authentication-method >*< Completion-status >

Mon Feb 16 23:43:29 2015 1 66.249.65.134 698872 /allData/... b _ o a lftp@ ftp 0 * c
Mon Feb 16 23:43:29 2015 1 130.54.59.5 103307 /allData/... b _ o a lftp@ ftp 0 * c
Mon Feb 16 23:43:30 2015 1 130.54.59.5 103455 /allData/... b _ o a lftp@ ftp 0 * c

Mon Feb 16 23:43:30 2015 1 66.249.65.142 168421 /allData/... b _ o a lftp@ ftp 0 * c

2.2. Data Source

To demonstrate the proposed session reconstruction methods, web logs from the Physical
Oceanography Distributed Active Archive Center (PO.DAAC; http://podaac.jpl.nasa.gov) website
are used. PO.DAAC is a NASA data center, mainly responsible for archiving and distributing
oceanographic datasets. Its facility is managed and located at NASA’s Jet Propulsion Laboratory (JPL)
in Pasadena, California. PO.DAAC has at least two types of servers in their system, with HTTP server
providing searching capacity and FTP server supporting downloading request. In this experiment,
we use the web logs from February 2015, which includes 4,191,741 PO.DAAC web access logs and
3,174,458 FTP logs.

2.3. User Identification

User identification is the first step in session reconstruction to distinguish among different users
for the next step and further data mining. In the absence of user identifier and client-side cookie,
the commonly used approach of identifying unique users is through a combination of IP addresses
and user agents [22]. IP addresses alone are not sufficient for mapping log entries to the set of unique
visitors, mainly because a single proxy server may have several users accessing a website, potentially
over the same time period. Given the data center’s charter to provide data freely available to the
public, data downloads are done anonymously. This means a lack of user agent information in FTP
logs. In order to bring FTP site information into our analysis, user agent information is not considered
in the user identification.

2.4. Data Cleansing

The goal of data cleansing is to remove redundant logs and data generated by crawlers. In most
cases, only the log entry of a HTML file request should be kept for further analysis because a user
does not explicitly make all the requests, of which most are automatically downloaded images,
JavaScript, and CSS files embedded in a web page. Another common problem is that a typical log file
usually contain a significant (sometimes as high as 50%) percentage of references resulting from search
engine or other crawlers [17]. In order to distinguish the behavior of web crawlers from actual users,
we developed a method to detect crawlers from different aspects [17,23]:

‚ Well-known search engine crawlers are the easiest to detect, because they usually write their
identities in the user-agent field. Therefore, they could be identified and removed by maintaining
a list of known crawlers.

‚ Other “well-behaved” crawlers, which abide by standard robot exclusion protocols, begin their
site crawl by first accessing exclusion file “robots.txt” in the server root directory. Such crawlers,
can therefore, be identified by checking whether a request to the robots.txt file was made.

‚ Unfortunately a lot of crawlers neither identify themselves explicitly; nor deliberately masquerade
as legitimate users. In this case, we examine other two important features: maximum sustained
request rate and the number of request types. The rationale behind this is that there is an upper
bound on the maximum number of clicks that a human can make within a specific time frame.
Also, after looking into many crawler requests, we found that requests generated by humans are
more diverse during their single visit.
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3. Methodology for Session Identification

Session identification is the process of segmenting the user activity records of each user
into sessions, each record representing a single visit to the site. This section discusses how to
select appropriate thresholds for time-based heuristics. We also introduce two new heuristics of
clustering-based and time-referrer-based heuristics.

3.1. Threshold Selection in Time-Based Heuristics

We therefore present a method to select appropriate thresholds based on usage statistics. Once
user identification and data cleansing is completed, we generate the inter-activity times for each user.
Inter-activity time is the time interval between the given request and its last request. According to a
recent related research [13], statistically significant patterns exist in inter-activity time if we plot the
histogram and component Gaussian mixture model using expectation maximization [24]. As described
in [13,24], there are four types of patterns identified by visually inspecting: simple bimodal fits, fits with
extended breaks, fits with a high frequency component, and unusual fits. The most common pattern is
the bimodal fits: the first curve represents the theoretical within-session cluster with an expected value
of several minutes (<10 min), and the second curve refers to the theoretical between-session cluster
with an expected value of several days. Inspired by this result, we first segment the inter-activity times
into two parts by selecting a relatively large estimated cutoff (e.g., 3 h), and calculate the inter-activity
value at the 97.5% confidence level. This value can then be used as α in time-based heuristics.

3.2. Clustering-Based Heuristics

To avoid assigning a cluster number in the beginning, we developed a hierarchical clustering
method (i.e., a cluster-based heuristic), to build a hierarchy of clusters on the time dimension.
Specifically, this strategy is a divisive or “top down” approach: all observations are seen as one
entire cluster, and splits are performed recursively as one goes down the hierarchy. This method
consists of three steps (Figure 1):

1. For a given user, his or her visit is thought of as an entire cluster L. If the length of his or her visit
is longer than T, all the access logs (sorted by time, including both HTTP and FTP) would be split
into two clusters: l1 and l2. Threshold T could be considered as the study scale.

2. If the length of l1 or l2 is longer than T, they would be split into two clusters again.
3. The split process is performed recursively until all the cluster length is shorter than T.ISPRS Int. J. Geo-Inf. 2016, 5, 54 6 of 14 
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In order to decide where a cluster should be split, a method called Jenks natural breaks
optimization [25], originally used for statistical mapping, is integrated into our approach. Jenks natural
breaks optimization is an iterative process, seeking to find the best break by reducing the variance
within classes and maximize the variance between classes. This process is started by dividing the
ordered data into groups and allows for initial group divisions to be arbitrary. There are four steps
that must be repeated [26]:

1. Calculate the sum of squared deviations between classes (SDBC).
2. Calculate the sum of squared deviations from the array mean (SDAM).
3. Subtract the SDBC from the SDAM (SDAM-SDBC). This equals the sum of the squared deviations

from the class means (SDCM).
4. After inspecting each of the SDBC, a decision is made to move one unit from the class with the

largest SDBC toward the class with the lowest SDBC.
5. New class deviations are then calculated, and the process is repeated until the sum of the within

class deviations reaches a minimal value. Based on Jenks natural breaks optimization, the best
break in step two of our clustering-based heuristic could be identified.

3.3. Time-Referrer-Based Heuristics

Considering the referrer (immediately previously accessed) web page in the web log as an
important information to keep track of user behavior, we also developed a time-referrer-based heuristic
to address the problems in existing referrer-based heuristics. Time-referrer-based heuristics address
these two problems by introducing a time threshold, which has already been determined in Section 3.1.
It starts by sorting each user’s logs by access time, and then goes through the following four steps:

For HTTP logs,

1. If the referrer of log q is “-“, URL from other websites (e.g., commercial search engine) or the first
page of website, a new session S starts.

2. If the referrer r is none of the three cases in step 1, we would look for the most recent page
p whose request is identical to r. Instead of simply assigning log q to session S as they do in
traditional referrer-based heuristic, we calculate the time interval Tpq between p and q. Then the
time interval is compared with T * N. Note that N is the number of logs between p and q, and T is
the time threshold in the first section.

3. If Tpq < T * N, log q is assigned to session S. Otherwise, if Tpq > T * N, or previous page is not
found, a new session starts.

4. After all the logs are visited, close sessions are merged together if the time interval between the
ending time of one session and the starting time of the other is less than T.

Since FTP logs do not have referrer information:

5. If the time interval from the last log, either HTTP or FTP, is less than T, the FTP log is assigned to
the same session and the last log. Otherwise, a new session starts.

Table 3 is an example that demonstrates advantage of the proposed method. The number in the
table represents the number of sessions. From the traditional method to the intermediate result of
the proposed method, session 1 changes from a long session that lasts 14 h to multiple short sessions.
After that, close sessions (e.g., sessions 2 and 3) are merged together.
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Table 3. Comparison of result with traditional referrer-based method, intermediate and final result of
time-referrer-based heuristics.

No. Time URL Referrer Traditional
Referrer-Based

Intermediate Result
of Proposed Method

Final Result of
Proposed Method

1 2015-12-30 12:00:00 A - 1 1 1
2 2015-12-30 12:01:00 B A 1 1 1
3 2015-12-30 12:03:00 C B 1 1 1
4 2015-12-30 12:05:00 D B 1 1 1
5 2015-12-30 12:53:00 E F 2 2 2
6 2015-12-30 12:55:00 G E 2 2 2
7 2015-12-30 13:06:00 H D 1 3 2
8 2015-12-30 13:43:00 A - 3 4 3
9 2015-12-30 13:45:00 B - 4 5 3
10 2015-12-31 02:06:00 I D 1 6 4

4. Implementation and Workflow

4.1. Implementation

The system consists of four components: log importer, database, log processer, and visualization
tool (Figure 2). Log importer is used to parse, clean (only detecting part of the crawler), and import raw
HTTP and FTP logs into the database. The log processer is primarily responsible for user identification,
crawler detection, and session identification. The database used in the system is built upon an open
source database solution, called Elasticsearch. Although it is a relatively new database technology,
it provides a distributed, scalable, full-text search engine with a HTTP web interface and supports
schema-free JSON documents. Another reason that we select Elasticsearch is that it comes with an
open source data visualization plugin called Kibana. Kibana saves lots of development efforts by
providing visualization dashboard capabilities on top of the content indexed on Elasticsearch cluster.
Because of our particular needs, we also developed a visualization tool for session structure tree on
Kibana. In our experiment, it took ~20 min to process one month of log files (6 cores, 12G memory,
and Win 7 OS). This is acceptable when dealing with small data, we plan to leverage cluster and cloud
computing [27] to speed up the process for large log data (e.g., 10 years of log file).

ISPRS Int. J. Geo-Inf. 2016, 5, 54 7 of 14 

 

7 2015-12-30 13:06:00 H D 1 3 2 

8 2015-12-30 13:43:00 A - 3 4 3 

9 2015-12-30 13:45:00 B - 4 5 3 

10 2015-12-31 02:06:00 I D 1 6 4 

4. Implementation and Workflow 

4.1. Implementation 

The system consists of four components: log importer, database, log processer, and visualization 

tool (Figure 2). Log importer is used to parse, clean (only detecting part of the crawler), and import 

raw HTTP and FTP logs into the database. The log processer is primarily responsible for user 

identification, crawler detection, and session identification. The database used in the system is built 

upon an open source database solution, called Elasticsearch. Although it is a relatively new database 

technology, it provides a distributed, scalable, full-text search engine with a HTTP web interface and 

supports schema-free JSON documents. Another reason that we select Elasticsearch is that it comes 

with an open source data visualization plugin called Kibana. Kibana saves lots of development efforts 

by providing visualization dashboard capabilities on top of the content indexed on Elasticsearch 

cluster. Because of our particular needs, we also developed a visualization tool for session structure 

tree on Kibana. In our experiment, it took ~20 min to process one month of log files (6 cores, 12G 

memory, and Win 7 OS). This is acceptable when dealing with small data, we plan to leverage cluster 

and cloud computing [27] to speed up the process for large log data (e.g., 10 years of log file). 

 

Figure 2. Session reconstruction system architecture. 

4.2. Workflow 

Overall, the session reconstruction includes seven steps: 

 Import HTTP logs: The first step is to import HTTP logs of PO.DAAC website into Elasticsearch. 

All the redundant requests (.img, .js, etc.) and part of the crawler requests are removed based on 

the known crawler list. Only HTML requests are parsed and imported into database for further 

processing. The input is 4, 191, 741 raw HTTP logs, and the output is 297, 569 HTML requests in 

JSON format. 

 Import FTP logs: Since there is no user-agent information which is used to compare with crawler 

list, all the FTP logs (3, 174, 458 logs) are imported into Elasticsearch. 

 Synchronize HTTP and FTP logs: Although the combination of user-agent and IP address is 

preferable, unique user is identified only through IP address since there is no user-agent in FTP 

log. IPs with maximum sustained request rate greater than two requests are removed from the 

database. After this step, we found 7536 unique users with 901, 945 logs. 

 Time threshold selection: After user identification, we plot the inter-activity histogram based on 

what we described in the methodology part. Because the expected value of the second curve is 

several days, we left it out and only focus on the first normal distribution curve. After 

Figure 2. Session reconstruction system architecture.

4.2. Workflow

Overall, the session reconstruction includes seven steps:

‚ Import HTTP logs: The first step is to import HTTP logs of PO.DAAC website into Elasticsearch.
All the redundant requests (.img, .js, etc.) and part of the crawler requests are removed based on
the known crawler list. Only HTML requests are parsed and imported into database for further
processing. The input is 4, 191, 741 raw HTTP logs, and the output is 297, 569 HTML requests in
JSON format.
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‚ Import FTP logs: Since there is no user-agent information which is used to compare with crawler
list, all the FTP logs (3, 174, 458 logs) are imported into Elasticsearch.

‚ Synchronize HTTP and FTP logs: Although the combination of user-agent and IP address is
preferable, unique user is identified only through IP address since there is no user-agent in FTP
log. IPs with maximum sustained request rate greater than two requests are removed from the
database. After this step, we found 7536 unique users with 901, 945 logs.

‚ Time threshold selection: After user identification, we plot the inter-activity histogram based on
what we described in the methodology part. Because the expected value of the second curve is
several days, we left it out and only focus on the first normal distribution curve. After calculation,
we found that the critical value at 97.5% confidence level is around 10 min (596.73 s) (Figure 3).

‚ Session identification: Both session identification methods are experimented in this step.
15,783 user sessions are found. Based on this result, we further filter session by using the number
of request types. Specifically, the numbers of searching, viewing, and downloading requests are
required to be no less than 1. When one of the requests is missing (less than 1), the session will not
provide valid knowledge as needed for data discovery. In this way, the actual user session that
only contains one or two of them, and the remaining sessions that were generated by crawlers,
are finally removed. In the end, 414 sessions are identified after this step.

‚ Similarly, 34,604 user sessions are identified with time-clustering-based heuristics when T is set
30 min, and they are narrowed down to 471 user sessions that contain all three types of requests.

‚ Structure reconstruction: The last step is to reconstruct the session based on referrer. Note that
FTP logs are attached to the nearest viewing request in this process.
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5. Results

5.1. Comparison of Session Identification Heuristics

Table 4 shows an example from these two session identification results. While the
result of time-referrer-based heuristics shows all these sequential requests as a single session,
time-clustering-based heurstics splits them into two sessions. Both of them agree that the first few logs
belong to the same session, since the sequential time interval between them are quite short (all of them
happened in 2 min). However, time-clustering-based heuristics fails at the last second log, because
the time interval is larger than 30 min. For time-referrer-based heuristics, because the referrer of the
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second last request is identical to the first request and the time interval is also reasonable, they should
be assigned to the same session by human interpretation. Although they could be drawn into the
same session by setting a large scale in time-clustering-based heuristics, some small sessions will be
overlooked since the split process will stop earlier. For example, if we set the time threshold to be
40 min, sessions with length between 30 to 40 min would be difficult to identify. Since the referrer is a
valuable information to track user’s searching behavior, the time-referred-based heuristics outperforms
the time-clustering one.

Table 4. Comparison of time-referrer-based and time-clusteirng-based heuristics.

Time Request Referrer Type Time-Clustering Time-Referrer

07:19:33 /ghrsst/ - HTTP 1 1

07:20:04 /datasetlist?search=ghrsst /ghrsst/ HTTP 1 1

07:20:30 /datasetlist?ids=processinglevel&
values=*4*&search=ghrsst&view=list /datasetlist?search=GHRSST HTTP 1 1

07:20:34 /datasetlist?ids=processinglevel&
values=*3*&search=ghrsst&view=list /datasetlist?search=GHRSST HTTP 1 1

07:20:52
/dataset/jpl_ourocean-l4uhfnd-glob
-g1sst?ids=processinglevel&values

=*4*&search=ghrsst

/datasetlist?ids=Processing
Level&values=*4*&search=

GHRSST&view=list
HTTP 1 1

07:20:21 /allData/aquarius/L3/mapped/
V3/annual/SCI - FTP 1 1

07:51:43 /avhrr-pathfinder /ghrsst/ HTTP 2 1

07:57:00 /seasurfacetemperature /AVHRR-Pathfinder HTTP 2 1

5.2. Session Structure

Based on the workflow described, we reconstruct the structure for each session. Figure 4a shows an
example from the set of 414 sessions. The user performed two tasks in this session, each corresponding
to a branch in the structure tree. This session structure would play a significant role in the next pattern
analysis. Both the keywords and the distance between them are critical information to build knowledge
base. In addition, Table 5 shows the keywords searched in several sample sessions. The first column
shows the session number. Just by visual interpretation, “ghrsst” and “pathfinder” (sessions 3 and 4),
and “qscat” and “ascat” (sessions 1, 5 and 12) are more frequently searched than other keyword
pairs. In addition, query set that consists of user searching, viewing and downloading behavior could
be extracted based on the session structure tree. Figure 4b shows an example from thousands of
queries. In this example, the user searched for “quickscat”, viewed and downloaded the same dataset
“qscat_level_2b_owv_comp_12”. This knowledge is helpful to establish relationships between query
and dataset and can be integrated for improving data discovery.

Table 5. Keywords searched in sample sessions.

Session ID Keyword 1 Keyword 2 Keyword 3 Keyword 4

1 qscat Ascat
2 pathfinder Modis ostia
3 ghrsst Pathfinder
4 pathfinder Ghrsst
5 quickscat Qscat rapidscat ascat
6 salinity aquarius project
7 geos-3 topex/poseidon jason-1
8 long Ascat
9 sea level wind data climatology sst sst

10 orumieh aquarius project
11 ocean wind wind speed quikscat
12 Quikscat Ascat
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Figure 4. Example session structure results. (a) Session structure tree; (b) Query set.

5.3. Session Length Histogram and Keywords Popularity

By observing the histogram of session length, we found that most sessions are within one hour, and
the maximum length is around five hours (Figure 5). Also, the popularity of keywords is summarized
from the final session result. The top 10 keywords are “grace”, “ocean currents”, etc. (Figure 6).
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5.4. Website Traffic and User Location (Heatmap)

People from different places may be interested in different topics and these topics may also change
over time. Website traffic and users’ location are helpful to build spatiotemporal information into the
knowledge base. To do that, IP addresses are converted to geographic locations, and visualized with
OpenStreetMap. As can be seen from Figure 7, users come from almost all over the world. There are
three clusters in the U.S., one from California, and the other two from the northeastern U.S. To visualize
the website traffic, a line chart is created to show how the number of user sessions (not users) changes
over time (UTC) (Figure 8). It is a bit surprising that a daily pattern is not found in the chart. A possible
explanation is that users come from many different time zones. Further analysis needs to be done here.
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6. Discussion and Conclusions

This article reports our research on session reconstruction from raw web logs and proposes two
session identification methods including time-clustering-based and time-referrer-based methods.

‚ The proposed selection method based on inter-activity statistical threshold provides more
confidence for further analysis in contrast to the empirical time threshold.

‚ In comparison to the standard referrer-based heuristic, the time-referrer-based heuristic improves
the performance from two aspects by introducing a time component: First, close referrer-based
tasks are connected to form an actual session, which means the connections among these close
tasks are kept this way. Second, a time component adds a dynamic time frame as a restriction to
the searching of the previous page, which avoids the generation of an unreasonably long session.

‚ When compared with the standard time-based heuristics, clustering-based heuristic addresses the
limitation of a fixed threshold by building a hierarchy of clusters on the time dimension.

‚ The workflow of session reconstruction from multiple servers has proven to be able to extract and
visualize valuable information from raw log data, which has laid the foundation of discovering
keyword and dataset relationships. Furthermore, this information is easy to generalize and reuse
in other web usage mining research.

There are several directions where this research could be further improved. In terms of session
reconstruction itself, we plan to conduct accuracy assessment by using web logs that contain session
identifier information. Although a time-referrer-based heuristic is chosen in our case since the
referrer is an important piece of information to tracking user’s searching behavior, we believe that
the time-clustering heuristic outperforms a traditional time-based heuristic with a fixed threshold,
especially for frame-free sites where referrer information is not so important. Quantitative accuracy
comparison between time-referrer-based heuristic and time-clustering will be made under different
site structures, i.e., frame-base and frame-free sites [8]. Horizontally, the workflow and session
identification methods can be applied to other data systems such as polar and biological data.
Knowledge extracted from different domains could be integrated to build a more robust and
comprehensive knowledge base. Based on the keyword pairs extracted, we will vertically integrate
semantic search by building a structured knowledge base [28]. Specifically, further efforts need to be
made to discover latent semantic relationships among various queries. For example, we can calculate
the probability and identify rules for which two keywords are searched for along with each other.
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Unlike traditional association rules mining, the distances of different queries in the session structure
tree provide us with a unique advantage to better explore their relationships. Potential techniques
that could be leveraged include association rule, sequence learning, and Markov chains. Additionally,
we plan to integrate the analysis results of users’ query history, clicking behavior, metadata, and existing
ontology to augment user queries by traversing the integrated knowledge base, and reveal the actual
intent of user searches. Cloud computing will be utilized to facilitate the computationally intensive
mining process [27]. Once the semantic knowledge base is successfully constructed, the ultimate goal is
to improve the data discovery with better ranked results, related data recommendation, and ontology
navigation [29].
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