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Abstract: The negative impacts of land take on natural components and economic resources affect
planning choices and territorial policies. The importance of land take monitoring, in Italy, has been
only recently considered, but despite this awareness, in the great part of the country, effective
monitoring and containment measures have not been started, yet. This research proposes a
methodology to map and monitor land use changes. To this end, a time series from 1985–2010,
based on the multi-temporal Landsat data Thematic Mapper (TM), has been analyzed in the Vulture
Alto-Bradano area, a mountain zone of the Basilicata region (Southern Italy). Results confirm a double
potentiality of using these data: on the one hand, the use of multi-temporal Landsat data allows
going very back in time, producing accurate datasets that provide a phenomenon trend over time;
on the other hand, these data can be considered a first experience of open data in the field of spatial
information. The proposed methodology provides agencies, local authorities and practitioners with
a valuable tool to implement monitoring actions. This represents the first step to pursue territorial
governance methods based on sustainability, limiting the land take.
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1. Introduction

The environment and settlements have always been the two pans of a balance, both fundamental
components of human needs and in persistent imbalance in the management by man [1]. Today, more
than in the past, this imbalance has become irreversible. For many years, a common approach to
territorial governance renounced the vision [2] of the environment as a finite resource, as a common
good that we have, but that does not belong to us. Urban growth processes represent the majority
of human-induced changes on the environment. Many studies focusing on such phenomena [3,4]
highlight their negative impacts on public health [5], climate [6] and the agro-economy [7]. In the
current context, the environment and settlements are mainly characterized by anthropization and
land take. In Italy, for instance, artificial areas (as defined in the CORINE Land Cover nomenclature)
increased, inducing a land take change from 2.7% in the 1950s up to 7.0% in 2014, with an increase
of 4.3% [8]. Land take is now a critical issue at the center of political and scientific debates [9–11].
However, the complexity of the causes generating this phenomenon and the effects that it induces on
ecosystems and environmental services make its assessment extremely complex [12].

Moreover, urban growth is not the only way through which human activity generates negative
effects on land use. Just as in the economic and demographic processes, societies are characterized
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by a succession of different regimes of land use. From natural ecosystems, to the development of
local agricultural systems, up to intensive agriculture and the development of so-called urban sprawl,
people change with their actions the territory where they live. Even an activity once considered as
low impact, such as agriculture, is on the one hand creating an advantage in the short term in terms of
food production, while on the other hand, it is producing serious long-term problems in terms of loss
of ecosystem services, including some important ones for agriculture itself [13–16].

Usually, land take is confused with the concept of urban sprawl, defined as low-density urban
development [17,18], mainly concentrated in peripherals areas, unplanned and characterized by the
simultaneous presence of different land uses [4]. Unfortunately, urban sprawl represents only a portion
of land take phenomena. Moreover, the processes of the intensive use of soils for agriculture and
forestry should be considered, because they cause a loss of the bio-geo-chemical features of soils [8,19].

Although commonly not considered as actual causes contributing to the phenomenon of land take,
these processes can still affect the proper functioning of a natural environmental system. Therefore, the
evaluation of such factors is a fundamental prerequisite in urban planning, because urban dispersion
processes characterize land use forms and their measurement through specific indexes [11,19–21]. As
an example, analyzing the fragmentation of the territory through the urban sprawl index is a common
assessment framework to allow better environmental protection.

The EU has defined objectives to contain land take with the aim of reaching a net zero value by
2050 [5], in order to increase environmental sustainability and improve territorial governance. Several
strategies to limit land take have been implemented imposing limitations, pursuing the protection of
agricultural soils and stimulating the reuse of abandoned sites. The European Union developed many
projects to monitor land use changes, such as the CORINE Land Cover (CLC) and the Land Use and
Coverage Area frame Survey (LUCAS). Available data since 1990 indicate that residential urban areas
have expanded at a rate four-times greater than the population growth rate, while industrial areas
grew more than seven-times faster [22].

It is evident, however, that despite the multitude of available data, the different interpretations do
not allow a unified coding. In Italy, for instance, data provided by CLC and LUCAS define different
scenarios. According to CLC 2006 data, Italy has 2.8% of sealed soils and 5% of artificial areas; instead,
LUCAS 2009 data report sealed soils of 7% and artificial areas of 13%. A time span of three years is not
enough to justify this great difference in data. The reason for such different assessments is to be found
in the methodological differences of the two monitoring systems and in the different nomenclatures
adopted by LUCAS and CLC. Both studies, however, show a trend of the gradual growth of artificial
areas in all EU countries.

In 2015, the Agenda for Sustainable Development has been defined, which stimulates United
Nations countries to achieve 17 sustainable development goals within the next 15 years. Objective
11 of this agenda concerns the development of sustainable human settlements. In particular, it
promotes sustainable territorial planning and management by means of positive economic, social and
environmental ties between urban, peri-urban and rural areas, by strengthening planning activities at
national and regional levels [23]. Italy lags behind in the implementation of European measures [24],
due both to a huge variety of urban growth geographies that does not allow a simple transposition of
such practices and to the large number of local authorities lacking properly implemented planning
instruments as well as, in some regions, due to the lack of real sustainability practices [25]. These
policies are difficult to pursue because of a context that gives the building sector still a central role in
the economy [26].

At the national scale, available data on land use categories and changes over the years are
still characterized by more problems and far from a desirable uniformity. Analysis of land cover
changes is an important element to assess the impact of human activities on the environment at
different spatio-temporal scales. The availability of updated and detailed information on land use
and land cover is a key prerequisite for urban areas’ management and planning. These data could
be fundamental in developing simulation models to support the analysis and the consequences of
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land use changes. In the absence of such data and simulation models, sustainable urban development
can hardly be achieved. Urban sprawl is an important indicator of urban development. The recent
growth of the awareness that its monitoring represents a first step in ensuring a reduction of land
take is crucial to develop more sustainable planning. However, in Italy, and especially in some
southern regions, detailed historical data on land cover are not available. This absence complicates the
identification of environmental costs associated with the transitions of land use classes occurring in
the past. Furthermore, it is difficult to identify future strategies to develop urban areas both able to
ensure greater protection of the ecosystem and the landscape characteristics of an area and to maintain
the socio-economic benefits associated with the development of urban areas. This paper proposes
the use of remote sensing data analysis techniques as a tool to operate a continuous monitoring of
land use class changes over time and, consequently, the amount of consumed soil. The study has been
implemented using multi-resolution and multi-spectral data (Landsat) and open and freely available
software (QGIS, GRASS). The advantages of this approach are the following:

1. the opportunity to achieve long-term time series through the use of Landsat data, in orbit since
1972, renouncing the higher spatial resolution provided by the newest generation satellites that
would not allow historical evaluations of similar time periods [27,28];

2. the possibility to provide national agencies and local authorities with a low-cost dataset.

Analyses have been performed in the area of Vulture Alto-Bradano (Basilicata region, Southern
Italy), in order to assess the impact of the absence of territorial policies on landscape protection and on
the fragmentation of the most pronounced ecological areas, in the period considered.

2. Materials and Methods

2.1. Study Area

The study area, the mountain district of Vulture Alto-Bradano, is located in the northeast
of the Basilicata region (Figure 1). It extends between Latitude: 40˝59145”N and 40˝49144”N,
Longitude: 15˝34155”E and 16˝10155”E. The name of this area comes from the mountainous area
of Vulture Mountain (1326 m), a high ground isolated from the Apennine ridge, which covers about
45,000 hectares.
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The area includes 19 municipalities grouped into two systems:
the Vulture system, consisting of 14 municipalities: Atella, Barile, Ginestra, Lavello, Maschito,

Melfi, Montemilone, Rapolla, Rapone, Rionero in Vulture, Ripacandida, Ruvo del Monte, San Fele and
Venosa;the Alto Bradano system, consisting of 5 municipalities: Banzi, Filiano, Forenza, Genzano di
Lucania and Palazzo San Gervasio.

In Vulture, it is possible to identify agricultural areas with beautiful landscapes, characterized
by a particular mosaic of crops (vineyards, olive trees) growing on the hillside, while the valley is
used for intensive cereal cultivation. The system of Norman-Swabian castles in the area of Vulture
and the system of paths and connections along the valley in the direction of Potenza municipality
still emphasize the close relationship between morphological characteristics, land use and types of
settlement. Urban centers are mostly on top of hills, in a defensive and dominant position.

The settlement system of Vulture Alto-Bradano has some peculiarities compared to the remaining
part of the region. These features developed in different historical phases as the result of sudden
and massive events, such as earthquakes and migration phenomena. Close relationships and short
distances occur among the largest municipalities (with more than 10,000 inhabitants). These distances
are further reduced by the presence of minor centers that generate a sort of conurbation.

The demographic dynamics of Vulture Alto-Bradano are characterized by a flow towards the
major centers from smaller surrounding municipalities, which compensates, in these centers, a general
migration to the north of Italy, while the percentage of the population coming from municipalities in
neighboring regions is not significant.

2.2. Atmospheric Corrections

During the pre-processing phase of the images, an atmospheric correction was performed, because
different atmospheric measurements are needed to calculate the reflectance to the ground (ρ). In this
way, it is possible to take advantage of image-based techniques without having to take measurements at
the site of the acquisition of the image. Among image-based atmospheric correction techniques, DOS1
(Dark Object Subtraction) correction was adopted. This technique is based on Chavez’s assumption [29]
that within an image, some pixels are in complete shade and their radiances received from the satellite
are spurious, due to atmospheric dispersion. In practice, assuming the existence of dark objects with
reflecting surfaces approximately equal to zero, the minimum value of the Digital Number (DN) is
subtracted from all of the pixels of the image, eliminating the effects created by the interaction with
the atmosphere. This assumption is based on the hypothesis that very few surfaces on the Earth
are completely black; hence, assuming one percent as the minimum reflectance value is better than
zero percent.

The trajectory of the radiance is calculated as:

Lp “ Lmin ´ LDO1% (1)

where:

Lmin is the radiance that corresponds to a value of digital calculation where the sum of all pixels with
calculated values less than or equal to this value is equal to 0.01% of the totality of the pixels of the
image [30].
LDO1 is the radiance of the dark object with the reflectance value of 0.01.
Lmin for Landsat images is expressed by the following equation [31]:

Lmin “ ML ˚DNmin ` AL (2)

while the radiance of a dark object is given by:

LDO1% “ 0.01 ˚ rpESUNλ ˚ cosθs*Tzq ` Edowns ˚
Tv

π*d2
(3)
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The path radiance is:

Lp “ ML ˚DNmin ` AL´
0.01 ˚ rpESUNλ ˚ cosθs ˚ Tzq ` Edowns ˚ Tv

π ˚ d2
(4)

where:

1. ML is a specific multiplication factor of the band (Landsat metadata)
2. (RADIANCE_MULT_BAND_x) where x is the band number;
3. DNmin is the minimum digital number;
4. AL is the specific additive factor (Landsat metadata);
5. (RADIANCE_ADD_BAND_x) where x is the band number;
6. ESUNλ is the ESO-atmospheric solar irradiance average;
7. θs is the solar zenith angle in degrees, which is equivalent to θs = 90˝ ´ θe, where θe is the

Sun elevation;
8. Tz is the atmospheric transmittance in the direction of illumination;
9. Edown is the descending irradiance;

10. Tv is the atmospheric transmittance in the direction of the view;
11. D is the Earth-Sun distance in astronomical units.

In the atmospheric correction technique, DOS1 in particular, it is assumed that:

12. Tv = 1;
13. Tz = 1;
14. Edown = 0.

The result is a path radiance equal to:

Lp “ ML ˚DNmin ` AL´ 0.01 ˚ ESUNλ ˚ cosθs{π ˚ d2 (5)

The reflectance at the ground, therefore, is:

ρ “

“

π ˚
`

Lλ ´ Lp
˘

˚ d2
‰

ESUNλ ˚ cosθs
(6)

where Lλ is the radiance to the satellite, and the values of ESUN, the mean solar exoatmospheric
irradiance, expressed in W/(m2¨µm) for the sensors Landsat 4 [32] and Landsat 5 [33] are defined
in Table 1.

Table 1. Solar irradiance ESO-atmospheric values’ average for Landsat 4–5.

Band Landsat 4 Landsat 5

1 1957 1983
2 1983 1769
3 1557 1536
4 1033 1031
5 214.9 220
7 80.72 83.44

Assuming that the function of the reflectivity of a body ρ pλq depends on the material that
constitutes its surface [34], the function of reflectivity relative to each material is also recognized as its
spectral signature. Through the pre-processing Band-Calc tool, the centers of wavelengths have been
set according to the characteristics of the Thematic Mapper (TM) for each band, in order to view the
composition of bands necessary to distinguish the various local components.
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2.3. Supervised Classification with the SMAP Algorithm

After the pre-processing phases, it is possible to continue with the supervised classification, an
image processing technique that allows the identification of components according to their spectral
signatures, distinct for each class of pixels and requiring the supervision of an operator [35]. A
Region of Interest (ROI) was therefore identified. ROI are polygons automatically created with a
region-growing algorithm starting from seed pixels around which it is possible to segment the image,
circumscribing each group of pixels belonging to the same land cover class within an area of interest
and classified according to their spectral signature.

ROI, homogeneously identified across the whole area, has three parameters to calibrate:

‚ Min size ROI identifies the minimum area of ROI in pixels, if created with the
region-growing algorithm;

‚ Max size ROI identifies the length, in pixels, of the side of a square that inscribes the ROI;
‚ a spectral distance value between seed pixels and the surrounding pixels, i.e., the range radius

expressed in radiometric units.

Eight land use classes were identified in total (Figure 2). In this phase, orthophotos concerning the
considered dates have been used, in order to limit the error level on the areas to classify. The sequential
maximum estimation algorithm was used to classify images, which is an a posteriori algorithm (SMAP).
It is part of the i.smap GRASS module and represents one of its operating modes with the classification
that uses the Maximum Likelihood (ML).
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The SMAP algorithm is based on the first law of geography by Waldo Tobler [36]: the likelihood
that close pixels belong to the same class is higher than the one you would observe with distant
pixels. The main reason for the choice of SMAP is the vast extension of the study area and
the capability of the algorithm to implement segmentation directly on image regions and not on
separately-considered pixels.

It operates at different scales and resolutions, and it uses assessments at wider scales to drive
assessments at scales that are more detailed. It enables one to reduce the spatial dimension of errors
and to prevent the homologation of neighboring pixels to the same class, by reducing smoothing
operations, if their position in the image changes often [37–39].

Generally, Bayesian methods attempt to minimize the average value of wrong segmentation,
optimizing the solution of the problem, considering:

x̂ “
argmin

x
E C pX, xq

ˇ

ˇ

ˇ

ˇ

Y “ ys (7)

where C(X, x) represents the value to estimate on the actual segmentation X on the value of the
approximate segmentation x.
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The CSMAP function allows one to gradually assign a higher value to segmentations that include
a larger number of misclassified pixels.

CSMAP pX, xq “
1
2
`

L
ÿ

n“0

2n´1Cn pX, xq (8)

where:

Cn pX, xq “ 1´
L
ź

i“n

δ pXpiq ´ xpiqq (9)

CSMAP behavior is defined at the coarse scale by K, which contains misclassified pixels. Therefore,
if K is the only value: KpKq ‰ xpKq, but Xpiq “ xpiq for all i ą K, then:

Cn pX, xq “

#

1i f n ď k
0i f n ą k

(10)

In this way, the total value of the CSMAP function will be equal to:

CSMAP pX, xq “ 2k (11)

Finally, errors defined by K, at a coarse scale, produce errors in classification at a finer scale; thus,
the value of SMAP will be intuitively defined as the width of the largest grouping of misclassified
pixels. In this way, it is possible to determine the parameter that minimizes the value of a wrong
segmentation, through the following relation:

x̂ “ argminE rCSMAP pX, xq |Y “ ys

“ argmin
ÿ

L
n“0 2n´1

!

1´ P
´

Xpiq “ xpiq i ě n
ˇ

ˇ

ˇ
Y “ yq

)

(12)

“ argmin
ÿ

L
n“0 2n P

´

Xpiq “ xpiq i ě n
ˇ

ˇ

ˇ
Y “ y

¯

Since random fields Xpnq form a Markov chain, it is possible to recursively calculate this estimation
in parameter of n scale. Assuming that x̂piq was calculated for i ą n, these results will be used to
calculate x̂pnq.

2.4. Accuracy Verification

Once the classification process is completed, in order to evaluate the precision of the image and,
therefore, the reliability compared to what has been classified, the accuracy has been verified.

Correct pixels are evaluated through the error matrix, omission errors (pixels of the ground truth
incorrectly identified) and commission errors (pixels of the classified map that do not match with the
ground truth).

The output is a squared matrix where rows and columns are in equal number compared to the
assigned classes of land cover. Accuracy assessment is performed comparing information contained
in the map and data related to the ground truth. It is possible to calculate the overall accuracy as the
ratio between the number of correctly-classified samples, obtained summing the values of the main
diagonal, and the total number of sampling units [40] (the perfect matrix contains non-null values only
on the main diagonal). In this phase, in addition to the K coefficient, values to be considered are the
producer’s accuracy calculated along the columns of the matrix and the user’s accuracy calculated
along the rows of the matrix.
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The overall accuracy is defined by the ratio between the sum of values on the main diagonal and
the sum of total values defining the matrix, and it is expressed by:

Pc “

q
ÿ

k“1

Pkk (13)

where q is the number of land cover classes, while Pkk the calculated parameters.
The user’s accuracy defines the probability that a pixel belongs to a given class because the

classification algorithm has labelled the pixels in the given class, and it is expressed by:

PUi “ Pii{Pi` (14)

where Pii defines the probability of a single cell and Pi` is the sum of marginal elements in the rows.
The producer’s accuracy defines the probability that the classification algorithm has labelled a

given pixel of the image in a given class because the ground truth detects it as belonging to that class,
and it is expressed by:

PAj “ Pjj{P`j (15)

where Pjj defines the probability of a single cell and P`j is the sum of marginal elements in the columns.
The K coefficient [41] measures the ratio between the probability of expected agreement and

disagreement. This measure uses all of the elements of the matrix and not only the ones in the diagonal,
and it is expressed by:

K “
Pc´

řq
k“1 Pk` P` k

1´
řq

k“1 Pk` P` k
(16)

2.5. Data

Remote sensing technologies implemented in a GIS environment allow developing a detailed
analysis of land cover changes during time. The classification step was performed with i.smap GRASS
GIS, used in the QGIS software. Specifically, QGIS 2.12.3 Lyon was used.

In the first phase, land cover classification of the study area, Landsat 4–5 TM (Thematic Mapper)
satellite images have been used. In order to have greater continuity for all four dates, summer periods
were considered:

‚ Satellite image Landsat 4–5, TM sensor, acquired in August 1985;
‚ Satellite image Landsat 4–5, TM sensor, acquired in July 1993;
‚ Satellite image Landsat 4–5, TM sensor, acquired in June 2002;
‚ Satellite image Landsat 4–5, TM sensor, acquired in September 2010.

Downloaded images had a .tif file extension for each Landsat band and an MTL.txt file extension
containing metadata information; moreover, images were already georeferenced in WGS84. These
images were composed of seven bands with a spatial resolution of 30 m ˆ 30 m (except for Band 6,
with a spatial resolution of 120 m ˆ 120 m), with a 185-km swath, a radiometric resolution of 8-bit and
a temporal resolution of 16 days between each repeating cycle.

The spectral resolution of the bands and their corresponding wavelengths’ centers according to
the characteristics of Thematic Mapper (TM) are represented in the table below (Table 2).

During the ROI definition phase, color and black and white digital orthophotos at the
corresponding dates have been used as support for the identification of the areas, with related footprint
polygons with the date information of the aerial shot. These images were acquired by the Italian
national geoportal with a resolution of 1:10,000.
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Table 2. Spectral resolution and center wavelengths (TM).

Band Spectral Resolution (µm) Center Wavelengths (TM)

1 0.45–0.52 Blue 0.485
2 0.52–0.60 Green 0.56
3 0.63–0.69 Red 0.66
4 0.76–0.90 Near Infrared 0.83
5 1.55–1.75 Infrared Middle 1.65
6 10.4–12.5 Infrared Thermal -
7 2.08–2.35 Infrared Middle 2.215

3. Results

3.1. Supervised Classification with the SMAP Algorithm

Supervised classification was carried out after atmospheric correction DOS1, which provides
value changes in bands, since it eliminates distortions caused by atmosphere presence. Subsequently,
the centers of wavelengths according to the characteristics of Thematic Mapper (TM) for each band
were set.

The purpose was to visualize the composition of bands necessary to distinguish territorial
components (RGB natural color 3-2-1, synthesis IR false color 4-3-2, false color image 5-4-3) with
the exception of thermal infrared Band 6.

The use of supervised classification allowed a better interpretation of images and a more accurate
territory classification into classes. Eight land cover classes have been identified for each date, defined
as follows:

1. Water;
2. Wood;
3. Sparse vegetation;
4. Urban areas and artificial lands;
5. Cultivated soil;
6. Plowed soil;
7. Permanent meadows;
8. Bare soil.

The geographical area under consideration is particularly large; therefore, it was necessary to
define a large number of homogeneously-distributed ROI on the entire image, in order to obtain a
better response in terms of classification.

On images, ROIs 588 for 1985, 572 for 1993, 585 for 2002 and 559 for 2010 have been
identified, respectively.

Maps generated using the SMAP algorithm (Figure 3) allowed a good representation of the
above-mentioned eight classes.

By comparing the classifications for four dates (Figure 4), it is possible to appreciate variations in
the development of urban areas and land use in a period of 25 years. Despite some difficulties related
to the similarity between spectral signatures predominant in urban areas and bare soil, the distinction
between the different areas is easily readable from the images.

The problem of the similarity of the spectral signature, mainly identifiable between urban areas
and bare soils, rather than between urban areas and other land covers, is indistinctly present in the
images for the four dates (Figure 5).
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3.2. Accuracy Verification

From the accuracy verification and observation of the error matrices of each classification,
it was possible to highlight the overall accuracy of each classification, as well as the producer’s
accuracy, user’s accuracy and K coefficient (Table 3 summarizes the verifications carried out for all
four considered dates).

Table 3. Accuracy of the classification of Landsat data (%) in 1985, 1993, 2002 and 2010.

1985 1993 2002 2010

Producer’s
Accuracy

User’s
Accuracy

Producer’s
Accuracy

User’s
Accuracy

Producer’s
Accuracy

User’s
Accuracy

Producer’s
Accuracy

User’s
Accuracy

Water 100% 100% 100% 100% 100% 100% 99% 100%
Wood 100% 100% 100% 100% 100% 100% 99% 100%

Sparse vegetation 99% 83% 97% 61% 97% 60% 96% 85%
Urban area

artificial lands 96% 76% 97% 88% 98% 88% 94% 79%

Cultivate soil 97% 98% 92% 92% 94% 94% 94% 86%
Plowed soil 88% 98% 76% 91% 100% 100% 81% 91%

Permanent meadows 93% 91% 91% 86% 84% 99% 97% 98%
Bare soil 90% 87% 71% 60% 90% 67% 87% 95%

Overall accuracy 93% 87% 95% 91%
K 91% 84% 93% 89%

Compared to such values and to the proportion of correctly-classified objects over the total
amount, among all classifications, the average percentage value of incorrectly-calculated objects was
around 9%. A single peak was detected in classification for 1993, where about 13% of items were not
correctly classified. In general, percentages describing total classification accuracy never dropped
below 80%, thus allowing asserting the trustworthiness of statements, considering errors arising from
the presence of objects with very similar spectral signatures (urban and bare soil, urban and plowed
soils) and from the minimum percentage of relegated objects in classes different from those in which
they were placed.

3.3. Change Detection

The assessment of changes occurred in the area between 1985 and 2010, compared to the identified
land cover, has highlighted how, in 25 years, urban areas have increased at the expense of agricultural
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land, rather than bare soil. This datum was already visible observing surfaces (km2) and soil coverage
changes in terms of percentages measured for the considered date (Table 4): these variations were
most appreciable in a graph (Figure 6).

Table 4. Soil covers in 1985, 1993, 2002 and 2010.

1985 1993 2002 2010

Surface
(km2) % Surface

(km2) % Surface
(km2) % Surface

(km2) %

Water 3.48 0.22 2 0.12 2.78 0.17 4.19 0.26
Wood 148.76 9.31 150.26 9.43 208.86 13.08 180.41 11.3

Sparse vegetation 142.09 8.9 248.38 15.59 46.32 2.91 196.56 12.31
Urban 20.62 1.31 26.96 1.69 28.31 1.78 37.41 2.34

Cultivate soil 347.26 21.86 174.69 10.96 533.07 33.45 419.85 26.3
Plowed soil 194.05 12.17 470.31 29.51 176.6 11.17 379.87 23.79

Permanent meadows 599.15 37.56 304.06 19.08 444.24 27.81 270.68 16.95
Bare soil 138.17 8.67 216.93 13.61 153.41 9.63 107.72 6.75
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Considering that the study pays particular attention to the development of urbanized areas, it is
interesting to note that the urban class for the four considered dates undergoes a steady increase from
20.62 km2 in 1985 to 37.41 km2 in 2010.

Such an increase occurred at the expense of areas occupied by permanent grassland and in lower
percentages by bare soil, as measured by the transition matrices, where there was the migration of
objects from one class to another, compared for two dates.

Considering other classes, the data on water are interesting, because their percentage decreases
from 0.22% in 1985 to 0.12% in 1993, increasing again in 2002 and 2010 up to 0.17% and
0.26%, respectively.

The label assigned to the water class includes permanent water bodies, such as two clearly visible
lakes, Vulture and Serracorvo, and non-permanent water bodies, such as small dams and small artificial
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reservoirs, where the percentage of wet surface is subject to change over time, because it depends also
on the amount of precipitation that affects the area.

On these surfaces, an increase in vegetated areas corresponds to a decrease in water surfaces.
In other words, these variations in terms of land cover changes are correlated and do not represent
sampling errors, as also supported by reliability levels in both classes. The migration of objects
belonging to the sparse vegetation class to cultivated soil and vice versa highlights a noticeable
increase of cultivated soils in 2002, with occupied areas equal to 533.07 km2. This could be explained
in two different ways: on the one hand, it describes the actual possibility that sparsely-vegetated soils
are converted into productive soils; on the other hand, it takes into account the possibility that these
variations may be the result of misclassification due to very similar spectral signatures. Observing the
comparison between the extent of both classes in 1985 and 2010 and their transition matrix (Table 5), it
is possible to confirm that approximately 17 km2 of land area have been urbanized and that there was
an increase of 1% in agricultural and permanent meadow soils (Figure 7).

Table 5. Transition matrix of objects classified in 1985 and 2010.

1985 (%) 1993 (%) 2002 (%) 2010 (%)

1 2 3 4 5 6 7 8

Water 0.573105 0.108956 0.067364 0.003062 0.237305 0.004848 0.002552 0.002807
Wood 0.002608 0.923961 0.061491 0.000669 0.009421 0.001096 0.000608 0.000145

Sparse vegetation 0.002130 0.196145 0.504692 0.003787 0.238971 0.025534 0.018073 0.010669
Urban 0.000902 0.001761 0.014005 0.473237 0.311109 0.125440 0.017871 0.055675

Cultivate soil 0.001782 0.040955 0.153892 0.027761 0.543575 0.116411 0.091333 0.024291
Plowed soil 0.002829 0.000723 0.035902 0.022878 0.212968 0.342068 0.174386 0.208246

Permanent meadows 0.000216 0.000685 0.012696 0.017690 0.162188 0.415090 0.302579 0.088855
Bare soil 0.001474 0.003589 0.333234 0.014822 0.359484 0.119091 0.147779 0.0200526
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Data on the development of urban areas during the considered period represent a true estimate,
but curtailed by the presence of road infrastructures, which are fully included within the urban
conversion of the territory, but are understood as available land. Consequently, a significant portion
regarding secondary rural, municipal and local roads has to be added to the percentage, apparently
insignificant, which considers an increase of 1% in the territory available to the urban environment,
between 1985 and 2010.ISPRS Int. J. Geo-Inf. 2016, 5, 109 14 of 19 
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The classification did not allow highlighting these elements in the evaluations, because the
large representation scale of the images did not allow their identification, and the study area was
composed of small towns having very narrow roads. An expected discrepancy occurred when
comparing the increase in urban areas between 1985 and 2010 (Figure 8) with data provided by
the Italian National Institute of Statistics, related to the censuses of the resident population in the
19 municipalities of the mountain district of Vulture Alto-Bradano. Although the population decreased
from 102,110 inhabitants in 1985 to 96,679 inhabitants in 2010, urbanized areas increased, according to
the previously-defined amount (Figure 9).

4. Discussion

The classification of Landsat images shows the interdependence between the growth of urban
areas and the presence of mobility infrastructure (Figure 10).
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Figure 10. Infrastructures in the study area and urban areas/artificial lands in 2010.

Abandonment of agricultural activity, vehicular congestion in denser urban areas and
socio-economic changes lead to the building of housing outside town centers. Problems of accessibility
due to urban sprawl, however, urge local authorities to invest in infrastructures and in the completion
of newly-developed settlements. This entails new problems of congestion and a new sprawl on soils
outside town centers; therefore, the phenomenon continues to repeat itself. This cyclical expansion
of urban areas, not necessarily driven by a demand for housing, is one of the major causes of the
unsustainability of current land use patterns, and in particular of building activity.

The case of Vulture-Alto Bradano also highlights an issue that is often recurrent in Italian scenarios.
Urban planning tools, obsolete or outdated, indeed, usually drive the growth of urban areas. In the
Basilicata region, the Law on Urban Planning 1999/23 required the renewal of all municipal planning
tools of the region. However, in Vulture-Alto Bradano, only two municipalities have taken steps to
upgrade their plans (Figure 11), to date, while in the remaining municipalities, urban development still
takes place in accordance with the instruments adopted in the 1980s and, therefore, no longer useful to
answer to the changed social and citizenship needs.
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Similarly, the protection of agricultural and natural landscapes in the Basilicata region is entrusted
to landscape plans. These, however, do not study the entire region, but only some of its portions
(Figure 12). Specifically, only the area of Mount Vulture and Monticchio volcanic lakes has specific
landscape protection rules inside the study area.
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The lack of planning tools able to adequately protect natural and environmental systems and
to preserve landscape exposes the territory to unregulated and often unsustainable transformations
and transitions between land use classes, without an organic vision. The monitoring of only land
use changes thus fails to ensure the development of more sustainable usage patterns of the territory.
It is therefore necessary for the government to establish updated and consistent urban and regional
planning tools [42].
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5. Conclusions

This paper has discussed the importance of land use change monitoring, as a tool for the definition
of sustainable government policies for the territory. In particular, a methodology for the development
of the monitoring of land use changes through open source software and open data was presented.
Therefore, the methodology is characterized by being highly accessible and replicable by research
centers and public administrations at a reduced cost. This aspect is very important, considering the
limited economical resources of local agencies and authorities.

Land use and land cover changes, as well as the phenomenon of land take have been analyzed
through a monitoring method based on remote sensing techniques to perform multi-temporal
evaluations to provide important support for planning choices [43–45]. The use of satellite imagery
(Landsat TM 4–5) and remote sensing techniques in a GIS environment allows defining various
parameters, through supervised classification, in order to discriminate urban areas from other classes.

The methodology requires some preventive steps in order to clearly distinguish elements
composing the image: atmospheric correction (in the specific case DOS1), the perimeter of the area of
interest and the definition of wavelengths’ centers related to the sensor used in remote sensing (in this
specific case, the Thematic Mapper). After these preventive steps, it is possible to catalogue land cover
classes, defining ROI, and to implement the classification by means of algorithms (in this case, SMAP
was used).

The reliability of the method was evaluated in the area of Vulture Alto-Bradano (Basilicata region,
Southern Italy), a mountain district located in the northeast of the region, including 19 municipalities
with strong historical, natural and landscape connotations.

The possibility to implement a historical evaluation for four dates, using Landsat satellite images,
allowed estimating that the increase in urban areas from 1985–2010 was approximately 17 km2.
Compared to the general trend, this result is lower than the average. However, the mountain district of
Vulture Alto-Bradano follows a common trend in Southern Italy; in fact, here, it is possible to observe
more than anywhere else that the abandonment of farmlands and small urban centers and at the same
time coupled to an increase of the urban sprawl phenomenon [46].

The methodology adopted in this paper highlights a possible way to check land take, using free
data and software. The great advantage is that such a methodology can create important support
for planning choices at all scales. However, future developments will have to evaluate procedures
to overcome some problems evident in the phase of supervised classification, such as the difficulties
for classification algorithms to distinguish among artificial surfaces and bare soils, due to the high
similarity between the spectral signatures of these elements. Despite these problems, the proposed
approach is in any case highly replicable, especially for its low costs, since it is entirely developed
using open source software and through open data.
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