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Abstract: In the recent big data era, massive spatial related data are continuously generated and
scrambled from various sources. Acquiring accurate geographic information is also urgently
demanded. How to accurately retrieve desired geographic information has become the prominent
issue, needing to be resolved in high priority. The key technologies in geographic information retrieval
are modeling document footprints and ranking documents based on their similarity evaluation.
The traditional spatial similarity evaluation methods are mainly performed using a MBR (Minimum
Bounding Rectangle) footprint model. However, due to its nature of simplification and roughness, the
results of traditional methods tend to be isotropic and space-redundant. In this paper, a new model
that constructs the footprints in the form of point-sets is presented. The point-set-based footprint
coincides the nature of place names in web pages, so it is redundancy-free, consistent, accurate,
and anisotropic to describe the spatial extents of documents, and can handle multi-scale geographic
information. The corresponding spatial ranking method is also presented based on the point-set-based
model. The new similarity evaluation algorithm of this method firstly measures multiple distances
for the spatial proximity across different scales, and then combines the frequency of place names
to improve the accuracy and precision. The experimental results show that the proposed method
outperforms the traditional methods with higher accuracies under different searching scenarios.
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1. Introduction

In the recent big data era, the rapid development of Web and location-based technologies, as well
as the widespread applications of social media tagged with location info, has contributed to the
diversity and magnanimity of geographic data, along with the urgent demand of acquiring the accurate
geographic information. It is reported that 20% of searches on Google are related to locations [1].
An annual report from comScore/TMPDM that referred to local search behavior in 2013 also stated
that by the year 2013, there were nearly 86 million people in the United States seeking local business
information on their mobile devices, a 63% increase since 2010 [2]. All of these figures illustrate that
geographic information is pervasive on the web and geographic entities are frequent in user queries.
The acquisition and processing of geographic information, especially geographic information retrieval,
is of crucial study value and a promising application prospect.

First proposed by Larson [3], geographic information retrieval (GIR) is defined as a process
concerned with providing access to geo-referenced information sources. GIR includes all of the
areas that have traditionally formed the core of information retrieval (IR) research, with an emphasis,
or addition, of spatially- and geographically oriented indexing and retrieval.
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The main research areas of GIR are generalized into seven challenges by Jones [4]: detecting,
disambiguating, interpreting, indexing, ranking, designing user interfaces, and evaluating. Because of
the multiple sources and media types of geographic data, the information implied is always obscure.
This leads to diverse forms of footprints, which determine the spatial ranking algorithms. Peters et
al. [5] built the footprints of documents with place names and compared the syntactic differences
between phrases to assess similarities. However, the evaluation of spatial similarity is based on
semantics: two different phrases that suggest the same spatial area are considered to be one place
name. In this case, the criterion of similarity is no longer literal, but rather the implied “proximity” of
the entities.

To satisfy the geographic semantics, some researchers [6–8] have denoted the footprints as MBRs
(Minimum Bounding Rectangular) or convex hulls that contain the space that the place names in
the documents refer to, and the spatial similarity assessment for ranking depends on the topological
relationship between two polygons, regular or irregular [9]. According to GeoCLEF, a cross-language
geographic retrieval track of the Cross Language Evaluation Forum (CLEF) that aims to evaluate
GIR systems for spatial and multilingual searching tasks [10,11], MBR and convex hull are the most
commonly used models at present. However, the convex hull model is not as pervasive as the MBR
model due to the complexity of the convex hull model. Generating and storing the convex hull of
a document, as well as computing the topological relationship between convex hulls, is time- and
space-consuming.

Although the polygon models are simple and straightforward, both MBRs and convex hulls suffer
from inherent defects that derive from the nature of polygons and topology evaluation. The specific
disadvantages of the aforementioned models are as follows:

(a) Space redundancy. The most obvious weakness happens when polygon models represent
diagonal, irregular, non-convex, or multi-part regions [12]. The polygons will cover more space
than the documents refer to (Figure 1), and if the query falls in the redundant space, irrelevant
documents will be retrieved.

(b) Location swamping. The documents may contain locations on different scales, e.g., Beijing,
Haidian District, and Peking University (Figure 2). However, the final polygon only represents the
overall area, and inner locations will be masked, which will lead to information loss. For example,
if the query is Peking University, and there are two documents both referring to Beijing, but one
document mentions Peking University and the other does not, then the polygon model will
be unable to discriminate between these two documents and fail to target the most relevant
document, because the footprint of these two documents are presented as the same polygon.

(c) Inaccuracy. The similarity evaluation based on polygon models is to examine the topological
relationship, i.e., whether they touch/intersect/contain each other or not. Because this
relationship is binary (0 for separation and 1 for intersection), the result is rough. This evaluation
method does not discriminate the cognition of “far” or “near”, which is important with regard to
spatial cognition of human beings, and the distance between two entities should be stressed. Some
improvements have been made to conquer the inaccuracy of binary evaluation by examining
the proximity in three scenarios: contain, overlap, and proximity [11]. Correspondingly, the
evaluation function is adjusted from binary to an area ratio, which will improve the accuracy,
but the result may not always conform to common sense. For example, if the query is “Beijing”
and we retrieve this query from two documents, A and B, and the footprint of document A is
“Dongcheng District” and the footprint of document B is “Haidian District” (Figure 2). Then
when using the evaluation function of area ratio, document B will rank higher than A because
the area of Haidian District is larger than the area of Dongcheng District. However, because
document A and document B both refer to sub-regions of Beijing and there is no more information
to discriminate the relevance, when retrieving Beijing, both sub-regions should rank the same.

(d) Homogeneity. The space within a single MBR is considered equally, even though some of the
places may be more important due to higher frequencies. For example, if one document mentions
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Haidian district 50 times, and the other document mentions Haidian district only once, then
the polygon footprints for these two documents may be the same. However, in traditional text
retrieval, according to the TF-IDF model [13], the entities with higher frequency tend to have
higher ranking scores. Similarly, we consider the first document to be definitely more related
to Haidian district than the second document, because the first document mentions the place
more often.
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Figure 2. The sketch map of the spatial relations between Beijing (Downtown), Haidian District,
Dongcheng District, Peking University, the National Museum, and the center of Beijing.

Some efforts have been made to overcome the above issues. Improved geometric footprint models,
including multiple polygons [14,15] and MBR set [16,17], are presented as one kind of solutions.
De Andrade [18] further integrates the overlap degree of MBRs with the spatial relevance, which
is defined by the overlapping frequencies of MBRs, to calculate the spatial rankings. De Sabbata
and Reichenbacher [19,20] present five fine-grained criteria (including topicality, spatiotemporal
proximity, directionality, cluster, and colocation) for calculating spatial relevance score. Although
these methods avoid the redundancy problem, issues about location swamping and homogeneity
still exist. Semantically rich models are also presented as the solutions to such issues. Sets of place
names are firstly used to represent the document extents and the relevance is calculated by their
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hierarchical relationships [21,22]. Furthermore, geographic ontologies or knowledge graphs, instead of
footprints, are constructed to measure the semantic similarities for spatial rankings [23–26]. The latest
topic models are also utilized in geographic information retrieval to find the similar place-related
documents based on latent semantics [23,27]. Although these semantic-based methods can integrate
spatial and thematic relevance together to rank, ontologies and knowledge are domain-specific and
usually difficult to be constructed. Compared with spatial distance, semantic distance may lead to
inaccuracy and missing information. In recent years, crowdsourcing, social networks, and other big
data resources are incorporated into semantic and geometric footprint models for spatial proximity
and ranking calculations [28,29]. Even so, all of the above methods do not take places’ frequencies into
consideration, which is an important factor for describing the focus of the documents.

In the present study, we establish a novel point-set-based footprint model of documents
that surmounts the disadvantages of the polygon models. At the same time, we put forward a
corresponding distance- and frequency-based similarity evaluation method for spatial ranking to
achieve higher accuracy in retrieving relevant geographic places.

2. Footprint Model of the Documents

Instead of the overall MBR or convex hull, we change the model of footprints from polygons to
point sets.

It is reasonable to set points as the footprints because most geographic information revealed
in texts is in the form of place names [30]. With the development of LBS (Location Based Service),
gazetteers now contain huge amounts of POI (Point of Interest) data. These gazetteers can project each
place name to a latitude and longitude pair, i.e., a spatial point.

Hence, the point set model is denoted as Equations (1) and (2), where FI denotes the footprint
of document I with NI points, and the corresponding spatial point of a place name and its aliases is
denoted as fpi, and φ, λ, f and S represent the latitude, longitude, frequency, and acreage, respectively.

FI “ tfp1, fp2, fp3, . . . , fpNIu (1)

fpi “ tφ, λ, f, Su (2)

The discrete point model has certain advantages over the traditional polygon models. First,
the footprint is redundancy-free despite the distribution of locations. Because every place name is
projected to a single point, the footprint only contains the spots recommended in the text, and the
similarity evaluation algorithm examines points directly. It should be stressed that this projection is
a many-to-one projection. Many place names may be denoted by the same point because of aliases.
Second, the point set model retains every location that appears in the document, and there is no
information loss. Third, the derived similarity algorithm fits the features of a point set, and the result is
more accurate. Finally, because we record the appearance frequency of a spatial point with parameter
f, this model is anisotropic. A document’s footprint no longer has a global scope. Because it is easy to
count the appearance frequency of the place names, we can assign different weights to different points
according to their frequency to differentiate the importance of each point. The more frequently a place
name appears, the more relevant the document is to the corresponding place. The frequency factor
makes our evaluation precise and reliable.

One problem is that the relationship between place names is not at the same hierarchical level.
For example, the space referred to by “China” contains the space referred to by “Beijing”. The actual
relationship between these two place names is spatial inclusion. However, if we simply project these
two place names into two separate points, the inclusion relation is missing because the point is a zero
dimension feature. The relationship result that we derive from the two points may be different from
the reality, i.e., place names are of different granularities so the similarity evaluation methods should
adjust according to the granularity. We address this situation by adding a dimension factor S and
adjusting the evaluation algorithm across different levels, as discussed in detail in Section 3.1.
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3. Spatial Ranking Method

After a document’s footprint is extracted, spatial ranking should be applied to extract the relevant
documents. Spatial ranking is based on the spatial similarity evaluation scores and hence is of great
importance in proposing an efficient spatial similarity evaluation algorithm. Distance is a direct way
to describe spatial similarity and is the most important factor in our spatial similarity evaluation
algorithm. The specific distance function that we will discuss in Section 3.1 is the traditional way to
measure the spatial proximity between entities. In addition, because the document is more relevant
to a place that is mentioned more, the influence of frequency is merged into the distance function
as a weight parameter, which makes summarizing and evaluating the geographic information of a
document more accurate and precise. We will discuss the combination of distance and frequency in
detail in Section 3.2.

3.1. Spatial Proximity

Generally speaking, every place name implies an area that can be represented by its centroid.
As a result, the place names in the documents can be projected to spatial points, and distance is the
most concise and effective way to examine the proximity between separated points. As the rule of
thumb of Geography says, “Everything is related to everything else, but near things are more related
than distant things” [31]. Based on this law, a relevant evaluation parameter can be built, which is
negatively correlated with Euclidean distance. In our case, we search the documents to determine their
correlations with a query Q. The footprint of the query consists of M points, and for any document I,
it has a point-set footprint with NI points. The spatial proximity of point i in the footprint of document I
to point m in the footprint of query Q, denoted as gi|m, can be calculated by Equation (3), which is
referred to as the “gravity model”. The parameter r is a distance decay parameter that reveals the
distance impacts on interaction behavior. A greater r implies faster decay effect and interactions being
more influenced by distance. The empirical value of r is usually assigned as a fraction from 1 to 2 [32].
Symbol d represents the ground distance (Equation (4)) or Euclidean distance (Equation (5)) between
two geographic points, where R represents the radius of the earth. The latitudes and longitudes of
point i and point m are denoted as φi, λi, φm, and λm, respectively. The projection coordinates are
denoted as x1, y1, x2, and y2, respectively.

gi|m “
1

dr
i|m

(3)

di|m “ Rˆ arccos rcosφicosφmcos pλi ´ λmq ` sinφisinφms (4)

di|m “

b

px1 ´ x2q
2
` py1 ´ y2q

2 (5)

However, the abstraction makes no discrimination with respect to the “size” of the area that
the place name refers to. A bus station or a city both end up at a zero dimension point, with the
dimensions ignored. Suppose the bus station is within the city, the abstraction may lead to the result of
two separate points, missing the information of the inclusion relation between the city and the bus
station. This is the limitation of the point set model with ordinary distance function due to the nature
of a point that a point only contains the location and misses the dimension information. Under such
circumstances, the multi-scale problem occurs, which is caused by the dimension and area differences
between the examined locations. For instance, the two places “Peking University” and “the National
Museum” (Figure 2) will have equal spatial proximity with a query “Beijing”, because they are both
within the city and there is no further information to make a discrimination. However, the result
of relevance based on the distance measurement is that “the National Museum” is more relevant to
“Beijing” because “the National Museum” is closer to the city center, which is the corresponding spatial
point of place name “Beijing”. This is a typical example of a multi-scale problem, which we must
conquer to make reasonable evaluations based on the point set model.
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Before we discuss the multi-scale problem stated above, it should be specified that the retrieval
process is directional and irreversible. We prefer to retrieve the sub-regions of the query rather than
the upper-regions. This limitation is due to the purpose of information retrieving. People tend to get
more detailed information of queries instead of more general information. For instance, if the query
area is “Beijing”, documents referring to “Peking University” should rank higher than documents with
a footprint that refers to “China”. On the contrary, for the query “Peking University”, the document
with a footprint “Beijing” is not of first priority.

Before starting, we define three distances (Equations (6)–(8)) between the point m in the footprint
of query Q and the point i in the footprint of document I. The ground distance between these two
points is denoted as d1. All other denotations are identical with Equation (4). The radius of query point
m is denoted as d2, calculated by its area Sm in km, which can be obtained from Google Knowledge
Base or gazetteers (Figure 3). The radius of document point i is denoted as d3, calculated by its area Si
in km. We use the radius of an area as a simplified measurement for coverage.

d1 “ Rˆ arccos rcosφicosφmcos pλi ´ λmq ` sinφisinφms (6)

d2 “

c

Sm

π
(7)

d3 “

c

Si
π

(8)
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Additionally, we generalize the retrieval cases into three scenarios (Figure 4).

(a) Scenario 1: The point m and the point i do not completely contain each other (Figure 4a), including
cases of overlapping and disconnecting. In this case, we define the distance used to evaluate the
similarity of these two points as d1.

(b) Scenario 2: The area suggested by point m contains the area of point i. For example, the query is
“Beijing”, and there are documents referring to “Peking University”, “PKU DaXing”, and “Tianjin”
(Figure 4b). For these three places, “Peking University” and “PKU Daxing” are included in
Beijing. Tianjin and Beijing are neighbor cities and have no overlapping areas. We define both
of the distances, the distance between Beijing and Peking University and the distance between
Beijing and PKU Daxing, as d2, because Peking University and PKU Daxing are at the same
level (without containing) and both are inside Beijing. Their proximity to Beijing cannot be
further differentiated. The relationship between Beijing and Tianjin fits the scenario 1, so the
distance will be larger than d2, which will finally lead to a lower score in comparison with Peking
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University/PKU Daxing. To summarize, for every location within the query area, we allocate the
same distance (d2) to get the same ranking score.

(c) Scenario 3: The geographic scope of point m is contained by the scope of point i. For example,
the query is “Peking University” and two documents refer to Beijing and Haidian District,
respectively (Figure 4c). We decide that although the two areas both contain the query area,
Haidian District is more relevant because its granularity is finer. To realize this, distances
are defined as d3. Because the fine-grained area’s radius is shorter than a coarse-grained one,
the fine-grained area’s ranking will be higher.
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Figure 4. Sketch maps of the three scenarios of regional relationships. (a) Scenario 1: the point m and
the point i do not completely contain each other; (b) Scenario 2: the area suggested by point m contains
the area of point I; (c) Scenario 3: the geographic scope of point m is contained by the scope of point i.

In the process of proximity evaluation, the real case is always a mixture of the above three
situations (Figure 5). The circle Q represents the query area, and circles P1 to P6 represent the areas of
each point in the footprint. Circles P1 and P2 are contained by Q, which fit the scenario 2, i.e., the area
mentioned in the document is contained by the query area. Thus, the distance is defined as Rq for
both P1 and P2, because there is no other information to differentiate the relevance of these two places.
Circles P3 and P4 fit the scenario 3 because circles P3 and P4 both contain Q, and the distances are
defined as the radius of the places that contain the query area, which R3 and R4 respectively. Circles
P5 and P6 fit scenario (1). Because circles P5 and P6 are separated from the query area, the distances
are defined as the centroid distances, which are D5 and D6. According to the illustration, the retrieval
ranking results for query area Q will be Rank(P1) = Rank(P2) > Rank(P3) > Rank(P4) > Rank(P5) >
Rank(P6), because Rq < R3 < R4 < D5 < D6. This result conforms to common sense.
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However, in the above steps, we decide which distance (d1, d2, d3) will be chosen based on the
awareness of topological relationships. How can we choose the distance if we do not know the
topology beforehand?

‚ In scenario (2), for instance, P1 and Q, d3 < d1 < d2 and the final determined distance is d2 (or Rq).
‚ In scenario (3), for instance, P3 and Q, d2 < d1 < d3 and the final determined distance is d3 (or R3).
‚ In scenario (1), for instance, P5 and Q, d3 < d2 < d1 and the final determined distance is d1.

To summarize, the final distance di|m that we use in the similarity evaluation in all of the scenarios
can be generalized as Equation (9). Therefore, in the retrieval process, we no longer have to examine
the topological relationships. Instead, we only need to calculate d1, d2, and d3 and set the final distance
as the maximum among them, which will reduce the workload dramatically.

di|m “ maxpd1, d2, d3q (9)

Because there is often more than one point in the footprint of a document or queries, the effects of
all of the points are summed. The general function is denoted as Equation (10), where the meanings
of the symbols are identical with the former ones. This method can address the multi-scale problem
and avoid the mistakes caused by the defects of the simple point-set model. Because this evaluation
method describes the real searching scenario more precisely, the corresponding ranking results will be
more accurate.

GI|Q “

M
ÿ

m“1

NI
ÿ

i“1

1
dr

i|m
(10)

3.2. Frequency Weight Parameter

We represent the gravity model function above to evaluate the spatial proximity based on distance.
However, proximity and similarity are not exactly equivalent. Similarity assesses not only the proximity
but also the emphasis of the documents. We know that higher frequency of a word appearing in the
document suggests higher probability of relevance. This characteristic is widely and successfully used
in IR for stop-words filtering in various subject fields including text summarization and classification,
such as the TF-IDF weight factor [13]. Unlike MBRs, which treats every point within the rectangle
equally, the consideration of frequency in this article reflects the density of the points and the result
can be more precise and sound. For instance, suppose that we have two documents with the same
word capacities and footprints. The word capacity is 1000 for each document, and both documents
refer to Beijing. Document A recommends Beijing 100 times, whereas B only recommends Beijing
10 times. The conclusion drawn from MBR analysis could be that A and B have the same score for
the query of “Beijing” because their MBRs are identical. However, in the common sense of relevance,
document A is probably more relevant to Beijing than document B. By introducing the frequency factor,
such deficiencies may be avoided.

The frequency of the spatial location i is defined as fi in Equation (11), where ni is the occurrence
number of place names referring to any location i and NI is the total occurrence of place names in the
corresponding document. It should be noted that the frequency is calculated based on geographic
semantics rather than spelling, so the occurrence counts aliases referring to an identical geographic
location can be accumulated, even though the expressions may be completely different. Higher fi
suggests higher relevance of the document to the spatial location.

fi “
ni

řNI
j“1 nj

(11)

To combine the effects of both frequency and distance, we allocate the weight of distances between
query points and document footprint points in direct proportion to the frequency of corresponding
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place name occurrences in a single document. Therefore, the gravity model in Equation (3) can
be adjusted to Equation (12). The parameter r in the equation is an empirical value to coordinate
the influence of frequency and spatial distance. With the increase in r, spatial distance becomes
more decisive.

gi|m “ fi ˆ
1

dr
i|m

(12)

The normalized evaluation function of the whole document will be calculated as equation (13).
Considering that the spatial location m in a query may appear more than once, the parameter fm is its
frequency in the query. Equation (14) is a simplified version that ignores the frequency of points in the
query. |D| is the number of documents in the corpus, and the rest of the denotations are identical
with the former equations.

GI|Q “

řM
m“1 fm

řNi
i“1 fi

1
dr

i|m
ř|D|

I“1
řM

m“1 fm
řNI

i“1 fi
1

dr
i|m

(13)

GI|Q “

řM
m“1

řNi
i“1 fi

1
dr

i|m
ř|D|

I“1
řM

m“1
řNI

i“1 fi
1

dr
i|m

(14)

The algorithm synthesizes the effect of both frequency and distance. By ranking GI|Q scores in
descending orders, we obtain a list whose top items are the most relative results for the query.

3.3. Ranking Method

3.3.1. Pre-Filtering and Spatial Index

There is one defect of the frequency-distance-based evaluation algorithm. If a document contains
locations that are very close to the query point, but the frequencies of these locations are low,
the combined score for the document may not rank high enough to allow the document be retrieved.
To conquer this irrationality, we set a rule that if the document contains locations that are close enough
to the query point, the document must be returned as a result and then be ranked. We realize this
principle by adding a filter step in runtime.

Before computing the similarity scores, for each document, we calculate the minimum distance
between the query point m and points in the document’s footprint, then retrieve the documents
with the top W-shortest minimum distances to generate a candidate set for the query. The similarity
evaluation will only be performed on the candidate. This step will ensure that the principle mentioned
above is applied and it will also lessen workloads. In practice, the value of W is decided considering
the total documents in the corpus.

A spatial index based on geohash is built to accelerate the filtering. Invented by Niemeyer [33],
geohash is a latitude/longitude geocode system and is suitable for spatial point indexing. Geohash
subdivides space into grid-shaped buckets called geohashes, and every bucket has a unique string
code. Because our footprint model is point-based and takes areas into consideration synchronically,
geohash is suitable and applied in our work. We use seven digits to code the points in the documents’
footprints, reaching a precision of ˘0.076 km. The index records the code string and IDs of documents
whose footprint contain this code.

It is a great advantage that the geohash index converts spatial information into strings. Therefore,
the neighborhood searching by comparing geohash codes is performed through spatial filtering instead
of distance calculation. In addition, by employing the idea of seed filling algorithm, we can quickly
obtain the top W documents containing nearest locations to the query point.

The pre-filtering procedure is illustrated as Figure 6. Once the spatial query is submitted,
its footprints are encoded in geohash and pushed into a target list. Select the documents whose
footprint contains the target geohash string as the candidates. If the number of candidates is less than
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the threshold that we set, more candidates should be selected. To obtain more candidates, we push the
geohash codes of the target grid’s eight neighbors into the target list. Repeat the steps above, and the
pre-filtering procedure ends when the number of candidates achieves the threshold.ISPRS Int. J. Geo-Inf. 2016, 5, 122  10 of 16 
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3.3.2. Ranking Procedure

The overall spatial ranking procedure is illustrated in Figure 7. After a query is submitted,
we perform a geohash pre-filtering to generate a candidate list; compute the ranking score for each
document in the list by applying the evaluation algorithm proposed in Section 3; and sort documents
according to the ranking scores in descending order and return the result. It should be noticed
that, after calculating the frequencies of points in a candidate document, we can sort the points in
descending order of fi and extract the top K points to represent the document’s footprint. This step
will decrease the number of points to be involved in distance calculation and reduce the calculation
amount dramatically.
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The time complexity of our algorithm is O(M ˆ K ˆ W). Among the three factors influencing
the efficiency, the number of spatial locations mentioned by a query (M) is small, usually less than
5, and parameter K is an empirical constant. Hence, parameter W is the decisive factor of efficiency.
The value of W is proportional to the total document number of the corpus. Thus, the time complexity
can be simplified as O(n).

4. Experiments and Results

4.1. Data Source

The corpus we used in our experiment consists of the domestic news of China crawled from Sina
News [34] from June to December 2014. There are 700 documents in the corpus, and each document
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contains 1 to 29 place names. The scales of the spatial locations referred to vary from one single POI to
a province.

Two footprint models are built in preprocessing based on this corpus. One is the traditional
document’s overall MBR model, computed by the coordinates of contained place names that derive
from the gazetteer, used as a reference. The other footprint model is the point-set-based model that we
proposed. To test the robustness of our model in dealing with various scenarios, 50 queries of different
scales are specifically chosen, which consider all of the possible situations. Some of the queries are
listed in Table 1.

Table 1. Examples of queries.

Hierarchy Level Instance

POI Tsinghua University, PSB of Wenzhou . . .
District Chaoyang district of Beijing, Wen’an county of Langfang . . .

City Qingdao, Hankou . . .
Province Ningxia Autonomous Region, Hong Kong . . .

4.2. Criteria

We choose precision, recall, average precision (AP), mean average precision (MAP), and R-precision,
which are defined as Equations (15)–(19), to assess the performance of our model. Experiments based
on the MBR binary model and MBR area ratio model serve as a comparison.

Precision “
Ra

A
(15)

Recall “
Ra

R
(16)

AP “

˜

R
ÿ

i“1

i
ranki

¸

{R (17)

MAP “

˜ Q
ÿ

i“1

APi

¸

{Q (18)

R´ Precision “

˜ Q
ÿ

i“1

Pi@R

¸

{Q (19)

In Equation (15) to Equation (19), Ra represents the documents that are retrieved and relevant;
A represents the documents that are retrieved; R represents the documents that are relevant; ranki
represents the rank of relevant document i in the result list; Q represents the number of queries in a
batch; and Pi@R represents the precision when the number of retrieved documents is R. The criteria
with higher values indicate better performance of retrievals.

4.3. Performance Comparison

By applying the process shown in Figure 7, we obtained the retrieval results, from which the
Precision-Recall (P-R) Curve (Figure 8), APs (Figure 9), MAPs (Table 2), and Query Histograms
(Figure 10) are derived.
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Table 2. The MAPs of the three footprint models.

Models MAP
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MBR Area-ratio 0.4776

MBR Binary 0.1392
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The P-R Curve of the point-set model is the highest, which indicates that our footprint model
and evaluation algorithm achieve higher precisions than the MBR models under the same recall rates.
In addition, the precision descending rate of the point-set model is low, which implies that the average
precision of massive returns is acceptable.

For Figure 9, the performance of our algorithm is much better for most of the queries, such as
queries 6–9 or 24–28, which focus on a relatively fine-grained area, such as Licheng district of Quanzhou
city, Fujian province (query 6), and Nanchang University (query 27) and are more likely to be mentioned
together with higher administrative units, such as cities and provinces. In that case, for these queries,
the target locations will be swamped in the traditional MBR model. In addition, queries such as
queries 9 (Guangdong province), 16 (Maoming city of Guangzhou province), 23 (Ningxia Autonomous
Region), and 29 (Luoyang city) are coarse-grained locations and will survive from location swamping
in the traditional MBR model.

The average precisions of our algorithm for 92.0% of queries are apparently higher than the other
two models, and our algorithm’s MAP reaches 84.79%.

Query Histograms are generated as the differential of the R-Precision between different methods.
The higher the column is, the better performance our algorithm obtains in comparison with MBR
models. For 84% of queries, our method’s R-Precision is much higher.

In conclusion, all of these figures back up the assertion that the model and ranking algorithm that
we proposed in this paper outperforms the MBR models, especially in dealing with documents whose
footprints consist of fine-grained locations or locations of different hierarchy levels. This feature is very
suitable for web-based geographic information retrieval, considering the multisource, unstructured
characters of online information. In addition, POI is a very popular format of geographic information
in online sources and is point set in nature.

5. Conclusions

In this paper, we propose a new point-set-based method to construct footprints for documents
and a spatial ranking method based on that structure. The point-set-based model proposed is
redundancy-free and conquers location swamping. Due to the dispersion property of spatial points,
the frequency of a place name in a document can be taken into consideration as a weight factor, making
the evaluation anisotropic and thus more precise. One of the key values of the model is that the
model can address mixed-scale data without examining the topological relationship, which is rarely
studied in related works, neither by the overall MBR model nor the MBR set model. In addition,
a complete implementation procedure is provided, as well as optimizing plans based on geohash
indexing. Experiments are carried out, and the results show that (1) our algorithm achieves higher
precisions than the MBR models under the same recall rates, and its precision descending rate is
much lower, assuring that the precision of massive returns will be guaranteed; (2) the accuracy of
our algorithm is much higher than MBR methods when dealing with fine-grained queries, which
means that our algorithm will be more suitable to obtain detailed information; and (3) the MAP of our
algorithm reaches 84.79%, whereas the MAPs for the MBR models are 47.8% and 13.9%, respectively.
All of these figures suggest that our algorithm outperforms the traditional methods in most cases.
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