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Abstract: Reliable water surface extraction is essential for river delineation and flood monitoring.
Obtaining such information from fine resolution satellite imagery has attracted much interest for
geographic and remote sensing applications. However, those images are often expensive and
difficult to acquire. This study proposes a more cost-effective technique, employing freely available
Landsat images. Despite its extensive spectrum and robust discrimination capability, Landsat
data are normally of medium spatial resolution and, as such, fail to delineate smaller hydrological
features. Based on Multivariate Mutual Information (MMI), the Landsat images were fused with
Digital Surface Model (DSM) on the spatial domain. Each coinciding pixel would then contain
not only rich indices but also intricate topographic attributes, derived from its respective sources.
The proposed data fusion ensures robust, precise, and observer-invariable extraction of water surfaces
and their branching, while eliminating spurious details. Its merit was demonstrated by effective
discrimination of flooded regions from natural rivers for flood monitoring. The assessments we
completed suggest improved extraction compared to traditional methods. Compared with manual
digitizing, this method also exhibited promising consistency. Extraction using Dempster–Shafer
fusion provided a 91.81% F-measure, 93.09% precision, 90.74% recall, and 98.25% accuracy, while
using Majority Voting fusion resulted in an 84.91% F-measure, 75.44% precision, 97.37% recall,
and 97.21% accuracy.

Keywords: water surfaces extraction; flood monitoring; water indices; DSM; mutual information

1. Introduction

Floods are one of the most frequently occurring disasters that cause tremendous mortality and
devastation to personal property and communities [1], particularly in heavily populated urban areas [2].
Due to the severe disruption caused by floods, flood investigation and monitoring by state officials
is often belated and superficial. In addition, those endeavors would require immense financial and
human resources. Current advances in remote sensing technology have enabled the use of satellite
imaging for surveillance and damage assessment [3,4]. Due to the reflective properties of groundcover,
differentiating water passages such as rivers, or permanent water [5] from flooded areas, or temporary
water [6] has remained a challenge. This problem is typically addressed by discerning spatio-temporal
changes in images acquired in series. Successful flood monitoring is completed by accurately discerning
the river from other groundcovers.

Obtaining detailed information of the earth’s surface, including manmade structures and terrain
characteristics, fine satellite images have played a major part in automated geographical information
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systems (GIS). The amount of information obtained from GIS has been ever increasing. Several
modalities, including GeoEye, SPOT (Satellites Pour l’Observation de la Terre), IKONOS, and THEOS
(Thailand Earth Observation Satellite) have been found to be effective, for instance, in characterizing
land use and land cover [7–9]. Nonetheless, their primary drawbacks are that their images are
often expensive and difficult to acquire, with limited spatial extent, and sometimes covered with
cloud. In addition, many studies have reported that, despite their great spatial resolution, their spectral
resolution was found to be inadequate [10,11]. On the other hand, the middle spatial resolution Landsat
satellite images, being freely available [12,13] and containing relatively higher spectral resolution [14],
have been widely used in many GIS studies. The difference in their spatial resolution has been proven
to be discernible, both synthetically [15] and empirically [16]. Nonetheless, in the context of water
extraction [17–21], Landsat images have been a more cost-effective choice for supporting a wide range
of applications [17–22].

Sentinel-2 is another, more superior, modality with a spatial resolution of 10 meters and is also
freely available. Several studies have used Sentinel-2 for river classification and flood monitoring.
Those techniques were either based on water indices [23–25] or objects [26], with a rather high accuracy
of 93% and 90%, respectively. Specifically, in Zhou et al. [25], Sentinel-2 was compared against Landsat
7 and 8 for water surface extraction. They reported that the accuracy obtained from Sentinel-2 was
second only to Landsat 8 and is thus a viable alternative. Thus far, the limitation agreed upon by all
these studied is that satellite images were incapable of extracting narrower water passages.

Digital Surface Model (DSM) is a capable alternative for discriminating water from non-water
areas and takes into account the heights of global surface covering objects such as buildings and trees.
With this modality, water bodies are characterized as those with locally minimum and small (or zero)
deviated heights. Due to this characteristic of DSM, some have suggested using it to separate water
areas from land [27] and to separate flooded areas from those that are not [28]. Similar topographic
assumptions have also been imposed on DEM. In particular, Gallant [29] demonstrated that flat
or zero mean curvature elevations are consistent with those of water levels. A notable flaw in the
curvature assumption is that it does not necessarily hold true for urban areas, where flat surfaces may
be buildings, roads, or other man-made structures. Higher order statistics, such as local variance,
could also be used to further differentiate leveled water from similar surfaces, but they are inevitably
more prone to imaging noise.

By exploiting the benefits of both modalities while minimizing their respective drawbacks,
we present a novel method for water extraction by integrating no-cost satellite images with DSM by
using Multivariate Mutual Information (MMI) and data fusion. The ability of this method to be applied
to flood management is highlighted by discerning temporary from permanent water in remotely sensed
images. Temporary water is presumably a flooded area and could be monitored during the course
of the event. The experiments we completed demonstrate that the proposed technique is superior
to traditional methods in terms of both precision and robustness against noise. Most importantly,
this method reliably delineated narrower water branches, with relatively high consistency, compared
with manual digitizing from aerial images.

The remainder of this article is organized as follows. The literature review section summarizes
imaging and topographic data involved in this study, as well as relevant water surface extraction
methods. We introduce theoretical backgrounds on the key elements of this study, including
multidimensional mutual information and data fusion. Subsequently, the methodology section
first outlines the proposed scheme, followed by its implementation. To highlight the merit and
to demonstrate the potential of the proposed scheme, both the visual and numerical assessments are
detailed in the results section. Lastly, the prospective areas for application of this method and areas of
consideration are discussed.
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2. Materials

This section discusses literature related to developments in water surface extraction, involving
data (Landsat and DSM), their interpretation (water indices), information theoretic similarity measure
(MMI), and fusion techniques.

2.1. Landsat Images

Landsat images are a middle-range spatial resolution satellite images, usually analyzed in land
use and land cover studies. The image resolution varies by Landsat sensor. For Landsat 8, the spatial
resolution is 30 m for all bands, except for TIR and panchromatic bands, whose spatial resolutions
are 100 m and 15 m, respectively. In addition, various Landsat modalities have been used in the
extraction and delineation of water surfaces. For example, Landsat Enhanced Thematic Mapper Plus
(ETM+) [19–21], Landsat 5 [16], Landsat Thematic Mapper (TM) and ETM+ [17], and Multi-temporal
Landsat [30,31], have been used as the tools to extract water surfaces, characterize their features,
and detect their changes. Despite its advantages [12–14], Landsat’s main drawback is that its images
have limited spatial resolution [22,27–32]. For the extraction of finer hydrological details, Landsat
could benefit from incorporating topographical features.

2.2. Digital Surface Model (DSM)

DSM encodes topographic height in its values, similar to the Digital Terrain Model (DTM), but the
data are stored in raster form and include features above ground, such as buildings and vegetation,
which helps differentiate elements augmented in DEM for observations. The spatial resolution of DSM
is typically as high as five meters. This model has been used in a wide range of applications, such as
building extraction [33,34], building change detection [35], and land cover classification [36]. Only been
a few studies have investigated its potential as a water surface identifier, since the model was not
developed for hydrological data. These studies involved the classification of water areas during
flood events based on RADARSAT-1 and DSM [37] and the estimation of water surface elevation in
inundated area using MODIS [38].

Several studies have made inferences from DSM geometric properties. One assumption was
based on its local statistics. Specifically, standing water is a leveled surface and thus has a low standard
deviation. Recent work [27] used this quality of water to separate it from a coal pile field and a coal
gangue pile from GeoEye images using the Normalized Difference Water Index (NDWI). In this case,
the standard deviation of surface heights was used as an auxiliary. However, the details of the extracted
water bodies depend on the domain’s spatial resolution where NDWI was computed, rendering their
method unsuitable for medium spatial resolution satellite images.

The curvature represents the rate of change in surface orientation of a variable across an area.
It has been widely applied in several remote sensing applications, including distinguishing buildings
from forest areas [39], detecting landslide with average curvature among other attributes [40], assessing
soil erosion [41], and extracting channel network from DEM [42]. This feature is also often used to
describe the physical characteristics, such as convexity, concavity, and flatness, of an area [43,44].

2.3. Water Index

The water index has been used to extract water surfaces from Landsat images. By exploiting
its multispectral nature [31,45], the algebraic rational of different reflective bands has prevailed over
any other single-band indicator. Several indices have been proposed in the literature, including
the Normalized Difference Water Index (NDWI) [46–49], Normalized Difference Water Index 2
(NDWI2) [20,21,45–47], Modified Normalized Difference Water Index (MNDWI) [17–21,50–52], and the
Normalized Difference Pond Index (NDPI) [52–56]. MNDWI [19,45,57] and NDWI2 perform equally
well and generally better than the others. In the following experiments, both NDWI2 and MNDWI
were chosen as the representative water indices. Notably, despite their success, MNDWI and NDWI2
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are incapable of delineating small hydrological features such as narrower canals and river branching.
Moreover, in practice, their extraction is highly subjective, dependent upon user specified thresholds
and their individual judgment.

2.4. Mutual Information (MI)

MI was founded on information theory and was later introduced to image registration [58,59].
MI measures the amount of information shared between two random variables, hypothetically
originating from the same entity but not necessarily the same acquisition. In multi-spectral images,
basic two-variable MI is inadequate, because, in some cases, a given pair of bands may lack sufficient
similarity. Therefore, in imaging applications involving multiple modalities, opportunity exists to
improve registration by adopting Multivariate Mutual Information (MMI). MMI has been widely
applied in registering medical images [60–62], satellite images [63–66], and images in general [67].
In addition to apparent benefits, MMI has also been used in pattern recognition for feature selection [68]
and classification [69]. Particularly in remote sensing, spatio-temporal analysis based on the MI of
multi-band images has been proposed to detect change [70–72] and to monitor glaciers [73]. These
studies reached their objective by maximizing the MI of two variables, A and B, i.e.,

I(A, B) = H(A) + H(B)−H(A, B) (1)

where H(A) and H(B) are the entropies of the respective variables, while H(A,B) is their joint entropy.
Since multiple thematic layers were considered in this study, we decided to use the MMI of four
variables previously extended by Clark et al. [74]. This four-dimensional (4D) MI was expressed as
that interaction information among X1, X2, X3, and X4, that is:

I (X1; X2; X3; X4) = [H (X1) + H (X2) + H (X3) + H (X4)] −
[H (X1, X2) + H (X1, X3) + H (X1, X4)] +
H (X2, X3) + H (X2, X4) + H (X3, X4)] +

[H (X1, X2, X3) + H (X1, X2, X4) + H (X1, X3, X4) + H (X2, X3, X4)] −
H (X1, X2, X3, X4)]

(2)

2.5. Data Fusion

Different remotely sensed thematic layers may be fused to enhance various analytical aspects
of a study in terms of recognition, identification, detection, classification, and change detection [75].
These studies reported that data fusion yielded better results than relying solely on any single source
of information. Moreover, uncertainty and misalignment are reduced by reciprocal adjustment.
A number of fusion algorithms have been proposed in the literature [76–79]. Despite a variety of
choices, the remote sensing community has favored Majority Voting and Dempster–Shafer, since their
performance for extraction and classification is generally superior to others [80–82]. Hence, these
algorithms were chosen in the current study.

Majority voting is the simplest way of combining results from different sources [83]. With this
method, every result can cast one vote for the value it observed and the final result is then decided
by that casted by the majority. This method has been used to detect change in urban areas [75] and
combine textured images classifiers [84]. Dempster–Shafer is another fusion method [85,86]. It has
been used in building extraction based on three thematic sources: DSM, results of the K-means
clustering, and building outlines [34]. Fundamentally, it combines different datasets based on the
degree of confidence related to a belief function of each class label. This belief function consists of two
parameters: support or belief (Sup/Bel) and plausibility (Pls). The Dempster–Shafer method involves
three steps. Firstly, it calculates mass functions, m, obtained from the class probability:

m(θ) = ∑
A⊂2θ

m(A) = 1 (3)
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where θ is a frame of discernment, and i contains two possible mutually exclusive and exhaustive
states of a given pixel, i.e., {water, non-water}, and m(∅) = 0.

According to Trinder and Salah [81] and Rashidi and Ghassemian [82], 2θ is a power set, listing
all possible subsets A of θ, including an empty set, which is an undefined pixel. The mass m(A),
of a subset A, is a proportion of the relevant and available evidence. It is given by basic probability
assignment (BPA) of a random variable drawn from the distribution of respective data sources, i.e.,
water indices or local standard deviations (LSD) of topographic properties.

Secondly, the two parameters associated with each class A ∈ 2θ were computed as follows:

Sup(A) = ∑
Ai⊂A

m(Ai) (4)

Pls(A) = ∑
Ai∩A 6=∅

m(Ai) (5)

Finally, the fused mass function considering all the data sets is given by:

m(A) =
∑A1∩A2...∩Ap ∑1≤n≤p m(Ai)

1− K
(6)

where K = ∑
A1∩A2...∩Ap 6=∅

∑
1≤n≤p

m(Ai), and m(Ai) is the probability mass for class Ai in the nth instance,

out of 1 to p results.

3. Methodology

Water extraction by means of traditional machine learning is based primarily on reflective
water indices. Without other supportive indicators, the machine learning is occasionally unable
to differentiate water bodies from other ambiguities such as built-up areas, land, manmade structures,
and shadow or acquisition noises. Despite the state of the art noise filters, existing studies concur
that all-around indices and their optimal ranges that can extract nothing but water have yet to be
devised. Should such water indices be available, typical Landsat images would nonetheless contain
insufficient details to reveal subtle hydrological features. Although Landsat images have successfully
been used in a wide range of applications, their main pitfall is their merely medium spatial resolution.
Even if the images could be interpolated to increase the spatial resolution, their intrinsic information
is nonetheless incapable of extracting the narrower water bodies. A more realistic solution was to
augment the spatial resolution by integrating DSM.

The aim of this study was to further improve water area classification, in terms of both accuracy
and precision, from Landsat images by considering information mutually shared with topographic
derivatives. To this end, the MMI of the NDWI2 and MNDWI water indices and local standard
deviations (LSD) of height and curvature per the DSM data were optimized to determine suitable
thresholds for respective attributes. The water surfaces, as observed from these tools, were then
fused by means of majority voting and Dempster–Shafer methods. The extraction results from these
decisions were subsequently validated against manual digitizing. This process is summarized in
Figure 1.
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3.1. Data Preparation

The following experiments involved four major cities in Thailand, with diverse climatic,
residential, and geographical characteristics. They are: Pathumthani (Muang district: 1526 km2),
Chumphon (Lang Suan district: 937 km2), Surat Thani (Muang district: 231 km2), and Nakhon Si
Thammarat (Pak Phanang: 559 km2). They have all been subject to several major floods during the
past decades. The most recent one occurred in January 2017 and severely affected the last three cities.
Geographically, the cities are either on a plain, as is the case for Pathumthani, or on a peninsula—the
remaining cities are surrounded by the Gulf of Thailand and the Andaman Sea. The major rivers
considered in this study were Chao Phraya, Lang Suan, Tapi, and Pak Phanang, located in Pathumthani,
Chumphon, Surat Thani, and Nakhon Si Thammarat, respectively. The DSM data at 5-meter spatial
resolution were provided by the Department of Public Works and Town and Country Planning
(DPWTCP), Pathumthani. The Landsat 8 images were downloaded from the United States Geological
Survey (USGS) website. The modalities, acquisition date, and extraction type of the Landsat images
are provided in Table 1. A total of 11 bands were taken from these images for layer stacking and then
up-sampled to equal that of DSM, not in order to increase its intrinsic resolution, but so that pixel-wise
fusion could be achieved. The ground reference was collected from manual digitizing of water surfaces
from the corresponding aerial images, which were acquired from the Royal Thai Survey Department.
Table 2 lists Landsat 8 bands’ characteristics and Figure 2 shows interpolated images and derived
water indices of a sampled area.
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Table 1. Detailed description of the Landsat images acquired in four cities in Thailand.

Area Data Acquisition Date Extraction Type

Pathumthani

Landsat 5 30 November 2011 Temporary Water
Landsat 5 6 September 2011 Permanent Water
Landsat 8 30 November 2013 Permanent Water
Landsat 8 2 February 2014 Permanent Water
Landsat 8 5 February 2015 Permanent Water

Chumphon Landsat 8 9 January 2017 Temporary Water
Landsat 8 18 February 2017 Permanent Water

Surat Thani
Landsat 8 9 January 2017 Temporary Water
Landsat 8 18 February 2017 Permanent Water

Nakhon Si Thammarat
Landsat 8 9 January 2017 Temporary Water
Landsat 8 18 February 2017 Permanent Water

Table 2. Landsat 8 wavelength characteristics.

Landsat 8 Bands Wavelength (µm) Landsat 8 Bands Wavelength (µm)

Coastal/Aerosol 0.435–0.451 SWIR-1 1.566–1.651
Blue 0.452–0.512 SWIR-2 2.107–2.294

Green 0.533–0.590 Pan 0.503–0.676
Red 0.636–0.679 Cirrus 1.363–1.384
NIR 0.851–0.879 TIR-1 10.60–11.19

TIR-2 11.50–12.51

Although Landsat contains 11 bands, this study required only Green, NIR, and SWIR-1 to compute
NDWI2 (Green − NIR/Green + NIR) and MNDWI (Green − SWIR1/Green + SWIR1). Although PAN
correlates with NIR, its enhanced intrinsic spatial resolution was not sufficient to capture the details
required and it was thus disregarded.ISPRS Int. J. Geo-Inf. 2017, 6, 301  7 of 21 
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3.2. Extraction Based on Water Indices

The NDWI2 and MNDWI were calculated from Landsat 8 images [48,51]. Normally, water surface
extraction by using these indices would require empirical thresholds, by which water surface and
build-ups are differentiated. Specifying suitable thresholds that precisely distinguish water pixels from
other objects is a challenging task and remains actively investigated. Moreover, the values might only



ISPRS Int. J. Geo-Inf. 2017, 6, 301 8 of 22

be accurate locally and not effective on a wider scale or applicable to different environments. In this
study, no decision on an overall threshold was prescribed, but the values were adjusted adaptively
according to underlying topographic contexts, with respect to their MMI.

3.3. Extraction Based on Topographic Attributes

3.3.1. Local Standard Deviation of Surface Height

Probable water pixels are those whose vicinities are relatively flat. This proposition was expressed
as a LSD of a group of DSM pixels. In this study, the value was computed within a 3 × 3-pixel window
centered at a corresponding pixel:

σi =

√√√√1
8

9

∑
i=1

(
DSMi − DSM

)2 (7)

where σi is the standard deviation of an ith DSM pixel, whose height is DSMi, and DSM is the mean
height within a specified vicinity. The standard deviation close to zero is normally considered as
belonging to water, while other types of land cover assume larger values. However, this study did
not prescribe a threshold, but instead determined this value based on coupled relationships with
reflectance and other topographic properties through MMI.

3.3.2. Local Standard Deviation of Curvature in the DSM Process

The curvature feature describes the convexity or concavity of a surface. The value can be positive,
negative, or zero, representing concave, convex, and flat areas, respectively. For leveled water, this
value is close to zero. The same may apply to any flat terrain. However, in DSM, water curvature
appears to have a lower standard deviation. In this study, profile curvature was computed using
Equation (8), based on a 3 × 3 neighborhood (Figure 3).ISPRS Int. J. Geo-Inf. 2017, 6, 301  8 of 21 
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Provided c is a grid size, profile curvature K of local surface is expressed by:

K =
−2
(

DG2 + EH2 + FGH
)

G2 + H2 (8)

where D =
[

z4+z5
2−z0

]
/c2, E =

[
z2+z7
2−z0

]
/c2, F = z3−z1+z6−z8

4c2 , G = z5−z4
2c , and H = z2−z7

2c .
The notations D–H were defined following Zeverbergen and Thorne [87], where D and E were

second order partial derivatives of elevation (z) for x and y, respectively; F was a second order mixed
derivative for x and y; and G and H were first order partial derivatives for x and y, respectively.
The local standard deviation of profile curvature was also derived according to Equation (7). Although
an area with a value close to zero is normally assumed to be water, the optimal threshold was
determined by using MMI.
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3.3.3. Threshold Optimization Using Multivariate Mutual Information

MMI is an information theoretical-based metric that measures the dependency of sensed data.
In remote sensing, MMI is typically adopted as an objective function for spatially registering two or
more relevant geographical acquisitions. However, as the thematic layers had already been registered
in this study, MMI was used as an objective function for aligning layers, attributes, to determine
the optimal thresholds and directions, using Equations (9) and (10). In the subsequent experiments,
these layers were NDWI2 (X1), MNDWI (X2)), Local Standard Deviation (LSD) of Height Feature (X3),
and LSD of curvature feature (X4).

Topt = argmax
T

(MMI(X1; X2 ; X3; X4)) (9)

Topt = argmax
T

(MMI(X1; X2)) (10)

Since addressing efficient optimization strategies and their parametric treatment fell outside of
the scope of this study, the globally optimal thresholds set for these thematic layers were determined
by exhaustive search across the plausible enclosing area. The resultant thresholds were accordingly
used to extract water areas from respective layers.

3.3.4. Data Fusion Between Segmented Satellite and DSM Images

Although the segmented water bodies were accepted based on the mutual water hypothesis,
sporadic ambiguities did exist in different layers. The final decision was reached by fusing those
segmented images. Two fusion algorithms, Majority Voting and Dempster–Shafer, were considered.
The former takes the consensus from the most voted class per pixel. In Dempster–Shafer fusion, for a
pixel to be labeled as class Ai, its belief function bel(Ai), estimated from the confusion matrix following
the Equations (3) to (6), must be the greatest among other class labels.

3.3.5. Accuracy Assessment

To devise a suitable guideline for adopting the proposed scheme, the accuracy of water
segmentations, based on the water indices and height and curvature features obtained from the
Majority Voting and the Dempster–Shafer methods, were compared. The accuracies were assessed
in terms of water surface areas and the class labels assigned to individual pixels. The interpretations
reported were based on validating these observations against manual digitization of aerial photographs
and field verification.

3.3.6. Flooded Areas Extraction

For flood monitoring and verification, the results were validated against Landsat images, similar
to that of river extraction but based on the image acquired when the flood occurred. A similar water
indices-based verification was performed, providing the extracted water surfaces of both rivers and
flooded areas. Change detection was subsequently needed to subtract these surfaces from those of
rivers, from images obtained from prior to the flood. In this study, flood monitoring and verification
was implemented on Google Earth Engine (GEE). The application displayed the flooded areas in the
four studied areas.

4. Results

As an initial assessment, to illustrate the merit of MMI-based threshold optimization, the scatter
plots of the two water indices, MNDWI and NDWI2, were compared (Figure 4). After determining
the water bodies, the cut-off values of these indices were typically set to zero (Figure 4a). A large
proportion of pixels at the NDWI2 lower end extend over the entire range of MNDWI, whose water
discrimination was not definitive, as shown by the horizontal stripe. On the other hand, should
the optimal values, which for MNDWI was greater than 0.032 and for NDWI2, greater than 0.016,
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be employed (Figure 4b), not only were those indecisive pixels eliminated, but the regression line of
both indices also improved, with the coefficient of determination (r2) increasing from 0.774 to 0.863,
and SSE (Sum of Squared Errors) dropping by 50%.
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Figure 4. The scatter plots showing the correlation between MNDWI and NDWI2 when using: (a) the
typical zero threshold; and (b) the optimal threshold, which are MNDWI > 0.032 and NDWI2 > 0.016.

We argue that differences between empirical and optimal thresholds were only marginal and
can be neglected in most practical settings. Moreover, small variations in the thresholds did not
significantly alter the overall appearance of the extraction. Upon closer inspection, the preliminary
study revealed that even a slight shift in the prescribed indices could cause under- or over-segmentation
of the finer hydrological details, such as canal branches, due to the ambiguous boundary. Accordingly,
this made the existing index based scheme prone to significant subjective inter- and intra-observer
variability, as well as being regionally dependent.

For these studied areas, the optimal thresholds and their respective directions that maximized the
MMI were as follows: NDWI2 > 0.016, MDNWI > 0.032, LSD of Height < 1.6−8, and LSD of Curvature
> 1.6−8. Due to numerical approximation in practice, 0 s may be assigned to LSDs. Once the optimal
thresholds were determined, the segmented binary images of thematic layers were fused by using the
Majority Voting and Dempster–Shafer methods.

The effectiveness of the proposed scheme was then visually assessed. Figure 5 depicts extractions
of four images in Pathumthani at different timeframes, from 2013 to 2015, by means of Majority Voting
(Figure 5a) and Dempster–Shafer (Figure 5b) fusions. Due to a consistent MMI objective and DSM’s
ability to preserve diminutive structures, Dempster–Shafer was able to delineate water bodies very
accurately, while also maintaining their branching and finer details. Due to limited space, only the
extractions using Dempster–Shafer in 2013 are illustrated for the remaining areas (Figure 5c,d).
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The numerical evaluation shown in Table 3 also confirms our visual observation. In this table,
Pathum-1 to -4 correspond to images a (or b), c, d, and e in Figure 5, respectively. Therein, the two
fusion methods were compared with respect to their accuracy, precision, recall, and F-measure.
For all considered areas and corresponding extractions at one-year intervals (2013, 2014, and 2015),
the Dempster–Shafer method provided the highest averaged accuracy of 98.25%, while that of Majority
Voting was 97.21%. This trend is manifested in the other assessments. Dempster–Shafer outperformed
Majority Voting in terms of precision and F-measure, with values of 93.09% versus 75.44%, and 91.87%
versus 84.91%, respectively. In these experiments, the recall, which is the ratio between total pixels
predicted as water and those actually being water, of the Dempster–Shafer method was, on average,
lower than its counterparts. The reason for this is due to having high false negative rate, which
occurs when water pixels are disregarded as non-water. This relatively low sensitivity was expected
if Bayesian inferences of a proposition (being water), whose count were small compared to the
contradicting classes, were taken into account.

Figure 6 shows the correlation between the ground truth data, which were manual delineations
by experts, and automatic water extractions obtained from the Dempster–Shafer and Majority Voting
fusions. The Dempster–Shafer results are more highly correlated to the ground truth than those of
Majority Voting.

Unlike Pathumthani, other cities are not as flat, and thus few outliers existed with non-zero
but small topographic variations that, together with water indices, had made the majority of votes
false positives. These outliers, however, had less confidence, and were accordingly removed by
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Dempster–Shafer. Notably, although Majority Voting was sensitive to noise in these datasets,
the proposed method worked equally well with both flat and non-flat areas.

Table 3. Numerical assessment of Landsat with DSM fusion with four variables, including water
indices and surface properties, with MMI-optimized thresholding.

Dataset

Data Fusion

Majority Voting Dempster–Shafer

Accuracy Precision Recall F-Measure Accuracy Precision Recall F-Measure

Pathum 1-2013 97.46 82.05 99.06 89.76 98.74 96.06 94.77 95.41
Pathum 1-2014 97.52 82.57 99.05 90.06 98.69 96.51 94.00 95.24
Pathum 1-2015 97.58 82.99 99.02 90.30 98.90 93.33 98.46 95.82
Pathum 2-2013 96.77 79.96 97.53 87.88 96.94 94.36 86.09 90.03
Pathum 2-2014 96.83 80.41 97.52 88.14 97.89 94.39 91.45 92.90
Pathum 2-2015 96.86 79.98 98.28 88.19 97.68 94.48 90.13 92.25
Pathum 3-2013 97.85 71.23 97.79 82.42 98.70 91.06 90.60 90.83
Pathum 3-2014 97.86 71.10 98.13 82.46 98.62 90.64 89.96 90.30
Pathum 3-2015 97.66 68.90 97.09 80.60 98.31 91.27 85.72 88.41
Pathum 4-2013 96.95 69.99 96.74 81.21 97.97 91.83 87.27 89.49
Pathum 4-2014 96.84 68.11 97.66 80.25 98.07 91.70 88.28 89.95
Pathum 4-2015 96.31 67.96 90.52 77.64 98.45 91.39 92.14 91.76

Avg. of Pathumthani 97.21 75.44 97.37 84.91 98.25 93.09 90.74 91.87
Surat Thani 97.85 99.65 98.15 98.89 97.91 99.70 98.16 98.93
Chumphon 99.24 99.33 99.89 99.61 99.37 99.49 99.87 99.68

Nakhon Si Thammarat 99.57 91.70 98.02 94.75 99.59 91.73 98.32 94.91
Avg. of Other Sites 98.89 96.89 98.69 97.75 98.96 96.97 98.78 97.84

Total Avg. 97.54 79.73 97.63 87.48 98.39 93.86 92.35 93.06ISPRS Int. J. Geo-Inf. 2017, 6, 301  12 of 21 
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If DSM was just used for fusion but not incorporated during MMI optimization, only the MNDWI
and NDWI2 indices would be mutually assessed for thresholding. The results of fused water extraction
in Pathumtani during 2013, by using Equation (10) are given in Table 4. Disregarding surface attributes,
the optimal threshold of these indices changed from NDWI2 > 0.016 and MNDWI > 0.032 to NDWI2 >
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0.045 and MNDWI > 0.09. However, DSM, whose topographic thresholds were set to zero, was
still used during the fusion. Accordingly, the averaged extraction accuracies for the respective
samples were slightly improved, compared to those in Table 3 when Dempster–Shafer fusion was
used. Specifically, the averaged accuracy, precision, recall, and F-measure increased from 98.09%,
93.33%, 89.68%, and 91.44% to 98.63%, 92.26%, 94.85%, and 93.51%, respectively. If the Majority Voting
scheme was used instead, then the results deteriorated. Notably, the Dempster–Shafer fusion of the
indices and DSM was generally accurate and independent of mutual threshold settings. Both two-
and four-variable MMI provided similar results and the four-variable MMI performed equally well
by using either of the fusions. Dempster–Shafer fusion with four-variable MMI optimization was
therefore preferred. To ensure its generalization ability, the MMI-based thresholding and thematic
layer fusion were applied in the other cities that had different climates, and resident and geographical
characteristics, namely Chumphon, Surat Thani, and Nakhon Si Thammarat. The resultant extractions
are illustrated in Figure 7 and their respective numerical assessments are listed in Table 3. These
results are consistent with those of Pathumthani; Dempster–Shafer yielded more accurate extractions
than its peer, with mean accuracy, precision, recall, and F-measure of 98.96%, 96.97%, 98.78%, and
97.84%, respectively.

Table 4. Numerical assessment of Landsat with DSM fusion with two-variable (water indices) MMI
optimized thresholding.

Dataset

Data Fusion

Majority Voting Dempster–Shafer

Accuracy Precision Recall F-Measure Accuracy Precision Recall F-Measure

Pathum 1-2013 96.60 76.32 98.31 85.93 98.89 93.33 98.46 95.82
Pathum 2-2013 96.50 80.88 94.43 87.14 98.18 94.51 93.18 93.84
Pathum 3-2013 97.77 71.50 95.96 81.94 98.98 89.79 95.57 92.59
Pathum 4-2013 96.79 70.76 93.53 80.57 98.46 91.39 92.17 91.78

Avg. 96.92 74.87 95.56 83.90 98.63 92.26 94.85 93.51
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Figure 7. Water extraction results for the Pak Phanang River in Nakhon Si Thammarat) using:
(a) Majority Voting; and (b) Dempster–Shafer. (c) The Tapi River in Surat Thani; and (d) the Lang Suan
River in Chumphon using Dempster–Shafer.
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The averaged accuracy, precision, recall, and F-measure decreased from 97.26%, 75.81%, 97.78%,
and 85.34% to 96.92%, 74.87%, 95.56%, and 83.9%, respectively. The reason for these inconsistencies was
because the surface information was neglected, so care must be taken when choosing the appropriate
fusion strategy.

To demonstrate the potential for this technique to be applied to monitoring, a similar approach
was used for the selected areas when the flooding occurred, from which their respective rivers were
subtracted. The major flood incidents were reported in November 2011 for Pathumthani and in January
2017 for the remaining cities. The resultant overlaid flood maps are depicted in Figures 8–11, where
the dark and light blue indicate the permanent water or river and temporary water, being the flooded
areas, respectively. The orange arrows indicate the locations of extracted images in the inset.ISPRS Int. J. Geo-Inf. 2017, 6, 301  14 of 21 
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Figure 11. Discrimination between the Pak Phanang River, shown in dark blue, and the flooded areas,
shown in light blue in the Pak Phanang district, Nakhon Si Thammarat.

With these maps, the authorities could devise well-informed rescue, mitigation, and evacuation
plans and related management. Using Pathumthani as an example, the flooding was widespread but
in small regions, divided by elevated local roads, and the flooding was equal on both sides of the
Chaophraya River (Figure 8). A similar pattern was evident in Nakhon Si Thammarat, but the flooding
was more severe to the west of the Pak Phanang River, as shown in Figure 10. The incident, however,
was far more critical in Lang suan, Surat Thani, as the flooding covered more than 50 percent of the
city (Figure 9), whereas that in the Muang district of the same city, it was less severe but mitigation
was clearly needed in four villages around the river (Figure 11). These accurate discriminations could
also help in determining the affected areas and preparing appropriate relief measures and resources,
as well as planning infrastructure that can cope with reoccurrence and lessen the potential devastation,
reducing the cost of relief efforts and rebuilding.

Although the Sentinel-2 images are of higher spatial resolution than the Landsat 8 images, the time
frame of this study dated back to earlier than June 2015, when the Sentinel-2 was first launched.
In addition, when a flood occurred at Pak Phanang in January 2017, the images of the area were
extensively covered by cloud (Figure 12) which could have compromised the results. Furthermore,
Yang et al. [24] reported that, for water classification, Sentinel-2 yielded comparable accuracy to
Landsat 8. The latter was therefore used for this study. Having said that, a future study could benefit
from the higher spatial resolution of Sentinel-2, as its images are now available.
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5. Conclusions

Classification based on indices was an effective means of water surface extraction from the Landsat
images. The main drawback of Landsat images is its modest precision, being unable to extract narrower
water bodies such as branching and canals. This study proposed an information theoretic-based
framework for combining multiple contextual extractions, based on MMI and Dempster–Shafer fusion
that not only produced consistent results but also preserved both salient and minute hydrological
details. By augmenting spectral-rich Landsat images with fine surface data from DSM, the results
exhibited more preferable characteristics, both visually and numerically, than traditional methods when
validated with manual digitization. In addition, the proposed scheme did not require any expensive
fine resolution satellite images, making the detailed segmentation more accessible. Moreover, this
framework could be adopted in a change detection scheme for separating temporary from permanent
water. The applications for our proposed framework include flood assessment and monitoring.
Experiments on the cities that were selected had different characteristics, highlighting its potential for
practical use in devising appropriate measures, as well as assisting administrative decision making.

This study proposed a prototype scheme for water surface extraction. A guideline was outlined
for integrating information theoretic framework (MMI) with intermediate level computer vision to
serve this task. The input data involved are the easily accessible and cost-effective Landsat images
and DSM. The main emphasis was on accurately and precisely identifying standing water, so that it
could be reliably used for subsequent temporal analyses. Water extraction has been demonstrated to
lay a foundation for various hydrological studies, including flood simulation, erosion modeling, and
landslides. We anticipate that more accurate and reliable delineation results obtained from this study
could be readily and effectively used in preparation for future system integration, such as in conjunction
with multi-temporal Landsat or MODIS data, for real-time flood monitoring. The temporality of
Landsat data, for example, can be integrated to monitor changes, such as those caused by flooding.
In the future, the proposed scheme could be integrated with real-time incident reports from flood
victims, rescue teams, or relevant parties, so as to make the identification of flood areas more reliable
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and consistent with the actual incident. Technological convergence in computing could also help with
an official flood mitigation and management regime.
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