
 International Journal of

Geo-Information

Article

Near-Real-Time OGC Catalogue Service for
Geoscience Big Data

Jia Song 1,2,3 and Liping Di 1,*
1 Center for Spatial Information Science and Systems, George Mason University, 4400 University Drive,

MSN 6E1, Fairfax, VA 22030, USA; songj@lreis.ac.cn
2 State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences

and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District,
Beijing 100101, China

3 Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development
and Application, Nanjing 210023, China

* Correspondence: ldi@gmu.edu; Tel.: +1-703-993-6114

Received: 3 July 2017; Accepted: 26 October 2017; Published: 2 November 2017

Abstract: Geoscience data are typically big data, and they are distributed in various agencies and
individuals worldwide. Efficient data sharing and interoperability are important for managing and
applying geoscience data. The OGC (Open Geospatial Consortium) Catalogue Service for the Web
(CSW) is an open interoperability standard for supporting the discovery of geospatial data. In the past,
regular OGC catalogue services have been studied, but few studies have discussed a near-real-time
OGC catalogue service for geoscience big data. A near-real-time OGC catalogue service requires
frequent updates of a metadata repository in a short time. When dealing with massive amounts of
geoscience data, this comprises an extremely challenging issue. Discovering these data via an OGC
catalogue service in near real-time is desirable. In this study, we focus on how the near-real-time
OGC catalogue service is realized through several lightweight data structures, algorithms, and tools.
We propose a framework of a near-real-time OGC catalogue service and discuss each element of
the framework to which more attention should be paid when dealing with the massive amounts of
real-time data, followed by a review of several methods that need to be considered in a near-real-time
OGC CSW service. A case study on providing an OGC catalogue service to Unidata real-time data is
presented to demonstrate how specific methods are utilized to deal with real-time data. The goal of
this paper is to fill the gap in knowledge regarding an OGC catalogue service for geoscience big data,
and it has realistic significance in facilitating a near-real-time OGC catalogue service.

Keywords: CSW; catalogue service; big data; Unidata; metadata; real time

1. Introduction

Geoscience requires significant amounts of data and models for analyzing the past, current,
and future geological status of the Earth. It also provides huge volumes of data in recording Earth
observations from the past into the future. In particular, with the development of Earth observation
(EO) technology, massive amounts of Earth observation data are continuously generated daily. There is
no doubt that geoscience data are big data, and they are distributed in various agencies and individuals
worldwide. Efficient data sharing and interoperability are important for managing and applying
geoscience data.

The Open Geospatial Consortium (OGC), which is one of the international organizations dedicated
to geospatial interoperability, has released various open standard implementations. The OGC
Catalogue Service for the Web (CSW) [1] is one such important standard. It defines a standardized
interface and metadata information model for the discovery of geospatial data. Metadata is data about

ISPRS Int. J. Geo-Inf. 2017, 6, 337; doi:10.3390/ijgi6110337 www.mdpi.com/journal/ijgi

http://www.mdpi.com/journal/ijgi
http://www.mdpi.com
http://dx.doi.org/10.3390/ijgi6110337
http://www.mdpi.com/journal/ijgi


ISPRS Int. J. Geo-Inf. 2017, 6, 337 2 of 15

data. They are the entities of a catalogue. The OGC CSW interface includes discovery operations
and transactional (e.g., insert/update/delete) operations. It is applied in various scenarios, including
software tools, data portal services, and model workflow services. It has also been selected by many
multi-institution organizations, such as GEO (Group on Earth Observation) and CEOS (Committee
on Earth Observation Satellite) as a catalogue interface standard for sharing satellite-recorded Earth
observation data.

In the past several years, OGC CSW applications have been developed to provide discovery
services for several fundamental, global Earth observation data sources [2–7]. The NASA (National
Aeronautics and Space Administration) Earth Observing System (EOS) Clearinghouse (ECHO),
which enables the science community to discover and access NASA’s data and services at the granule
level, and provides a spatial and temporal metadata registry and order broker [8]. As ECHO uses
their own metadata model and catalogue, a specific wrapper was developed for NASA ECHO to
provide an OGC CSW service [3]. NOAA (National Oceanic and Atmospheric Administration)
GOES (Geostationary Operational Environmental Satellite) and POES (Polar-orbiting Operational
Environmental Satellite system) data, which are archived in NOAA’s CLASS (Comprehensive Large
Array-data Stewardship System), are also provided with an OGC CSW service developed by the Center
for Spatial Information Science and System (CSISS) at George Mason University (Virginia, USA) under
the support of an NOAA grant [6]. The Global Earth Observation System of Systems (GEOSS) [9],
which is one of GEO’s missions, has been proposed to facilitate global sharing and utilization of Earth
observation (EO) data. An OGC catalogue service for the GEOSS AIP-2 (Architecture Implementation
Pilot phase 2) polar ecosystem scenario was implemented by CSISS [2]. In addition, the CEOS WGISS
(Working Group on Information Systems and Services) Integrated Catalogue (CWIC), which is a
federated catalogue service, was proposed and implemented to discover geospatial data from multiple
data centers [7]. In Europe, datasets and data services from the British Geological Survey (BGS) are
discoverable through an OGC CSW service, which provides access to BGS ISO19115:2003 metadata.

These OGC CSW studies are the practices on the volume and variety characteristics in terms
of the big data concept. Big data are commonly characterized by volume, variety, velocity,
and veracity [10–12]. However, the velocity characteristic, which implies that the big data are often
available in real time or near real time, has been ignored when providing an OGC CSW service in
past studies or cases. These OGC CSW applications assume that the metadata repository, which is the
essential part of a catalogue service, is not updated very frequently. In addition, it can be imagined
that metadata registration for massive geoscience data is very time consuming. A near-real-time OGC
catalogue service requires frequent updates to the metadata repository in a short time. When dealing
with massive amounts of geoscience data from heterogeneous data sources, this poses a significant
challenge. In reality, there are many forms of data with velocity characteristics, such as weather radar
data, which is commonly generated every several minutes, and is factored into the weather forecast
within a few hours. Thus, discovering these data with an OGC catalogue service in real time or near
real time is desirable.

The object of this paper is to fill the knowledge gap regarding how a near real-time OGC catalogue
service can be realized through several lightweight data structures, algorithms, and tools. A case
study on providing an OGC catalogue service to Unidata real-time data is given in this paper as
well. Unidata is a diverse community for sharing geoscience data and software tools, and supports
Earth-system education and research [13]. It is a primary source of real-time atmospheric science data,
and is supported by the United States and several countries outside the United States [14]. Providing a
near-real-time OGC CSW service for the Unidata data will greatly facilitate atmospheric data sharing
and interoperability with other geospatial data or models as well. The rest of this paper is organized
as follows. In Section 2, we provide a framework for the near-real-time OGC catalogue service and
discuss each element of the framework to which more attention should be paid when dealing with
the massive amounts of near-real-time data, followed by some methods that need to be considered
in a near-real-time OGC CSW service. In Section 4, we give an application case to demonstrate how



ISPRS Int. J. Geo-Inf. 2017, 6, 337 3 of 15

specific methods are utilized to deal with Unidata’s real-time atmosphere data. Finally, a discussion
and conclusions appear in Section 5.

2. Framework of the Near-Real-Time OGC Catalogue Service

The OGC catalogue service (CSW) specification defines a standardized interface and metadata
information model for the discovery of geospatial data. A CSW server and metadata repository are
the elements of a regular OGC catalogue service. Obviously, they are not enough to serve the needs
of geoscience big data; furthermore, elements for updating metadata in near real time are additional
essential elements, and metadata indigestion elements are indispensable as well. We propose the
framework of the near-real-time OGC catalogue service as shown in Figure 1, and elements of the
framework are described in the following subsections.

ISPRS Int. J. Geo-Inf. 2017, 6, 337  3 of 14 

 

demonstrate how specific methods are utilized to deal with Unidata’s real-time atmosphere data. 

Finally, a discussion and conclusions appear in Section 5. 

2. Framework of the Near-Real-Time OGC Catalogue Service 

The OGC catalogue service (CSW) specification defines a standardized interface and metadata 

information model for the discovery of geospatial data. A CSW server and metadata repository are 

the elements of a regular OGC catalogue service. Obviously, they are not enough to serve the needs 

of geoscience big data; furthermore, elements for updating metadata in near real time are additional 

essential elements, and metadata indigestion elements are indispensable as well. We propose the 

framework of the near-real-time OGC catalogue service as shown in Figure 1, and elements of the 

framework are described in the following subsections. 

 

Figure 1. Framework of the near-real-time OGC catalogue service. 

2.1. Fundamental Elements 

As mentioned above, a CSW server and metadata repository are two fundamental elements of a 

regular OGC catalogue service. The CSW server provides a set of XML (Extensible Markup 

Language)-based service interfaces based on the HTTP server for supporting discovery, access, and 

registration operations for geospatial information resources; the metadata repository commonly 

employs a database for storing geospatial metadata. In addition, OGC also released available 

metadata models. They are called profiles, including the ebRIM [15,16] profile and the ISO 19115 

profile [17], and meet the specific needs of different communities. These profiles (i.e., metadata 

models) can also be extended to cover other information. 

2.2. Elements for Updating Metadata in Near Real Time 

In order to discover geospatial data or model resources using an OGC CSW service, metadata 

must be registered and pushed into the metadata repository using an OGC CSW service. For real-

time or near-real-time geoscience data, the metadata repository requires frequent updates to maintain 

accordance with data sources. Considering the velocity and volume characteristics of geoscience big 

data, the amount of metadata to be updated could be extremely massive and the update frequency is 

very high. In this situation, parallel processing approaches have to be considered. In addition, the 

notify

CSW Server

User

 (CSW Client)

Metadata
Repository

Data Source Monitor

Catalogue Updater

request response

update

repository

Metadata Harvest

Metadata 
Mapping

Metadata 
Enrichment

Web Service 

ClientCSW Client

Web Page 

Crawler
OR

Snapshot of 

Metadata 

Repository

Qualified 

Metadata

update snapshot Data Sources

monitor

harvest

ingest

Parallel Computing

Figure 1. Framework of the near-real-time OGC catalogue service.

2.1. Fundamental Elements

As mentioned above, a CSW server and metadata repository are two fundamental elements
of a regular OGC catalogue service. The CSW server provides a set of XML (Extensible Markup
Language)-based service interfaces based on the HTTP server for supporting discovery, access,
and registration operations for geospatial information resources; the metadata repository commonly
employs a database for storing geospatial metadata. In addition, OGC also released available metadata
models. They are called profiles, including the ebRIM [15,16] profile and the ISO 19115 profile [17],
and meet the specific needs of different communities. These profiles (i.e., metadata models) can also be
extended to cover other information.

2.2. Elements for Updating Metadata in Near Real Time

In order to discover geospatial data or model resources using an OGC CSW service, metadata
must be registered and pushed into the metadata repository using an OGC CSW service. For real-time
or near-real-time geoscience data, the metadata repository requires frequent updates to maintain
accordance with data sources. Considering the velocity and volume characteristics of geoscience big
data, the amount of metadata to be updated could be extremely massive and the update frequency
is very high. In this situation, parallel processing approaches have to be considered. In addition,



ISPRS Int. J. Geo-Inf. 2017, 6, 337 4 of 15

the catalogue updater and data source monitor, which are indispensable elements for a near-real-time
catalogue service, should be executed in parallel.

The catalogue updater is responsible for registering new metadata into the metadata repository.
Since some data sources only archive the latest data and will remove relatively old data periodically,
the catalogue updater also needs to be able to remove the metadata from the metadata repository.
We have therefore designed another element, namely a “data source monitor”, to find newly added or
removed data archived in data sources. Unlike an entire catalogue update, which removes all metadata
each time and then re-registers the entire corpus of current metadata, the incremental catalogue update
only updates newly added or removed data. It can be seen that the entire catalogue is more easily
implemented since it does not require picking out the newly added or removed data, but it is not
suitable for the frequent big data updates because of the time cost. Therefore, we must choose a
method of incremental catalogue updating targeted at the big data, and the data source monitor is
indispensable for such real-time or near-real-time metadata updates.

2.3. Metadata Ingestion Elements

Metadata ingestion involves metadata harvesting, mapping, or enrichment if necessary.
The metadata harvest element relies on the data source. If a data source provides the web service for
harvesting their metadata, a metadata harvest client must be developed in terms of the web service
provided by the data source. If a data source does not provide the web service and only publishes
their data through web pages, a metadata web page crawler is required to grab and parse the web
pages to get the metadata. The metadata mapping element is required when the harvested records
do not follow the metadata profile of an OGC catalogue service provider. The metadata enrichment
element is used to clean or add value to the metadata (e.g., normalization of punctuation, geocoding,
etc.). The metadata mapping element and enrichment element are not mandatory when providing an
OGC catalogue service. They are required only in those occasions in which the harvested metadata
records are not compatible with the metadata model of the catalogue providers.

In summary, compared with a regular OGC catalogue service, the near-real-time OGC catalogue
service not only involves building a CSW server and metadata repository, but also involves designing
and implementing an efficient catalogue updater and data source monitor for updating metadata in
near real time. In addition, regarding the metadata harvest element, whether a web service client or
web page crawler, efficiency must be considered as well, and a catalogue update in parallel would be
extremely helpful in archiving the near-real-time OGC catalogue service.

3. Methodology

3.1. Near-Real-Time OGC CSW Server and Metadata Repository

There are several OGC CSW-compatible server implementations in the Open Source Geospatial
Foundation (OSGeo) community, as listed in Table 1. Among them, GeoNetwork is the earliest
implementation written in Java as well as a popular one. GeoNetwork provides powerful metadata
editing and search functions as well as an interactive web map viewer. pycsw is the only OGC CSW
implementation written in Python. The advantages of pycsw are the ease of deployment, ease of
configuration, and its support of multiple metadata models, such as ISO 19115 geographic metdata,
Dublin Core metadata, DIF (Directory Interchange Format) metadata, FGDC (Federal Geographic
Data Committee) Metadata, etc. Compared with GeoNetwork, pycsw is a lightweight implementation,
and it is easier to incorporate in other Python libraries, which provide more efficient ways to achieve
the near-real-time OGC catalogue service. Thus, pycsw is recommended as an implementation of the
near-real-time OGC CSW server. For the metadata repository that pycsw works with, a PostgreSQL
database with PostGIS enabled is the first choice since pycsw can make use of PostGIS spatial functions
and native geometry data types for better spatial query operations. In addition, Nginx can be coupled



ISPRS Int. J. Geo-Inf. 2017, 6, 337 5 of 15

with pycsw to enhance CSW server performance. Nginx is a very popular web server with high
performance due to its lightweight quality and easy workability and extensibility.

Table 1. CSW server implementations.

Name Programming Language Year Started

GeoNetwork Java 2001
GeoServer with CSW plug-in Java 2006

pycsw Python 2010
deegree Java 2014

3.2. Near-Real-Time Catalogue Update Approaches

We propose two catalogue update approaches: event-based and timing-based updates, according
to whether the data are owned or managed by the provider of the catalogue service. For the scenario
in which the provider of the catalogue service owns or manages the data, the event-based update
approach is recommended, as shown in Figure 2. The event-based update is a form of passive catalogue
update mechanism. The catalogue update task does not run until it is notified. In other words, a notify
message is required to be sent by data owners or managers. For the scenario in which the provider
of a catalogue service does not own or manage the data, only the timing-based update approach
is applicable, as shown in Figure 3. The timing-based update is a form of active catalogue update
mechanism. The catalogue update task runs periodically at fixed times, dates, or intervals, whether the
data sources have incurred changes or not.

ISPRS Int. J. Geo-Inf. 2017, 6, 337  5 of 14 

 

Table 1. CSW server implementations. 

Name Programming Language Year Started 

GeoNetwork Java 2001 

GeoServer with CSW plug-in Java 2006 

pycsw Python 2010 

deegree Java 2014 

3.2. Near-Real-Time Catalogue Update Approaches 

We propose two catalogue update approaches: event-based and timing-based updates, 

according to whether the data are owned or managed by the provider of the catalogue service. For 

the scenario in which the provider of the catalogue service owns or manages the data, the event-based 

update approach is recommended, as shown in Figure 2. The event-based update is a form of passive 

catalogue update mechanism. The catalogue update task does not run until it is notified. In other 

words, a notify message is required to be sent by data owners or managers. For the scenario in which 

the provider of a catalogue service does not own or manage the data, only the timing-based update 

approach is applicable, as shown in Figure 3. The timing-based update is a form of active catalogue 

update mechanism. The catalogue update task runs periodically at fixed times, dates, or intervals, 

whether the data sources have incurred changes or not. 

 

Figure 2. Event-based catalogue update. 

 

Figure 3. Timing-based catalogue update. 

The event-based update is more accurate at the time of starting the catalogue update task, but it 

requires that data owners or managers notify the catalogue service providers, and this prerequisite 

is sometimes not easy to satisfy. The timing-based update approach is more widely applicable, even 

if it is likely to be less efficient. Therefore, we further focus on the timing-based update approach for 

the catalogue repository described in this study. 

3.3. Timing-Based Catalogue Update Implementation in Parallel 

As shown in Figure 3, the timing-based catalogue update is commonly implemented based on a 

time-based job scheduler. Most operating systems (OSs), such as Unix and Windows, provide OS-

level job scheduling capabilities. Many programs can achieve relevant job-scheduling capabilities as 

well. Since data sources do not notify the catalogue updater, the data source monitor is proposed for 

tracking data sources and discovering data record changes. Since the metadata repository is normally 

Data Sources

data records change event

data records 

being changed Catalogue 
Updaternotify

Metadata
Repositoryupdate

timing-task

Catalogue 
Updater

Metadata
Repositoryupdate

Data Source 
Monitor
Snapshot of 

Metadata 

Repository

notify
data records 

being changed

Data Sources

monitoring

update

Figure 2. Event-based catalogue update.

ISPRS Int. J. Geo-Inf. 2017, 6, 337  5 of 14 

 

Table 1. CSW server implementations. 

Name Programming Language Year Started 

GeoNetwork Java 2001 

GeoServer with CSW plug-in Java 2006 

pycsw Python 2010 

deegree Java 2014 

3.2. Near-Real-Time Catalogue Update Approaches 

We propose two catalogue update approaches: event-based and timing-based updates, 

according to whether the data are owned or managed by the provider of the catalogue service. For 

the scenario in which the provider of the catalogue service owns or manages the data, the event-based 

update approach is recommended, as shown in Figure 2. The event-based update is a form of passive 

catalogue update mechanism. The catalogue update task does not run until it is notified. In other 

words, a notify message is required to be sent by data owners or managers. For the scenario in which 

the provider of a catalogue service does not own or manage the data, only the timing-based update 

approach is applicable, as shown in Figure 3. The timing-based update is a form of active catalogue 

update mechanism. The catalogue update task runs periodically at fixed times, dates, or intervals, 

whether the data sources have incurred changes or not. 

 

Figure 2. Event-based catalogue update. 

 

Figure 3. Timing-based catalogue update. 

The event-based update is more accurate at the time of starting the catalogue update task, but it 

requires that data owners or managers notify the catalogue service providers, and this prerequisite 

is sometimes not easy to satisfy. The timing-based update approach is more widely applicable, even 

if it is likely to be less efficient. Therefore, we further focus on the timing-based update approach for 

the catalogue repository described in this study. 

3.3. Timing-Based Catalogue Update Implementation in Parallel 

As shown in Figure 3, the timing-based catalogue update is commonly implemented based on a 

time-based job scheduler. Most operating systems (OSs), such as Unix and Windows, provide OS-

level job scheduling capabilities. Many programs can achieve relevant job-scheduling capabilities as 

well. Since data sources do not notify the catalogue updater, the data source monitor is proposed for 

tracking data sources and discovering data record changes. Since the metadata repository is normally 

Data Sources

data records change event

data records 

being changed Catalogue 
Updaternotify

Metadata
Repositoryupdate

timing-task

Catalogue 
Updater

Metadata
Repositoryupdate

Data Source 
Monitor
Snapshot of 

Metadata 

Repository

notify
data records 

being changed

Data Sources

monitoring

update

Figure 3. Timing-based catalogue update.

The event-based update is more accurate at the time of starting the catalogue update task, but it
requires that data owners or managers notify the catalogue service providers, and this prerequisite is
sometimes not easy to satisfy. The timing-based update approach is more widely applicable, even if it
is likely to be less efficient. Therefore, we further focus on the timing-based update approach for the
catalogue repository described in this study.



ISPRS Int. J. Geo-Inf. 2017, 6, 337 6 of 15

3.3. Timing-Based Catalogue Update Implementation in Parallel

As shown in Figure 3, the timing-based catalogue update is commonly implemented based on a
time-based job scheduler. Most operating systems (OSs), such as Unix and Windows, provide OS-level
job scheduling capabilities. Many programs can achieve relevant job-scheduling capabilities as well.
Since data sources do not notify the catalogue updater, the data source monitor is proposed for tracking
data sources and discovering data record changes. Since the metadata repository is normally built
on a regular database, frequently creating connections and being connected to the database for the
catalogue update will consume more database connection resources, and will take more time. Thus,
instead of directly using the database of the metadata repository, a snapshot of the metadata repository
is designed and used by the data source monitor.

3.3.1. Data Source Monitor

The data source monitor is implemented based on the comparative analysis between the
data source and the metadata repository. We first investigated several primary data portals
(USGS EarthExplorer, NASA EOSDIS, Unidata, GCMD, etc.) to understand how the data are archived
and catalogued. Based on our investigation, the proposed data-archiving model is shown in Figure 4.

ISPRS Int. J. Geo-Inf. 2017, 6, 337  6 of 14 

 

built on a regular database, frequently creating connections and being connected to the database for 

the catalogue update will consume more database connection resources, and will take more time. 

Thus, instead of directly using the database of the metadata repository, a snapshot of the metadata 

repository is designed and used by the data source monitor. 

3.3.1. Data Source Monitor 

The data source monitor is implemented based on the comparative analysis between the data 

source and the metadata repository. We first investigated several primary data portals (USGS 

EarthExplorer, NASA EOSDIS, Unidata, GCMD, etc.) to understand how the data are archived and 

catalogued. Based on our investigation, the proposed data-archiving model is shown in Figure 4. 

Data 
Collections

Temporal 
Collection

Data

Data

Data

Sub Collections

Sub Collections

Sub Collections

  

 

Figure 4. Data-archiving model. 

Figure 4 shows that the data are usually archived at two levels: collection level and granule level. 

The collections can have sub-collections, and they are a form of hierarchical structure. Taking remote-

sensing image data as an example, the data with the same sensor type can be one type of collection, 

the data with the same tile can be another type of collection, and the data with the same date can be 

another type of collection, etc. The granule level refers to the actual data, which are accessible via a 

downloadable data file or web services. Since the amount of geoscience data is normally very large, 

data collection is very useful in cataloging and archiving data. In particular, for the near-real-time 

data, one important type of collection for which the data will normally be archived is the temporal 

collection type; that is, collections identified with dates or times. Therefore, the data source monitor 

does the comparative analysis on the temporal collection type. The algorithm of comparative analysis 

is implemented based on the temporal topology relationship. With the temporal collection type, the 

data source monitor can quickly find the changes in data records and improve the efficiency of the 

catalogue update 

The snapshot of the metadata repository is designed based on the data-archiving model, and it 

does not copy all metadata information of the repository. The elements of the snapshot track the 

elements of the data source monitor, including the URL of multi-level collections, the date and time 

of the temporal collection, and the identifier and the URL of the data. The snapshot adopts a node-

key-value structure, as shown in Figure 5. The URL path of hierarchy collections is the node of the 

snapshot, which facilitates parallel processing on different servers. The date of a temporal collection 

can be the key of the snapshot, and sometimes the time of the temporal collection can be the key as 

well. The key is used for comparison with the data sources in the comparative analysis algorithm. 

The value part of the snapshot is a list of the data corresponding to the temporal collection. Each 

element of the list only records the data identifier and its accessible URL. More metadata information 

is accessed through the URL in the update phase, not the monitoring phase. This idea also helps to 

save much more time in monitoring the data record changes, and the data list in the value node can 

be processed in parallel at the thread level on a single server. 

Figure 4. Data-archiving model.

Figure 4 shows that the data are usually archived at two levels: collection level and granule
level. The collections can have sub-collections, and they are a form of hierarchical structure.
Taking remote-sensing image data as an example, the data with the same sensor type can be one
type of collection, the data with the same tile can be another type of collection, and the data with
the same date can be another type of collection, etc. The granule level refers to the actual data,
which are accessible via a downloadable data file or web services. Since the amount of geoscience data
is normally very large, data collection is very useful in cataloging and archiving data. In particular,
for the near-real-time data, one important type of collection for which the data will normally be
archived is the temporal collection type; that is, collections identified with dates or times. Therefore,
the data source monitor does the comparative analysis on the temporal collection type. The algorithm
of comparative analysis is implemented based on the temporal topology relationship. With the
temporal collection type, the data source monitor can quickly find the changes in data records and
improve the efficiency of the catalogue update

The snapshot of the metadata repository is designed based on the data-archiving model, and it
does not copy all metadata information of the repository. The elements of the snapshot track the
elements of the data source monitor, including the URL of multi-level collections, the date and
time of the temporal collection, and the identifier and the URL of the data. The snapshot adopts a
node-key-value structure, as shown in Figure 5. The URL path of hierarchy collections is the node of
the snapshot, which facilitates parallel processing on different servers. The date of a temporal collection
can be the key of the snapshot, and sometimes the time of the temporal collection can be the key as well.



ISPRS Int. J. Geo-Inf. 2017, 6, 337 7 of 15

The key is used for comparison with the data sources in the comparative analysis algorithm. The value
part of the snapshot is a list of the data corresponding to the temporal collection. Each element of the
list only records the data identifier and its accessible URL. More metadata information is accessed
through the URL in the update phase, not the monitoring phase. This idea also helps to save much
more time in monitoring the data record changes, and the data list in the value node can be processed
in parallel at the thread level on a single server.ISPRS Int. J. Geo-Inf. 2017, 6, 337  7 of 14 

 

Level3_VWX_NVW_20160702_2355.nids
Level3_VWX_NVW_20160702_2349.nids
Level3_VWX_NVW_20160702_2344.nids
Level3_VWX_NVW_20160702_2332.nids

PTA

OHA

NVW

   

NEXRAD 
Radar Data 
Example

YUX

VWX

VTX

   

20160703

20160702

20160701

   

Node Key

Key

  

Value

Value

  

Value

Value

Keys Values

Product
collections

Site
collections

Nodes

Temporal 
collection  

Figure 5. Snapshot file structure. 

The data source monitor is implemented based on Pandas, a popular package in the Python 

community. Pandas provides high-performance, easy-to-use data structures, and data-analysis tools. 

Pandas has three fundamental data structures: Series, DataFrame, and Panel, representing a one-, 

two-, and three-dimensional labeled array, respectively. The axis labels are collectively referred to as 

the index. In addition, with Pandas, built-in functions and operators can be directly used in the 

comparative analysis algorithm based on the temporal topology relationship. In addition, Pandas 

provides a few I/O options, including CSV, TXT, JSON, HTML, HDF5, Excel, etc. We use the 

DataFrame structure of Pandas with HDFStore to implement the snapshot. The snapshot file is stored 

in HDF5 format. 

3.3.2. Cluster-Based Catalogue Update in Parallel 

When an extremely large amount of data needs to be updated in a short time, a catalogue update 

on a single server machine is usually not qualified for near-real-time processing. Therefore, we 

propose a cluster-based parallel processing approach. The cluster is composed of several server 

machines. They work together to execute a large task and have more powerful capabilities than a 

single server machine in terms of computation, storage, and scalability. 

There are three primary parallel process frameworks: MPI (Message Passing Interface), OpenMP 

(Open Multi-Processing), and MapReduce (Hadoop). Both MPI and Hadoop can be run on a cluster, 

while OpenMP cannot be because of its shared-memory multiprocessing. In order to utilize clusters 

to accelerate catalogue updates, we employed a Python MPI framework, called mpi4py, to implement 

catalogue updates in parallel. The principle of MPI is that a serial of MPI processes is started and they 

execute the same code. Each process has an identifier (called rank in MPI) to mark what the process 

is. It should be noted that the variants in the code are process specific, even though they have the 

same variant name. Several mechanisms of communications are provided for message passing 

between multiple processes in mpi4py. They are point-to-point (sends, receives) and collective 

(broadcasts, scatters, gathers) communications of any pickable Python object (pickable refers to the 

Python object is able to be converted into a byte stram), as well as optimized communications of a 

Python object exposing the single-segment buffer interface. Point-to-point communication enables 

the transmission of data between a pair of processes, one side sending, the other receiving; such 

collective communication allows the transmission of data between multiple processes of a group 

simultaneously. 

In the process of a catalogue update, collective communication is adopted to split a large 

catalogue update task, because collective communication endeavors to utilize all the time of all 

processes for data transmission between multiple processes. It can be seen that collective 

Figure 5. Snapshot file structure.

The data source monitor is implemented based on Pandas, a popular package in the Python
community. Pandas provides high-performance, easy-to-use data structures, and data-analysis tools.
Pandas has three fundamental data structures: Series, DataFrame, and Panel, representing a one-, two-,
and three-dimensional labeled array, respectively. The axis labels are collectively referred to as the index.
In addition, with Pandas, built-in functions and operators can be directly used in the comparative
analysis algorithm based on the temporal topology relationship. In addition, Pandas provides a few
I/O options, including CSV, TXT, JSON, HTML, HDF5, Excel, etc. We use the DataFrame structure of
Pandas with HDFStore to implement the snapshot. The snapshot file is stored in HDF5 format.

3.3.2. Cluster-Based Catalogue Update in Parallel

When an extremely large amount of data needs to be updated in a short time, a catalogue update
on a single server machine is usually not qualified for near-real-time processing. Therefore, we propose
a cluster-based parallel processing approach. The cluster is composed of several server machines.
They work together to execute a large task and have more powerful capabilities than a single server
machine in terms of computation, storage, and scalability.

There are three primary parallel process frameworks: MPI (Message Passing Interface), OpenMP
(Open Multi-Processing), and MapReduce (Hadoop). Both MPI and Hadoop can be run on a cluster,
while OpenMP cannot be because of its shared-memory multiprocessing. In order to utilize clusters to
accelerate catalogue updates, we employed a Python MPI framework, called mpi4py, to implement
catalogue updates in parallel. The principle of MPI is that a serial of MPI processes is started and
they execute the same code. Each process has an identifier (called rank in MPI) to mark what the
process is. It should be noted that the variants in the code are process specific, even though they
have the same variant name. Several mechanisms of communications are provided for message
passing between multiple processes in mpi4py. They are point-to-point (sends, receives) and collective



ISPRS Int. J. Geo-Inf. 2017, 6, 337 8 of 15

(broadcasts, scatters, gathers) communications of any pickable Python object (pickable refers to the
Python object is able to be converted into a byte stram), as well as optimized communications of a
Python object exposing the single-segment buffer interface. Point-to-point communication enables the
transmission of data between a pair of processes, one side sending, the other receiving; such collective
communication allows the transmission of data between multiple processes of a group simultaneously.

In the process of a catalogue update, collective communication is adopted to split a large catalogue
update task, because collective communication endeavors to utilize all the time of all processes for data
transmission between multiple processes. It can be seen that collective communication is more efficient
when applying a catalogue update. Based on the snapshot file for data monitoring, a large catalogue
update task is scattered in clusters in terms of nodes of the snapshot. The nodes store data collections,
as shown in Figure 6. With cluster-based parallel processing, efficiency gains are in proportion to the
number of server machines in the cluster.

ISPRS Int. J. Geo-Inf. 2017, 6, 337  8 of 14 

 

communication is more efficient when applying a catalogue update. Based on the snapshot file for 

data monitoring, a large catalogue update task is scattered in clusters in terms of nodes of the 

snapshot. The nodes store data collections, as shown in Figure 6. With cluster-based parallel 

processing, efficiency gains are in proportion to the number of server machines in the cluster. 

Proc A

DataCollection 1

DataCollection 2

DataCollection 3

DataCollection 4

        

  

Proc B Proc C Proc D

Proc A

DataCollection 1 DataCollection 2 DataCollection 3 DataCollection 4

        

  

Proc B Proc C Proc D

Scattering

 

Figure 6. Cluster-based catalogue update. 

4. Application and Catalogue Update Efficiency Analysis 

In this study, Unidata data are taken as the application case. Unidata is a diverse community 

that shares geoscience data and software tools and that supports the enhancement of Earth-system 

education and research [13]. It is a member of the University Corporation for Atmospheric Research 

(UCAR) Community Programs, funded by the U.S. National Science Foundation. Unidata helps 

researchers and educators acquire and use Earth-related data, most being either real-time or near-

real-time data. The real-time data are available online via the Unidata Internet Data Distribution 

(IDD) system. The Unidata IDD is an event-driven network of cooperating Unidata Local Data 

Manager (LDM) servers that distributes Earth science data products in near real time over wide-area 

networks [18]. The Unidata IDD is a primary source of real-time atmospheric science data and it has 

expanded from the initial U.S.-centric system to one that includes a few countries outside the United 

States [14]. 

4.1. Unidata IDD Data and Catalogue 

Unidata IDD data involve forecast model output data, satellite data, radar data, and observation 

data, as shown in Table 2. The satellite data mainly involve GOES data, which includes visible, 

infrared, water vapor, and sounder images. The radar data involve Terminal Doppler Weather Radar 

(TDWR) Level III and NEXRAD (Next Generation Radar) WSR-88D radar Level II and III products. 

As can be seen in Table 2, the satellite and radar data comprise extremely large volumes and are 

updated at a high frequency. This provides a good case for demonstrating a near-real-time OGC 

catalogue service for geoscience big data. 

Table 2. Unidata IDD data and update frequency. 

Dataset category Update frequency Count 

Satellite data   

NESDIS GOES satellite data 5 min 140,000 

Radar data   

Figure 6. Cluster-based catalogue update.

4. Application and Catalogue Update Efficiency Analysis

In this study, Unidata data are taken as the application case. Unidata is a diverse community
that shares geoscience data and software tools and that supports the enhancement of Earth-system
education and research [13]. It is a member of the University Corporation for Atmospheric Research
(UCAR) Community Programs, funded by the U.S. National Science Foundation. Unidata helps
researchers and educators acquire and use Earth-related data, most being either real-time or
near-real-time data. The real-time data are available online via the Unidata Internet Data Distribution
(IDD) system. The Unidata IDD is an event-driven network of cooperating Unidata Local Data
Manager (LDM) servers that distributes Earth science data products in near real time over wide-area
networks [18]. The Unidata IDD is a primary source of real-time atmospheric science data and it
has expanded from the initial U.S.-centric system to one that includes a few countries outside the
United States [14].

4.1. Unidata IDD Data and Catalogue

Unidata IDD data involve forecast model output data, satellite data, radar data, and observation
data, as shown in Table 2. The satellite data mainly involve GOES data, which includes visible, infrared,



ISPRS Int. J. Geo-Inf. 2017, 6, 337 9 of 15

water vapor, and sounder images. The radar data involve Terminal Doppler Weather Radar (TDWR)
Level III and NEXRAD (Next Generation Radar) WSR-88D radar Level II and III products. As can be
seen in Table 2, the satellite and radar data comprise extremely large volumes and are updated at a
high frequency. This provides a good case for demonstrating a near-real-time OGC catalogue service
for geoscience big data.

Table 2. Unidata IDD data and update frequency.

Dataset Category Update Frequency Count

Satellite data

NESDIS GOES satellite data 5 min 140,000

Radar data

NEXRAD Level II radar WSR-88D
3–10 min

660,000

NEXRAD Level III radar products 44,900,000

TDWR Level III radar 3,200,000

NCEP and FNMOC Forecast Model 3900

Rapid Refresh (RAP)
High Resolution Rapid Refresh (HRRR) 1 h 1300

Short Range Ensemble Forecasting (SREF)
Wave Watch III (WW3) 3 h 800

Global Forecast System (GFS)
North American Model (NAM)

Global Ensemble Forecasting System (GEFS)
6 h 1400

Downscaled GFS (DGEX) 12 h 60

NAVY Global Environmental Model (NAVGEM)
Forecast of Aerosol Radiative Optical Properties (FAROP) 6 h 120

Coupled Ocean/Atmosphere Mesoscale Prediction System
Navy Coupled Ocean Data Assimilation (NCODA) Model

Wave Watch 3 (WW3) Model
12 h 230

NCEP analyses data 6100

Multi-Radar Multi-Sensor (MRMS) analysis
Real Time Mesoscale Analysis (RTMA) 1 h 5000

National Digital Forecast Database (NDFD) 30 min 1100

Observation data 270

METAR Station data
Surface buoy point data

Surface synoptic point data
24 h 270

All these data are currently served through the THREDDS (THematic Real-time Environmental
Distributed Data Services) server system, which is developed and is operated by Unidata. THREDDS
provides information about the availability of datasets and the services and protocols to access
them [19,20]. The protocols and services supported in THREDDS include OPeNDAP, Open Geospatial
Consortium (OGC) WMS and WCS, HTTP, NetCDF Subset Service (NCSS), and ncISO Services [21].
THREDDS also has a hierarchical dataset catalogue, which provides virtual directories of available data
and their associated metadata, but does not provide a data query interface. Thus, the OGC catalogue
service is required to facilitate the discovery and interoperability of Unidata IDD data. The THREDDS
catalogue structure is a form of hierarchical directory, which is applicable to the methodology proposed
in Section 3.



ISPRS Int. J. Geo-Inf. 2017, 6, 337 10 of 15

4.2. Prototype of Near-Real-Time OGC CSW Service for Unidata IDD Data

A prototypical near real-time OGC CSW service for Unidata IDD data has been developed
as a part of the CyberConnector project funded by the EarthCube program of the U.S. National
Science Foundation (NSF). CyberConnector is designed to bridge sensors and Earth science models
by extensively adopting open geospatial standards/specifications, such as the OGC Web Processing
Service (WPS), Sensor Planning Service (SPS), Web Coverage Service (WCS), and Catalogue Service
for the Web (CSW). It automatically prepares and customizes both historic and near-real-time Earth
observation data and on-demand derived products, based on requirements of Earth science models,
and feeds the prepared data into the models. Unidata is one of the important near-real-time
data sources.

The framework of the prototype is shown in Figure 7. We employ five server machines,
which work as a cluster, in this application case. One machine is responsible for providing OGC
CSW services. The other four machines are responsible for monitoring real-time data sources and
updating the metadata repository frequently. The prototype runs on the Ubuntu operating system
and is built in the Python environment. pycsw, pandas, and mpi4py are all Python packages. “pycsw”
is served for providing OGC CSW services, “Pandas” for data monitoring analysis, and “mpi4py”
for parallel catalogue updates. An OS-level job scheduler “cron” is used for timing-based catalogue
updates. The cluster-based catalogue update program in Figure 6 is scheduled with the Linux job
scheduler “cron.” The cluster-based catalogue update program starts four processes for executing
catalogue updates in parallel. We also developed a THREDDS catalogue crawler for fetching ISO
19115 metadata from the THREDDS catalogue. In order to test the OGC CSW service, we developed a
web CSW request builder, as shown in Figure 8a. With this builder, users can build any CSW request
against Unidata IDD data and make a query with the request. Figure 8b shows the XML-encoding
response of the near-real-time CSW service.

ISPRS Int. J. Geo-Inf. 2017, 6, 337  10 of 14 

 

cluster-based catalogue update program in Figure 6 is scheduled with the Linux job scheduler “cron.” 

The cluster-based catalogue update program starts four processes for executing catalogue updates in 

parallel. We also developed a THREDDS catalogue crawler for fetching ISO 19115 metadata from the 

THREDDS catalogue. In order to test the OGC CSW service, we developed a web CSW request 

builder, as shown in Figure 8(a). With this builder, users can build any CSW request against Unidata 

IDD data and make a query with the request. Figure 8(b) shows the XML-encoding response of the 

near-real-time CSW service. 

Nginx
(HTTP server)

Python Interpretor cron
(time-based job scheduler)

PostgresSQL
(Metadata 
Repository)

Cluster-based Catalogue 
Update Program

mpi4py
(parallel processing framework)

PostGIS

Linux OS

pycsw
(csw server)

pandas
(data processing framework)

Snapshot for 
Data Monitor

Proc A

Data Monitor

Catalogue Update

Metadata crawler

Unidata IDD Data

on THREDDS server

Proc B

Data Monitor

Catalogue Update

Metadata crawler

Proc C

Data Monitor

Catalogue Update

Metadata crawler

Proc D

Data Monitor

Catalogue Update

Metadata crawler

Users or 

Other Systems

 

Figure 7. Framework of the near-real-time OGC CSW service for Unidata IDD data. 

 
(a) 

Figure 7. Framework of the near-real-time OGC CSW service for Unidata IDD data.



ISPRS Int. J. Geo-Inf. 2017, 6, 337 11 of 15

ISPRS Int. J. Geo-Inf. 2017, 6, 337  10 of 14 

 

cluster-based catalogue update program in Figure 6 is scheduled with the Linux job scheduler “cron.” 

The cluster-based catalogue update program starts four processes for executing catalogue updates in 

parallel. We also developed a THREDDS catalogue crawler for fetching ISO 19115 metadata from the 

THREDDS catalogue. In order to test the OGC CSW service, we developed a web CSW request 

builder, as shown in Figure 8(a). With this builder, users can build any CSW request against Unidata 

IDD data and make a query with the request. Figure 8(b) shows the XML-encoding response of the 

near-real-time CSW service. 

Nginx
(HTTP server)

Python Interpretor cron
(time-based job scheduler)

PostgresSQL
(Metadata 
Repository)

Cluster-based Catalogue 
Update Program

mpi4py
(parallel processing framework)

PostGIS

Linux OS

pycsw
(csw server)

pandas
(data processing framework)

Snapshot for 
Data Monitor

Proc A

Data Monitor

Catalogue Update

Metadata crawler

Unidata IDD Data

on THREDDS server

Proc B

Data Monitor

Catalogue Update

Metadata crawler

Proc C

Data Monitor

Catalogue Update

Metadata crawler

Proc D

Data Monitor

Catalogue Update

Metadata crawler

Users or 

Other Systems

 

Figure 7. Framework of the near-real-time OGC CSW service for Unidata IDD data. 

 
(a) 

ISPRS Int. J. Geo-Inf. 2017, 6, 337  11 of 14 

 

 
(b) 

Figure 8. (a) CSW request builder for querying Unidata IDD data; (b) XML-encoding response of the 

CSW service. 

4.3. Experiment and Result for Catalogue Update Task 

Unidata IDD archives five categories of datasets, as shown in Table 2. In order to estimate the 

elapsed time to register them, we first carried out an experiment to calculate the average time to 

register one metadata record in our prototype system. The experiment ran on a single server with an 

Intel Xeon Processor E7 v3 (10 cores/20 threads), 24 GB RAM, and 16 TB storage. The network 

bandwidth was 90 Mbps. We chose some NEXRAD Level III radar data for testing, as shown in Table 

3. With the average time of 1.38 s per record, we estimated the elapsed time to register all online 

metadata in terms of dataset categories, as shown in Table 4. We also estimated the elapsed time to 

register new online metadata later, as shown in Table 5. 

Table 3. Elapsed time to registering NEXRAD III radar metadata for five sites. 

Site code Begin time End time Elapsed time (s) Count 
Elapsed time to register one metadata 

Record (s) 

PAKC 12:24:06 12:31:15 429 282 1.52 

KTLX 14:48:05 14:53:37 332 262 1.27 

KPBZ 15:59:32 16:03:02 213 160 1.33 

KABR 17:05:26 17:08:07 161 141 1.14 

FOP1 18:31:15 18:37:38 383 234 1.64 

Average: 1.38 

Table 4. Estimated time to register all online metadata into CSW catalogue for the Unidata IDD data. 

Dataset category Data count Estimated time 

Satellite data 140,000 54 h 

NEXRAD Level II radar data 660,000 10.5 d 

NEXRAD Level III radar products 44,900,000 717 d 

TDWR Level III radar products 3,200,000 51 d 

NCEP and FNMOC Forecast Model 3900 1 h, 30 min 

NCEP analyses data 6100 2 h, 20 min 

Observation data 270 6 min 

  

Figure 8. (a) CSW request builder for querying Unidata IDD data; (b) XML-encoding response of the
CSW service.

4.3. Experiment and Result for Catalogue Update Task

Unidata IDD archives five categories of datasets, as shown in Table 2. In order to estimate the
elapsed time to register them, we first carried out an experiment to calculate the average time to
register one metadata record in our prototype system. The experiment ran on a single server with
an Intel Xeon Processor E7 v3 (10 cores/20 threads), 24 GB RAM, and 16 TB storage. The network
bandwidth was 90 Mbps. We chose some NEXRAD Level III radar data for testing, as shown in Table 3.
With the average time of 1.38 s per record, we estimated the elapsed time to register all online metadata
in terms of dataset categories, as shown in Table 4. We also estimated the elapsed time to register new
online metadata later, as shown in Table 5.



ISPRS Int. J. Geo-Inf. 2017, 6, 337 12 of 15

Table 3. Elapsed time to registering NEXRAD III radar metadata for five sites.

Site Code Begin Time End Time Elapsed Time (s) Count
Elapsed Time to

Register One Metadata
Record (s)

PAKC 12:24:06 12:31:15 429 282 1.52
KTLX 14:48:05 14:53:37 332 262 1.27
KPBZ 15:59:32 16:03:02 213 160 1.33
KABR 17:05:26 17:08:07 161 141 1.14
FOP1 18:31:15 18:37:38 383 234 1.64

Average: 1.38

Table 4. Estimated time to register all online metadata into CSW catalogue for the Unidata IDD data.

Dataset Category Data Count Estimated Time

Satellite data 140,000 54 h
NEXRAD Level II radar data 660,000 10.5 d

NEXRAD Level III radar products 44,900,000 717 d
TDWR Level III radar products 3,200,000 51 d

NCEP and FNMOC Forecast Model 3900 1 h, 30 min
NCEP analyses data 6100 2 h, 20 min

Observation data 270 6 min

Table 5. Estimated time to register new online metadata each time.

Dataset Category Update Frequency Update Count
of New Data Estimated Time

Satellite data 5 min 78 2 min
NEXRAD Level II radar data

3–10 min
166 4 min

NEXRAD Level III radar products 11232 4 h
TDWR Level III radar products 810 19 min

NCEP and FNMOC Forecast Model 1, 3, 6, 12 h 59 <2 min
NCEP analyses data 30, 60 min 13 <1 min

Observation data 24 h 3 5 s

The time in Table 4 can be used to estimate the elapsed time to initialize the catalogues, and the
time in Table 5 can be used to estimate the elapsed time to update them. For the satellite data, catalogue
initialization could take 54 h. It is acceptable to use a single task to process, but dividing it into multiple
tasks is preferred. With the cluster used in this experiment, the time to initialize the satellite data
was reduced to 13 h. For the radar data, it is impossible to process the NEXRAD III data with only
two server machines because the radar data have an extremely large number of data items, reaching
into the tens of millions. It requires a powerful cluster with high parallel processing capabilities for
better efficiency. For other data catalogues (Forecast Model, NCEP analyses, and observation data),
a single task is able to update them frequently.

Therefore, we set up the following tasks for the catalogue initialization and catalogue update
phases, as shown in Table 6. Taking the satellite data as an example, the estimated time to initialize the
catalogue was 54 h (Table 4); when we set up 10 parallel tasks, the catalogue initialization finished
within 6 h. The actual elapsed time was 5 h and 42 min (Table 7), which is acceptable and meets the
goal. We also set up two timing tasks in the catalogue update phase for the satellite data to complete
the update in less than 2 min. Thus, the schedule is set up for every 2 min. The actual elapsed time was
1 min and 18 s (Table 7), which also meets the goal. All the elapsed times for initializing and updating
catalogues in the experiment are listed in Table 7, which achieves the goal of a near-real-time OGC
catalogue service.



ISPRS Int. J. Geo-Inf. 2017, 6, 337 13 of 15

Table 6. Tasks and schedules for monitoring Unidata IDD.

Dataset Category Catalogue
Initialization Phase

Catalogue
Update Phase Schedules

Satellite data 10 tasks 2 timing tasks every 2 min
NEXRAD Level II radar data 20 tasks 4 timing tasks every 2 min

NEXRAD Level III radar products N/A N/A N/A
TDWR Level III radar products 30 tasks 20 timing tasks every 4 min

NCEP And FNMOC Forecast Model 1 task 1 timing task every 30 min
NCEP analyses 1 task 1 timing task every 30 min

Observation data 1 task 1 timing task every 6 h

Table 7. Actual elapsed times for catalogue initialization and update phases.

Dataset Category Catalogue Initialization Phase Catalogue Update Phase

Satellite data 5 h, 42 min 1 min, 18 s
NEXRAD Level II radar data 14 h 1min, 26 s

NEXRAD Level III radar products N/A N/A
TDWR Level III radar products 1 d, 18 h 2 min, 43 s

NCEP And FNMOC Forecast Model 1 h, 12 min 1 min, 55 s
NCEP analyses 2 h, 3 min 25 s

Observation data 5 min, 36 s 5 s

5. Discussion and Conclusions

This article discusses the big data issue in geoscience. A near-real-time OGC catalogue service
focuses more on the velocity and volume characteristics of big data, which is different from regular
OGC catalogue service studies. We proposed the framework of a real-time OGC catalogue service and
presented a series of efficient catalogue update methods to ensure that the OGC catalogue is consistent
with data sources. An application case of providing a near-real-time OGC catalogue service for Unidata
IDD data was demonstrated based on the proposed methods and a prototypical near-real-time OGC
catalogue service was developed. The results show that our methods and prototype are capable of
dealing with ten million data items in near real time.

In addition, we conclude the following:
(1) Periodic catalogue updates are essential for providing a near-real-time OGC catalogue service

for big data. Catalogue update frequency and the number of catalogue update tasks are important
factors in designing a catalogue update schema, which involves how many update tasks are executed
in parallel and how often the tasks are automatically executed.

(2) In this study, only one catalogue repository, which is normally based on one database, is used
for the OGC catalogue service. However, it is better to combine multiple catalogue repositories
to provide a near-real-time OGC catalogue service for big data. Thus, we hope OGC or other
related communities may provide the schema for an OGC catalogue service with support for multiple
catalogue repositories. This will make the catalogue more robust when dealing with big data issues.

(3) The methods proposed in this paper can be applied to most geoscience data sources because
they all archive their data as hierarchical levels composed of classification collections, temporal
collections, and datasets from top to bottom. The catalogue update methods presented herein
are proposed based on these hierarchical archiving levels. Thus, the contribution of this study
is not applicable to Unidata. Unidata is just one of the data sources that are qualified with the
data-archiving structure.

(4) In particular, this study provides a solution for third-party organizations that do not own the
data resources to implement a near-real-time OGC catalogue service. Providers of an OGC catalogue
service that own the data resources may have particular methods for improving the efficiency of
catalogue updating, but this is beyond the scope of the present study.



ISPRS Int. J. Geo-Inf. 2017, 6, 337 14 of 15

In the future, we plan to further study the approaches for improving time efficiency to deal
with billions of data resources. Some popular techniques for handling big data, such as Spark and
Hadoop, merit consideration when providing a near-real-time OGC catalogue service. A snapshot
of a catalogue repository with better I/O performance could be another improvement, and multiple
catalogue repositories with snapshot support will be more valuable in serving big data from multiple
data sources.

Acknowledgments: This research was supported by a grant from the National Science Foundation EarthCube
program (Grant No. ICER-1440294, Pi: Liping Di).

Author Contributions: Jia Song proposed, designed, and implemented the algorithm, performed the experiments,
summarized the findings, and wrote the paper. Professor Liping Di conceived the research, reviewed, and modified
the paper.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Nebert, D.; Whiteside, A.; Vretanos, P. OGC 07-006r1: Catalog Service Specification, Version 2.0.2. 2007.
Available online: http://portal.opengeospatial.org/files/?artifact_id=20555 (accessed on 18 March 2016).

2. Bai, Y.; Di, L. Providing Access to Satellite Imagery through OGC Catalog Service Interfaces in Support of
the Global Earth Observation System of Systems. Comput. Geosci. 2011, 37, 435–443. [CrossRef]

3. Bai, Y.; Di, L.; Chen, A.; Liu, Y.; Wei, Y. Towards a Geospatial Catalogue Federation Service. Photogramm. Eng.
Remote Sens. 2007, 73, 699–708. [CrossRef]

4. Chen, A.; Di, L.; Wei, Y.; Bai, Y.; Liu, Y. An Optimized Grid-Based, OGC Standards-Compliant Collaborative
Software System for Serving NASA Geospatial Data. In Proceedings of the 30th Annual IEEE/NASA
Software Engineering Workshop, Columbia, MD, USA, 24–28 April 2006; pp. 159–166. [CrossRef]

5. Chen, Z.; Chen, N. Use of Service Middleware Based on ECHO with CSW for Discovery and Registry of
MODIS Data. Geo-Spat. Inf. Sci. 2010, 13, 191–200. [CrossRef]

6. Di, L.; Yu, G.; Shao, Y.; Bai, Y.; Deng, M.; McDonald, K.R. Persistent WCS and CSW Services of GOES Data
for GEOSS. Geosci. Remote Sens. Symp. IEEE. 2010, 38, 1699–1702.

7. Shao, Y.; Di, L.; Bai, Y.; Wang, H.; Yang, C. Federated Catalogue for Discovering Earth Observation Data.
Photogramm. Fernerkund. Geoinform. Jahrg. 2013, 2013, 43–52. [CrossRef]

8. ECHO. What is ECHO? 2016. Available online: https://wiki.earthdata.nasa.gov/pages/viewpage.action?
pageId=26543757 (accessed on 12 June 2016).

9. Battrick, B. The Global Earth Observation System of Systems (GEOSS) 10-Year Implementation Plan Reference
Document. ESA (European Space Agency) Publications Division, 2005. Available online: http://www.
earthobservations.org/documents/10-Year%20Implementation%20Plan.pdf (accessed on 12 June 2016).

10. Beyer, M.A.; Lapkin, A.; Gall, N.; Feinberg, D.; Sribar, V.T. ‘Big Data’ Is Only the Beginning of
Extreme Information Management. 2011. Available online: http://www.gartner.com/id=1622715
(accessed on 26 July 2016).

11. Mauro, A.D.; Greco, M.; Grimaldi, M. A Formal definition of Big Data based on its essential Features.
Libr. Rev. 2016, 65, 122–135. [CrossRef]

12. Laney, D. 3D Data Management: Controlling Data Volume, Velocity and Variety. 2001. Available
online: http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-
Data-Volume-Velocity-and-Variety.pdf (accessed on 12 June 2016).

13. Unidata. Unidata Community. 2016. Available online: https://www.unidata.ucar.edu/community/index.
html (accessed on 8 May 2016).

14. Yoksas, T.; Emmerson, S.; Chiswell, S.; Schmidt, M.; Stokes, J. The Unidata Internet Data Distribution (IDD)
System: A Decade of Development. In Proceedings of the 22nd International Conference on Interactive
Information Processing Systems for Meteorology, Oceanography, and Hydrology, Atlanta, CA, USA,
27 January–3 February 2006.

15. Martell, R. OGC 07-110r4: CSW-ebRIM Registry Service—Part 1: ebRIM Profile of CSW. 2009a.
Available online: http://portal.opengeospatial.org/files/?artifact_id=31137 (accessed on 18 March 2016).

http://portal.opengeospatial.org/files/?artifact_id=20555
http://dx.doi.org/10.1016/j.cageo.2010.09.010
http://dx.doi.org/10.14358/PERS.73.6.699
http://dx.doi.org/10.1109/SEW.2006.11
http://dx.doi.org/10.1007/s11806-010-0318-6
http://dx.doi.org/10.1127/1432-8364/2013/0157
https://wiki.earthdata.nasa.gov/pages/viewpage.action?pageId=26543757
https://wiki.earthdata.nasa.gov/pages/viewpage.action?pageId=26543757
http://www.earthobservations.org/documents/10-Year%20Implementation%20Plan.pdf
http://www.earthobservations.org/documents/10-Year%20Implementation%20Plan.pdf
http://www.gartner.com/id=1622715
http://dx.doi.org/10.1108/LR-06-2015-0061
http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
https://www.unidata.ucar.edu/community/index.html
https://www.unidata.ucar.edu/community/index.html
http://portal.opengeospatial.org/files/?artifact_id=31137


ISPRS Int. J. Geo-Inf. 2017, 6, 337 15 of 15

16. Martell, R. OGC 07-110r4: CSW-ebRIM Registry Service—Part 2: Basic Extention Package. 2009b. Available
online: http://portal.opengeospatial.org/files/?artifact_id=31138 (accessed on 18 March 2016).

17. Voges, U.; Senkler, K. OpenGIS Catalogue Services Specification 2.0.2—ISO Metadata Application Profile. 2007.
Available online: http://portal.opengeospatial.org/files/?artifact_id=21460 (accessed on 12 June 2016).

18. Yoksas, T.; Almeida, W.G.D.; Coelho, D.G.; Leon, V.C. Internet Data Distribution – Extending Real-Time Data
Sharing throughout the Americas. Adv. Geosci. 2006, 8, 91–95. [CrossRef]

19. Domenico, B.; Caron, J.; Davis, E.; Kambic, R.; Nativi, S. Thematic Real-Time Environmental Distributed
Data Services (THREDDS): Incorporating Interactive Analysis Tools into NSDL. J. Digit. Inf. 2006, 2.

20. Nogueira, R.; Cutrim, E.M. Extending THREDDS Middleware to Serve OGC Community. Adv. Geosci. 2006,
8, 57–62.

21. Bergamasco, A.; Benetazzo, A.; Carniel, S.; Falcieri, F.M.; Minuzzo, T.; Signell, R.P.; Sclavo, M. Knowledge
Discovery in Large Model Datasets in the Marine Environment: The THREDDS Data Server Example.
Adv. Oceanogr. Limnol. 2012, 3, 119–133. [CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://portal.opengeospatial.org/files/?artifact_id=31138
http://portal.opengeospatial.org/files/?artifact_id=21460
http://dx.doi.org/10.5194/adgeo-8-91-2006
http://dx.doi.org/10.4081/aiol.2012.5325
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Framework of the Near-Real-Time OGC Catalogue Service 
	Fundamental Elements 
	Elements for Updating Metadata in Near Real Time 
	Metadata Ingestion Elements 

	Methodology 
	Near-Real-Time OGC CSW Server and Metadata Repository 
	Near-Real-Time Catalogue Update Approaches 
	Timing-Based Catalogue Update Implementation in Parallel 
	Data Source Monitor 
	Cluster-Based Catalogue Update in Parallel 


	Application and Catalogue Update Efficiency Analysis 
	Unidata IDD Data and Catalogue 
	Prototype of Near-Real-Time OGC CSW Service for Unidata IDD Data 
	Experiment and Result for Catalogue Update Task 

	Discussion and Conclusions 

