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Abstract: As a widely used classifier, sparse representation classification (SRC) has shown its good
performance for hyperspectral image classification. Recent works have highlighted that it is the
collaborative representation mechanism under SRC that makes SRC a highly effective technique for
classification purposes. If the dimensionality and the discrimination capacity of a test pixel is high,
other norms (e.g., `2-norm) can be used to regularize the coding coefficients, except for the sparsity
`1-norm. In this paper, we show that in the kernel space the nonnegative constraint can also play the
same role, and thus suggest the investigation of kernel fully constrained least squares (KFCLS) for
hyperspectral image classification. Furthermore, in order to improve the classification performance
of KFCLS by incorporating spatial-spectral information, we investigate two kinds of spatial-spectral
methods using two regularization strategies: (1) the coefficient-level regularization strategy, and
(2) the class-level regularization strategy. Experimental results conducted on four real hyperspectral
images demonstrate the effectiveness of the proposed KFCLS, and show which way to incorporate
spatial-spectral information efficiently in the regularization framework.

Keywords: hyperspectral; image classification; least squares; collaborative representation;
sparse representation; posterior probability; regularization

1. Introduction

Sparse representation classification (SRC) has been widely used in many applications, such
as pattern recognition [1,2], visual classification [3,4], and hyperspectral image classification [5–11].
Unlike the common classifiers (e.g., support vector machines (SVMs) [12] and multinomial logistic
regression [13]), SRC is not a learning-based classifier, which first represents a test sample as the sparse
linear combination of all training samples and then directly assigns a class label to the test sample by
evaluating which class leads to the minimum reconstruction error. Although the usage of sparsity
prior in the literature often leads to robust classification performance, recent works [14,15] have shown
that it is the collaborative representation (CR) mechanism under SRC (i.e., representing a test sample
collaboratively with training samples from all classes) that makes SRC a highly effective technique for
classification purposes. Moreover, if the dimensionality and the discrimination capacity of a sample
is high, other regularization terms such as `2-norm can play the same role as the sparsity `1-norm.
Several approaches have demonstrated the effectiveness of the classification method using `2-norm
in many applications [14,16], including hyperspectral image classification [17,18]. For the sake of
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simplicity, the method using `2-norm is referred to as collaborative representation classification (CRC),
and both SRC and CRC are referred to as CR-based classification methods.

Although CR-based classification methods can get good performance, it is difficult to use them
to classify data that is not linearly separable. Moreover, for hyperspectral image classification,
the discriminability of a pixel is generally low, owing to the presence of redundant spectral bands,
although its dimensionality is high. As the pixel-wise classification results reported in [17,18], SRC
often produces superior performance compared to CRC. Some approaches have considered using the
kernel method that is widely used in SVM classification [12,19] to mitigate these problems [20–22],
since in the kernel feature space the dimensionality of a sample is very high, and its discriminability is
generally enhanced [23]. In hyperspectral image classification, kernel CR (KCR)-based classification
has shown an improvement over CR-based classification [21,24,25], and kernel CRC (KCRC) exhibits
competitive advantages in terms of classification accuracy and computational cost when compared
with kernel SRC (KSRC) [23].

In the development of CR-based classification methods, more attention is paid to the selection
of norms. However, for both SRC or CRC they belong to the regularized least squares. That is to
say, the improvement brought by the norms can also be achieved by other regularization terms or
constraint terms. Among the numerous terms, the nonnegative constraint is an effective one that is very
common in many other techniques and applications, such as nonnegative matrix factorization [26] and
spectral unmixing [27]. Moreover, the nonnegative constraint can also bring the sparsity of the coding
coefficients [28,29]. Accordingly, we consider exploiting kernel nonnegative constrained least squares
(KNLS) for hyperspectral image classification. Since in the kernel feature space the dimensionality
and the discrimination capacity of a pixel is high, the nonnegative constraint may play a role of CR.
Considering that the nonnegative coding coefficient reflects the similarity between a test pixel and
the related training pixel, we suggest to provide the posterior probabilistic outputs by enforcing the
summation of the nonnegative coding coefficients of each pixel to be one, and thus investigate kernel
fully constrained least squares (KFCLS) [30,31] for hyperspectral image classification.

The investigated KFCLS is a pixel-wise classifier that treats hyperspectral data as an unordered
list of feature vectors but not as images. In order to handle the coarse classification maps brought by a
pixel-wise classifier, previous methods have considered incorporating spatial-contextual information
during the classification process [32]. According to the relationship between the pixel-wise classification
process and the fusion of spatial-spectral information, these methods can be roughly divided into
three categories:

(1) The first category can be treated as pre-processing methods. These methods usually extract the
spatial features first, and then incorporate both the spatial and spectral features into a pixel-wise
classifier. For instance, in [33] a composite kernel framework is proposed to combine the
spatial and spectral features first and subsequently embed into SVM for classification purposes.
In [34], the authors extract multiple types of spatial features from both linear and nonlinear
transformations first, and then integrate them via multinomial logistic regression. In [35],
a convolutional neural network is utilized to extract deep features from high levels of the image
data and the final classification is done by using SRC.

(2) The second category can be treated as post-processing methods. These methods usually perform
a pixel-wise classifier first, and then refine the pixel-wise results by incorporating spatial
information. For instance, in [23,36–38] the class conditional probability density functions are first
estimated using a probabilistic pixel-wise classifier, and then refined by using some regularization
models to incorporate the spatial information. In [39,40], the original hyperspectral image is first
classified per pixel and simultaneously segmented into several adaptive neighborhoods, and
then a decision fusion mechanism is undertaken within the pixel-wise classification results of
these neighborhoods. In [41], KSRC is first used to get the coding coefficients of the original
hyperspectral image, and then the coding coefficients are refined by incorporating the spatial
information for the final classification.
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(3) The last category can be treated as co-processing methods, which jointly integrate the pixel-wise
classification process and the fusion of spatial-spectral information. For CR-based classification,
the related methods usually assign a neighborhood/window to each pixel, and perform the
representation of a test pixel jointly by its neighbouring pixels [21,42–45]. In addition, there are
other methods that consider incorporating the spatial information by appending a spatial-spectral
term to the coding model of CR-based classification [11,25,46].

Notably, regularization is an important technique for CR-based classification, since all CR-based
classification methods are built by regularization technique. As a widely used technique in
mathematical and image processing problems [47], the regularization technique is very suitable
for the integration of different prior knowledge owing to its flexibility and availability. This paper
considers incorporating the spatial information into KFCLS using regularization technique. For this
issue, we consider both the co-processing and post-processing methods, and propose a weighted
H1-norm [48] for the description of spatial information. Furthermore, we investigate two regularization
strategies to integrate the spatial and spectral information. One is the coefficient-level regularization
strategy that incorporates the spatial information by enforcing or refining the coding coefficients, and
the other is the class-level regularization strategy that handles the posterior probabilistic outputs.

The remainder of this paper is organized as follows. Section 2 briefly introduces two instantiations
of KCR-based classification methods (i.e., KSRC and KCRC). In Section 3, we first present the proposed
KFCLS for hyperspectral image classification, and then introduce the co-processing and post-processing
methods for KFCLS using two regularization strategies. The effectiveness of the proposed KFCLS and
and the suggested way of incorporating spatial-spectral information are demonstrated in Section 4 by
conducting experiments on four real hyperspectral images. Finally, Section 5 concludes this paper.

2. KCR-Based Classification

In this section, we briefly review the general model of KCR-based classification and subsequently
introduce its two instantiations. Given a hyperspectral image, every pixel in it can be interpreted
as an L-dimensional column vector with L being the number of spectral bands. Suppose the given
hyperspectral image includes C classes, and there exists a feature mapping function φ which maps a test
pixel x ∈ RL and J training pixels A = [a1, a2, · · · , aJ ] ∈ RL×J to the high-dimensional feature space:
x→ φ(x), A→ Φ(A) = [φ(a1), φ(a2), · · · , φ(aJ)]. For a mapped pixel φ(x), KCR-based classification
supposes that it can be collaboratively represented as the linear combination of all mapped training
pixels; i.e.,

φ(x) ≈ Φ(A)s, (1)

where s ∈ RJ is an unknown coding coefficient vector of φ(x). To recover a coding coefficient vector
s from φ(x) and Φ(A) stably, the regularization method is the best choice, and the corresponding
optimization problem can be written as follows:

min
s

1
2
‖φ(x)−Φ(A)s‖2

2 + λ‖s‖`q , (2)

where λ > 0 is a regularization parameter, and `q = 0, 1, or 2.
Using different `q will lead to different instantiations of KCR-based classification. KSRC and

KCRC are two instantiations, where `q is respectively set to 1 and 2. The corresponding optimization
problems can be respectively written as follows:

KSRC : min
s

1
2
‖φ(x)−Φ(A)s‖2

2 + λ‖s‖1 and KCRC : min
s

1
2
‖φ(x)−Φ(A)s‖2

2 +
λ

2
‖s‖2

2. (3)
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After solving the above optimization problems, the obtained s is used for the final classification. For
KSRC, the class label y of x is determined via the minimal residual between φ(x) and its approximation
from the mapped training pixels of each class, and the classification rule can be written as follows:

dist: y = arg min
c=1,2,··· ,C

‖φ(x)−Φ(A)δc(s)‖2
2, (4)

where δc(·) is the characteristic function that selects coefficients related to the cth class and makes
the rest zero. For KCRC, it considers the discriminative information brought by s, and modifies the
classification rule as:

y = arg min
c=1,2,··· ,C

‖φ(x)−Φ(A)δc(s)‖2
2

/
‖δc(s)‖2

2 . (5)

Notably, all φ mappings used in kernel methods occur in the form of inner products. For every
two pixels xi and xj, we can define a kernel function as:

K =
〈
φ(xi), φ(xj)

〉
, (6)

where 〈·, ·〉 represents the inner product. In this paper, only the radial basis function (RBF) kernel
(K(xi, xj) = exp(−γ‖xi − xj‖2

2), γ > 0) is considered, owing to its simplicity and empirically observed
good performance [12,19,21,49]. After defining the kernel function K, the optimization problems of
KSRC and KCRC can be rewritten as:

KSRC : min
s

1
2

sTQs− sTb + λ‖s‖1 and KCRC : min
s

1
2

sTQs− sTb +
λ

2
‖s‖2

2, (7)

where the constant terms are dropped, Q = 〈Φ(A), Φ(A)〉 ∈ RJ×J is a positive semi-definite matrix
with entry Qij = K(ai, aj) and the mapped test vector b = 〈Φ(A), φ(x)〉 = [K(a1, x), · · · ,K(aJ , x)] ∈ RJ .
Similarly, the classification rules of KSRC and KCRC can be rewritten as:

y = arg min
c=1,2,··· ,C

δT
c (s)Qδc(s)− 2δT

c (s)b (8)

y = arg min
c=1,2,··· ,C

(
δT

c (s)Qδc(s)− 2δT
c (s)b + 1

)/
δT

c (s)δc(s) (9)

The optimization problem of KSRC is convex but not smooth. For this type of problem, several
algorithms proposed in the sparse representation and compressive sensing community can be adopted
to solve it [50–52]. In this paper, an alternating direction method of multipliers (ADMM) algorithm [53]
is adopted owing to its flexibility and availability, and the details can be seen in [49]. As for the
optimization problem of KCRC, it is convex and smooth, and an analytical solution can be derived
(see [23]).

3. Proposed Approach

3.1. Pixel-Wise Classification via KFCLS

3.1.1. Problem Formulation

Works in [14,15] point out that if the dimensionality and discriminability of a test sample is high,
the estimated coefficient vector will be naturally sparse and concentrate on the training samples whose
class labels are the same as that of the test sample, regardless of whether the `1-norm or `2-norm
is used. Since in the kernel feature space the dimensionality of a test sample is very high and its
discriminability is enhanced, KCRC can get the same performance as KSRC [23]. Considering these
issues, one may wonder whether other constraint terms can play the same role, except the `q-norm
regularization terms. Notably, in the coefficient vector s, each entry can be treated as the similarity
between the corresponding training pixel and the test pixel. If the test pixel is similar to some training
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pixels, large values will be assigned to the corresponding entries of s; otherwise, small values (may
be negative) will be assigned. It is natural to enforce the similarity to be nonnegative. Moreover,
the nonnegative constraint can promote the sparsity of the coefficient vector [28,29]. For this reason,
we consider the KNLS problem, which is defined as follows:

KNLS : min
s

1
2

sTQs− sTb subject to s � 0J , (10)

where 0J ∈ RJ is a zero vector with all entries being 0, and the symbol � denotes component-wise
inequality; i.e., s � 0J means entry sj ≥ 0 for j = 1, 2, · · · , J. Since s is nonnegative and reflects the
similarity, it can be regraded as a probability distribution if we enforce the summation of its entries to
be one [54]. Accordingly, we obtain KFCLS and the corresponding problem can be written as follows:

KFCLS : min
s

1
2

sTQs− sTb subject to s � 0J , 1T
J s = 1, (11)

where 1J ∈ RJ is a vector with all entries being 1. Figure 1 shows a comparison of the coefficient
vectors obtained by KNLS, KFCLS, and KSRC. It can be observed that the coefficients of KNLS and
KFCLS are almost as sparse as those of KSRC. Although the number of training pixels of each class
may be unequal, the summation of the entries of δc(s) can reflect the similarity between the cth class
and the test pixel [23]. Figure 2 shows the summation of the entries of each δc(s). It is apparent that the
summation value of the true class label is predominant. Moreover, the outputs of a classifier should
be calibrated posterior probabilities to facilitate the subsequent processing, which are very useful in
spatial-spectral classification [23,36,37]. With the aforementioned observation and motivation in mind,
we have designed a posterior probability in this context as follows:

p(y = c|x) = (Ts)c, (12)

where (·)c denotes the cth entry of a vector, and the summation matrix T ∈ RC×J is defined by

Tcj =

{
1 if class(aj) = c

0 else
, ∀c, j. (13)

With the definition of the posterior probability, the classification rule of KFCLS can be written as follows:

prob: y = arg max
c=1,2,··· ,C

p(y = c|x). (14)

As for KNLS, we use the classification rule (4) in this paper. Notably, the classification rule (4) is also
suitable for KFCLS.
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Figure 1. Estimated coefficients for the pixels in the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Indian Pines dataset (about 5% training pixels are used,
see Section 4), the corresponding class labels are included in the parentheses, and all coefficients are ranked in order of the class labels. (a–c): Pixel taken from Class C9,
and the coefficients of C9 are in the range (219, 221]. (d–f): Pixel taken from Class C5, and the coefficients of C5 are in the range (129, 154]. (g–i): Pixel taken from Class
C11, and the coefficients of C11 are in the range (270, 394]. (a) KNLS (C9). (b) KFCLS (C9). (c) KSRC (C9). (d) KNLS (C5). (e) KFCLS (C5). (f) KSRC (C5). (g) KNLS
(C11). (h) KFCLS (C11). (i) KSRC (C11). Notably, alternating direction method of multipliers (ADMM) is used to solve the optimization problems of KNLS and KFLCS,
and thus their coefficients are not strictly nonnegative.
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Figure 2. Sum of the estimated coefficients for the pixels in the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Indian Pines dataset (about 5% training
pixels are used, see Section 4), the corresponding class labels are included in the parentheses. (a–c): Pixel taken from Class C9. (d–f): Pixel taken from Class C5.
(g–i): Pixel taken from Class C11. (a) KNLS (C9). (b) KFCLS (C9). (c) KSRC (C9). (d) KNLS (C5). (e) KFCLS (C5). (f) KSRC (C5). (g) KNLS (C11). (h) KFCLS (C11).
(i) KSRC (C11).
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3.1.2. Optimization Algorithm

In this paper, ADMM is adopted to solve the optimization problems (10) and (11). For KFCLS,
the optimization problem (11) can be rewritten as the following equivalent form:

min
s

1
2

sTQs− sTb + ιRJ
+
(s) + ι1(1T

J s), (15)

where ιS is the indicator function of the set S (i.e., ιS (x) = 0 if x ∈ S and ιS (x) = ∞ if x /∈ S).
By introducing a variable v ∈ RJ , the optimization problem (15) can be rewritten as follows:

min
s,v

1
2

sTQs− sTb + ιRJ
+
(v) + ι1(1T

J s) subject to s = v. (16)

The augmented Lagrangian function of (16) can be written as follows:

L(s, v, d) =
1
2

sTQs− sTb + ιRJ
+
(v) + ι1(1T

J s) +
µ

2
‖s− v− d‖2

2, (17)

where µ > 0 is the penalty parameter and d ∈ RJ is an auxiliary variable. The ADMM iteration
procedure can be written as:

st = arg min
s

1
2 sTQs− sTb + ι1(1T

J s) + µ
2 ‖s− vt−1 − dt−1‖2

2

vt = arg min
v

ιRJ
+
(v) + µ

2 ‖st − v− dt−1‖2
2

dt = dt−1 − (st − vt)

(18)

where t > 0 is the iteration number. The first step of (18) is to solve the s-subproblem, and the solution
can be derived as:

st = P1
(
F−1(b + µ(vt−1 + dt−1)

)
, (19)

where F = Q + µI with I being the identity matrix, and the projection operator
P1(s) = s− F−11J(1T

J F−11J)
−1(1T

J s− 1). The second step of (18) is to solve the v-subproblem, which
is the well-known proximal operator [55]:

vt = max(st − dt−1, 0), (20)

where max(·, 0) is used to set the negative components to zero and keep the nonnegative components
unchanged. The last step of (18) is used to update the auxiliary variable. The algorithm of KFCLS is
detailed as follows.

1. Input: A training dictionary A ∈ RL×J , and a hyperspectral pixel x ∈ RL.
2. Select the parameter γ for the RBF kernel and compute the matrix Q and the vector b.
3. Set t = 1, choose µ, s1,v1,d1.
4. Repeat
5. Compute st,vt,dt using (18).
6. t = t + 1.
7. Until some stopping criterion is satisfied.
8. Output: The estimated label of x using (14) or (4).

As for KNLS, its ADMM iteration procedure is almost as same as that of KFCLS, where we do not
need the projection operator P1 in (19).

3.2. Spatial-Spectral Classification

The suggested KFCLS is just a pixel-wise classifier that does not treat hyperspectral data as images
but as an unordered list of pixels. In order to incorporate the spatial-spectral information, several
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methods have been proposed as discussed in Section 1. Among these methods, the regularization
strategy is an important one for CR-based classification, since CR-based classification is also a group of
regularization methods. In this section, we show the incorporation of spatial-spectral information for
KFCLS using both the co-processing and post-processing methods, and consider two regularization
strategies to combine the spatial-spectral information.

3.2.1. Problem Formulation

Suppose that a hyperspectral image is composed of a set of I pixels X = [x1, x2, · · · , xI ] ∈ RL×I .
Correspondingly, we get the coefficient matrix S = [s1, s2, · · · , sI ] ∈ RJ×I , the probability
matrix P = [p1, p2, · · · , pI ] ∈ RC×I with (pi)c = p(y = c|xi), and the mapped test matrix
B = [b1, b2, · · · , bI ] ∈ RJ×I . Then, the unconstrained optimization problem (15) for X can be written as:

min
S

1
2

Tr(STQS)− Tr(STB) + ιRJ×I
+

(S) + ι1T
I
(1T

J S), (21)

where Tr(·) denotes the trace of a matrix. In this paper, the spatial relationship between two adjacent
pixels xi and xj is modeled by the similarity defined as

Wij = exp(−β||x̄i − x̄j||2) + ε, β > 0 (22)

where ε = 10−6 is a small positive constant and x̄i and x̄j are the pixels of the first three principle
components of the hyperspectral image X. For each pixel xi, its neighborhood Ni is built by its eight
spatially-adjacent neighbors, and Wij is set to 0 if xj does not belong to Ni.

3.2.2. Co-Processing Methods

The spatial arrangement of the coefficient matrix S is associated with that of the hyperspectral
image X. That is to say, the spatial relationship between every two pixels xi and xj is also suitable
for that of the coefficient vectors si and sj. It is natural to integrate the spatial information of X by
enforcing S. If xi is similar to xj (i.e., Wij is relatively large), si and sj should be close to each other, and
vice versa. In this paper, the weighted H1-norm that is convex and smooth is adopted to describe the
aforementioned relationship and the joint regularization model (JRM) can be written as follows:

JRM : min
S

1
2

Tr(STQS)− Tr(STB) + ιRJ×I
+

(S) + ι1T
I
(1T

J S) +
λ

4
‖∇wS‖2

F, (23)

where λ > 0, ‖ · ‖F denotes the Frobenius norm, and ‖∇wS‖2
F is the weighted H1-norm of S with

∇wsi = {
√

Wij(si − sj)|j ∈ Ni}. We may note that the spatial arrangement of the probability matrix
P is also associated with that of the hyperspectral image X. That is to say, we can integrate the
spatial information of X by enforcing P (i.e., TS). In view of this, we propose the following class-level
JRM (CJRM):

CJRM : min
S

1
2

Tr(STQS)− Tr(STB) + ιRJ×I
+

(S) + ι1T
I
(1T

J S) +
λ

4
‖∇wP‖2

F subject to P = TS. (24)

Since the objective solutions of JRM and CJRM are the coefficient matrix S and the columns of which
sum to one, both the classification rules (4) and (14) are suitable for the final classification.

3.2.3. Post-Processing Methods

For the post-processing methods, the procedures of the pixel-wise classification and the
integration of spatial-spectral information are performed separately. Generally, the incorporation of
spatial-spectral information can be done by refining the coefficient matrix S [41] or the probability
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matrix P [23,36,37,56]. For this issue, we propose the corresponding post-processing regularization
model (PRM) and class-level PRM (CPRM) for KFCLS, which are defined as follows:

PRM : min
V

1
2
‖S−V‖2

F +
λ

4
‖∇wV‖2

F (25)

CPRM : min
U

1
2
‖P−U‖2

F +
λ

4
‖∇wU‖2

F (26)

Notably, we can verify that the columns of solutions V and U sum to one with reference to (34).
The objective solution of PRM is the refined coefficient matrix V, and thus both the classification
rules (4) and (14) are suitable for the final classification; whereas the objective solution of CPRM is
the refined probability matrix U, and thus only the classification rule (14) is suitable for classification
purposes. Furthermore, we can prove that PRM using the classification rule (14) is equivalent to CPRM
using the classification rule (14) with reference to (34). Accordingly, PRM using the classification
rule (14) is dropped in the experiments.

3.2.4. Optimization Algorithm

In this paper, the optimization problems (23) and (24) are solved by ADMM. For CJRM,
the optimization problem (24) can be rewritten as the following formulation by introducing a variable
V ∈ RJ×I :

min
S,V,P

1
2

Tr(STQS)− Tr(STB) + ιRJ×I
+

(V) + ι1T
I
(1T

J S) +
λ

4
‖∇wP‖2

F subject to P = TS, V = S. (27)

The optimization problem (27) accords with the framework of ADMM, and the corresponding
augmented Lagrangian function of (27) can be written as:

L(S, V, D, P, R) =
1
2

Tr(STQS)− Tr(STB) + ιRJ×I
+

(V) + ι1T
I
(1T

J S) +
λ

4
‖∇wP‖2

F

+
µ

2
‖S−V−D‖2

F +
µ

2
‖TS− P− R‖2

F, (28)

where D ∈ RJ×I and R ∈ RC×I are two auxiliary variables. Then, the optimization problem (27) can
be solved by the following ADMM iterations:

St = arg min
S
L(S, Vt−1, Dt−1, Pt−1, Rt−1)

Vt = arg min
V
L(St, V, Dt−1, Pt−1, Rt−1)

Pt = arg min
P
L(St, Vt, Dt−1, P, Rt−1)

Dt = Dt−1 − (St −Vt)

Rt = Rt−1 − (TSt − Pt)

(29)

Similar to (18), the solutions of the first two subproblems of (29) can be derived as:

St = P1T
I
(F−1(B + µ(Vt−1 + Dt−1) + µTT(Pt−1 + Rt−1))) (30)

Vt = max(St −Dt−1, 0) (31)

where F = Q + µI + µTTT, and the projection operator P1T
I
(S) = S− F−11J(1T

J F−11J)
−1(1T

J S− 1T
I ).

The third subproblem of (29) can be written as follows:

min
P

µ

2
‖P− (TSt − Rt−1)‖2

F +
λ

4
‖∇wP‖2

F. (32)
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The optimization problem (32) is a linear system, which can be solved by the Gauss–Seidel method
according to [48,51]. In addition, the optimization problem (32) can also be rewritten as the
following formulation:

min
P

µ

2
‖P− (TSt − Rt−1)‖2

F +
λ

2
Tr(PGPT), (33)

where G ∈ RI×I can be treated as the graph Laplacian with Gii = ∑j Wij and Gij = −Wij (j 6= i).
The analytical solution of (33) can be derived as:

P = (TSt − Rt−1)

(
λ

µ
G + I

)−1
. (34)

The algorithm of CJRM is detailed as follows.

1. Input: A training dictionary A ∈ RL×J , and a hyperspectral data matrix X ∈ RL×I .
2. Choose β and compute the weights Wij according to (22).
3. Select the parameter γ for the RBF kernel and compute the matrices Q and B.
4. Set t = 1, choose µ, λ, S1,V1,P1,D1,R1.
5. Repeat
6. Compute St,Vt,Pt,Dt,Rt using (29).
7. t = t + 1.
8. Until some stopping criterion is satisfied.
9. Output: The estimated label of xi using (4) or (14), i = 1, ..., I.

As for JRM, the aforementioned procedure is also suitable for the optimization problem (23).
By changing the summation matrix T to the identity matrix I, we can obtain the ADMM iterations
of JRM. For the two post-processing methods PRM and CRPM, their formulations are as same as that
of (32). Thus, they can be solved by the Gauss–Seidel method according to [48,51], and we can get their
analytical solutions with reference to (34).

3.3. Discussion

The `2 norm characterization of coding residual (or fidelity term)—i.e., the first term of (2)—is
related to the robustness of KCR-based classification to noise, as stated in [14,15]. For the proposed
pixel-wise classifiers KNLS and KFCLS, they can be treated as two instantiations of KCR-based
classification, where the collaborative representation mechanism is implemented by the nonnegative
constraint. Therefore, their performance is almost as same as that of KSRC and KCRC, which is
experimentally demonstrated in Section 4 by using four different hyperspectral scenes. Moreover,
in KCR-based classification, the accuracy of one class is usually not vulnerable to the number of
training samples taken from another class, since all training samples contribute collaboratively
(or competitively) to represent a test sample. In Section 4, the experimental results confirm this
phenomenon, where the numbers of training samples of some classes are far less than those of the
others (see Tables 1 and 2). That is to say, KNLS and KFCLS are not too sensitive to class imbalance.

Because of the limitations of remote sensing sensors, a hyperspectral image may contain outliers
such as noise and missing or corrupted pixels. The proposed spatial-spectral methods can cope with
these pixels. Taking CPRM as an example, the optimization problem (26) can be rewritten as follows:

min
ui

1
2
‖ui − pi‖2

2 +
λ

2 ∑
j∈Ni

Wij‖ui − uj‖2
2, i = 1, 2, · · · , I (35)

where ui is the ith column vector of U. The solutions of (35) can be derived as:

ui =
pi + λ ∑j∈Ni

Wijuj

1 + λ ∑j∈Ni
Wij

, i = 1, 2, · · · , I. (36)
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Since Ni is a 3 × 3 neighborhood, (36) can be treated as a 3 × 3 adaptive mean filtering, and thus the
outliers can be smoothed by using their neighbors.

Notably, deep learning has attracted a lot of attention very recently. In hyperspectral image
classification, various deep models (e.g., stacked autoencoder [57] and convolutional neural
network [35,58–60]) have been proposed with the observation of good performance in terms of
accuracy and flexibility. This paper proposes two new instantiations of KCR-based classification
and investigates how to efficiently incorporate spatial-spectral information in the regularization
framework. Compared with the deep learning-based methods, the proposed methods have limitations
in generalization performance owing to the drawbacks of traditional methods, but have advantages
in the requirement of training samples and computational cost as mentioned in the existing deep
learning approaches [35,57–60]. In this paper, we do not expect the proposed methods to exceed the
deep learning based methods. It is unfair to compare these two different kinds of methods. Moreover,
it is beyond the scope of this paper.

Table 1. The ground reference classes in the AVIRIS Indian Pines dataset and the number of training
and test pixels used in experiments.

No. Class Name Train Test

C01 Alfalfa 3 51
C02 Corn-no till 72 1362
C03 Corn-min till 42 792
C04 Corn 12 222
C05 Grass/pasture 25 472
C06 Grass/trees 38 709
C07 Grass/pasture-mowed 2 24
C08 Hay-windrowed 25 464
C09 Oats 2 18
C10 Soybeans-no till 49 919
C11 Soybeans-min till 124 2344
C12 Soybean-clean till 31 583
C13 Wheat 11 201
C14 Woods 65 1229
C15 Bldg-grass-tree drives 19 361
C16 Stone-steel towers 5 90

Total 525 9841

Table 2. The ground reference classes in the AVIRIS Kennedy Space Center dataset and the number of
training and test pixels used in experiments.

No. Class Name Train Test

C01 Scrub 39 722
C02 Willow swamp 13 230
C03 Cabbage palm hammock 13 243
C04 Cabbage palm/oak hammock 13 239
C05 Slash pine 9 152
C06 Oak/broadleaf hammock 12 217
C07 Hardwood swamp 6 99
C08 Graminoid marsh 22 409
C09 Spartina marsh 26 494
C10 Cattail marsh 21 383
C11 Salt marsh 21 398
C12 Mud flats 26 477
C13 Water 47 880

Total 268 4943
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4. Experimental Results and Analysis

4.1. Data Collection and Experimental Setup

In the experiments, four hyperspectral remote sensing datasets have been considered to evaluate
the performance of the proposed methods.

(1) The first one is the Indian Pines dataset taken by the Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) over northwest Indiana’s Indian Pines test site in 1992. This dataset
contains 220 spectral bands within the wavelength range of 0.4–2.5 µm, and consists of
145 × 145 pixels. Its spectral and spatial resolutions are 10 nm and 17 m, respectively. There
are sixteen ground reference classes of interest, ranging from 20 to 2468 pixels in size. Figure 3
shows the false color composite image and the ground reference map. After removing 20 water
absorption bands, there are 200 spectral bands remaining in the experiments. We randomly chose
about 5% of the labeled pixels for training, and used the rest for testing, as shown in Table 1.

(2) The second one is the Kennedy Space Center dataset taken by the AVIRIS sensor over the
Kennedy Space Center, Florida, in 1996. This dataset contains 224 spectral bands, covering
the wavelength range of 0.4–2.5 µm. Its spectral and spatial resolutions are 10 nm and 18 m,
respectively. This image, with a size of 512 × 614 pixels, contains 176 spectral bands after
removing water absorption and low signal-to-noise bands. There are thirteen ground reference
classes of interest, ranging from 105 to 927 pixels in size. Figure 4 shows the false color composite
image and the ground reference map. In the experiments, we randomly chose 5% of the labeled
pixels for training, and used the rest for testing, as shown in Table 2.

(3) The third one—the University of Pavia dataset—is an urban image collected by the Reflective
Optics System Imaging Spectrometer (ROSIS) over University of Pavia, Italy. There are 115
spectral bands in this image, covering the wavelength range of 0.43–0.86 µm. The image consists
of 610 × 340 pixels, with a spatial resolution of 1.3 m per pixel. The false color composite image
and the map of nine ground reference classes of interest are shown in Figure 5. In the experiments,
there are 103 spectral bands remaining after the removal of noisy bands, and we randomly chose
40 pixels per class for training and used the rest for testing, as shown in Table 3.

(4) The last one—the Center of Pavia dataset—is another urban image collected by the ROSIS sensor
over the center of Pavia city. This image consists of 1096 × 492 pixels, with 102 spectral bands.
The reference dataset contains nine classes of interest. The false color composite image and the
ground reference map are shown in Figure 6. In the experiments, we randomly chose 20 pixels
per class for training and used the rest for testing, as shown in Table 4.

(a) (b)

Alfalfa

Corn−no till

Corn−min till

Corn

Grass/pasture

Grass/trees

Grass/pasture−mowed

Hay−windrowed

Oats

Soybeans−no till

Soybeans−min till

Soybean−clean till

Wheat

Woods

Bldg−grass−tree drives

Stone−steel towers

Figure 3. AVIRIS Indian Pines dataset. (a) RGB composite image. (b) Ground reference map.
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(a) (b)

Scrub

Willow swamp

Cabbage palm hammock

Cabbage palm/oak hammock

Slash pine

Oak/broadleaf hammock

Hardwood swamp

Graminoid marsh

Spartina marsh

Cattail marsh

Salt marsh

Mud flats

Water

Figure 4. AVIRIS Kennedy Space Center dataset. (a) RGB composite image. (b) Ground reference map.

(a) (b)

Asphalt

Meadow

Gravel

Trees

Metal sheets

Bare soil

Bitumen

Bricks

Shadows

Figure 5. Reflective Optics System Imaging Spectrometer (ROSIS) University of Pavia dataset. (a) RGB
composite image. (b) Ground reference map.

Table 3. The ground reference classes in the ROSIS University of Pavia dataset and the number of
training and test pixels used in experiments.

No. Class Name Train Test

C1 Asphalt 40 6812
C2 Meadow 40 18,646
C3 Gravel 40 2167
C4 Trees 40 3396
C5 Metal sheets 40 1338
C6 Bare soil 40 5064
C7 Bitumen 40 1316
C8 Bricks 40 3838
C9 Shadows 40 986

Total 360 43,563
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(a) (b)

Water

Trees

Meadow

Bricks

Soil

Asphalt

Bitumen

Tile

Shadows

Figure 6. ROSIS Center of Pavia dataset. (a) RGB composite image. (b) Ground reference map.

Before the following experiments, the original data were scaled in the range [0,1]. Three
metrics—the overall accuracy (OA), the average accuracy (AA) and the kappa coefficient of agreement
(KA)—were used to assess the classification accuracy levels, and the quantitative values were obtained
by averaging ten random runs. All the experiments were performed on a 64-b quad-core CPU 3.60-GHz
processor with 16-GB memory.

Table 4. The ground reference classes in the ROSIS Center of Pavia dataset and the number of training
and test pixels used in experiments.

No. Class Name Train Test

C1 Water 20 65,258
C2 Trees 20 6488
C3 Meadow 20 2885
C4 Bricks 20 2132
C5 Soil 20 6529
C6 Asphalt 20 7565
C7 Bitumen 20 7267
C8 Tile 20 3102
C9 Shadows 20 2145

Total 180 103,371

4.2. Numerical and Visual Comparisons

In this set of experiments, eleven investigated classification methods described above are
compared numerically and visually. These methods can be divided into two categories. The first
category comprises five pixel-wise KCR-based classification methods: (1) KSRC, (2) KCRC, (3) the
proposed KNLS, (4) the proposed KFCLS using the classification rule “dist” (i.e., (4)), and (5) the
proposed KFCLS using the classification rule “prob” (i.e., (14)). The second category comprises six
spatial-spectral classification methods mentioned in Section 3.2: (1) JRM using “dist”, (2) JRM using
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“prob”, (3) CJRM using “dist”, (4) CJRM using “prob”, (5) PRM, and 6) CPRM. Their parameter setting is
listed in Table 5.

Table 6 summarizes the class-specific and global classification results for the two AVIRIS datasets,
where the processing times in seconds are also included for reference. For the pixel-wise classification,
the proposed KNLS and KFCLS can achieve competitive results when compared with KSRC and
KCRC, and both the classification rules “dist” and “prob” are suitable for KFCLS. For the spatial-spectral
classification, it can be observed that all the spatial-spectral methods perform better than the pixel-wise
methods. Among the six spatial-spectral methods, CPRM yields the highest global and most of the
best class-specific accuracies followed by CJRM-prob. The improvement of the two JRM methods over
the pixel-wise methods is not significant when compared with the other four spatial-spectral methods.
This is because JRM combines the spatial-spectral information by enforcing the coding coefficients
directly, which is too strict and does not consider the variation of training pixels within each class.
For CJRM, the classification rule “prob” is better than the classification rule “dist”. Furthermore,
considering PRM using “prob” is equivalent to CPRM, we can conclude that the classification rule
“prob” is more suitable for the spatial-spectral classification than the classification rule “dist”. As for the
computational cost, KCRC is a cheap pixel-wise classifier since its objective function has an analytical
solution. CJRM is the cheapest one among the four kinds of spatial-spectral methods, whereas JRM is
the most expensive one.

For the two ROSIS datasets, the classification results and processing times are presented in
Table 7. From this table, we can obtain almost the same conclusions as Table 6. It is apparent that
KNLS and KFCLS are two competitive methods compared with KSRC and KCRC. When using the
same regularization strategy and classification rule, the post-processing methods outperform the
co-processing methods. For both the co-processing and post-processing methods, it is better to use the
class-level regularization strategy.

Figures 7–10 show the classification maps corresponding to one of the ten random tests in each
case for the AVIRIS Indian Pines dataset, the AVIRIS Kennedy Space Center dataset, the ROSIS
University of Pavia dataset, and the ROSIS Center of Pavia dataset, respectively. From these figures, it
can be observed that the numerical comparisons are confirmed by inspecting these classification maps.
It is evident that the maps of the spatial-spectral methods are smoother that those of the pixel-wise
methods, and the maps of CPRM are closest to the ground truth maps.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j) (k)

Figure 7. Classification maps and overall classification accuracy levels (in parentheses) obtained for the
AVIRIS Indian Pines dataset using different classification methods. (a) KSRC (81.50), (b) KCRC (79.52),
(c) KNLS (81.94), (d) KFCLS-dist (81.91), (e) KFCLS-prob (81.49), (f) JRM-dist (85.54), (g) JRM-prob (86.27),
(h) CJRM-dist (89.64), (i) CJRM-prob (92.42), (j) PRM (91.29), (k) CPRM (92.73).
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j) (k)

Figure 8. Classification maps and overall classification accuracy levels (in parentheses) obtained for
the AVIRIS Kennedy Space Center dataset using different classification methods. (a) KSRC (89.86),
(b) KCRC (88.99), (c) KNLS (89.90), (d) KFCLS-dist (89.97), (e) KFCLS-prob (90.17), (f) JRM-dist (90.59),
(g) JRM-prob (90.57), (h) CJRM-dist (95.04), (i) CJRM-prob (95.63), (j) PRM (95.51), (k) CPRM (95.75).

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j) (k)

Figure 9. Classification maps and overall classification accuracy levels (in parentheses) obtained
for the ROSIS University of Pavia dataset using different classification methods. (a) KSRC (83.44),
(b) KCRC (82.74), (c) KNLS (84.40), (d) KFCLS-dist (84.43), (e) KFCLS-prob (84.19), (f) JRM-dist (90.96),
(g) JRM-prob (91.29), (h) CJRM-dist (97.23), (i) CJRM-prob (97.71), (j) PRM (97.98), (k) CPRM (98.57).
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j) (k)
Figure 10. Classification maps and overall classification accuracy levels (in parentheses) obtained for the
ROSIS Center of Pavia dataset using different classification methods. (a) KSRC (96.49), (b) KCRC (96.44),
(c) KNLS (96.65), (d) KFCLS-dist (96.65), (e) KFCLS-prob (96.65), (f) JRM-dist (97.45), (g) JRM-prob (97.50),
(h) CJRM-dist (98.82), (i) CJRM-prob (98.74), (j) PRM (98.84), (k) CPRM (98.93).

Table 5. The optimal combination of parameters for the investigated methods when applied to the four
given datasets. JRM: joint regularization model; CJRM: class-level JRM; KCRC: kernel collaborative
representation classification; KFCLS: kernel fully constrained least squares; KNLS: kernel nonnegative
constrained least squares; KSRC: kernel sparse representation classification; PRM: post-processing
regularization model; CPRM: class-level PRM.

Pixel-Wise Classification Spatial-Spectral Classification

KSRC KCRC KNLS KFCLS JRM CJRM PRM CPRM

µ = 10−3 – µ = 10−4 µ = 10−4 µ = 10−3 µ = 10−4 µ = 10−4 µ = 10−4

Indian γ = 2 γ = 2 γ = 2 γ = 2 γ = 2 γ = 2 γ = 2 γ = 2
Pines λ = 10−4 λ = 10−3 – – λ = 1 λ = 10−2 λ = 106 λ = 106

– – – – β = 100 β = 25 β = 450 β = 450

µ = 10−3 – µ = 10−4 µ = 10−4 µ = 10−3 µ = 10−4 µ = 10−4 µ = 10−4

Kennedy γ = 1
8 γ = 1

8 γ = 1
8 γ = 1

8 γ = 1
8 γ = 1

8 γ = 1
8 γ = 1

8
Space Center λ = 10−4 λ = 10−3 – – λ = 1 λ = 10−2 λ = 106 λ = 106

– – – – β = 100 β = 25 β = 800 β = 800

µ = 10−3 – µ = 10−4 µ = 10−4 µ = 10−3 µ = 10−4 µ = 10−4 µ = 10−4

University γ = 1
2 γ = 1

2 γ = 1
2 γ = 1

2 γ = 1
2 γ = 1

2 γ = 1
2 γ = 1

2
of Pavia λ = 10−4 λ = 10−3 – – λ = 1 λ = 1 λ = 106 λ = 106

– – – – β = 100 β = 100 β = 450 β = 450

µ = 10−3 – µ = 10−4 µ = 10−4 µ = 10−3 µ = 10−4 µ = 10−4 µ = 10−4

Center γ = 1
8 γ = 1

8 γ = 1
8 γ = 1

8 γ = 1
8 γ = 1

8 γ = 1
8 γ = 1

8
of Pavia λ = 10−4 λ = 10−3 – – λ = 1 λ = 1 λ = 106 λ = 106

– – – – β = 100 β = 100 β = 500 β = 500
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Table 6. Classification accuracies for the two AVIRIS datasets using different classification methods.
For both the pixel-wise classification and spatial-spectral classification, the best results are highlighted
in bold, and the second best results are underlined. AA: average accuracy; KA: kappa coefficient of
agreement; OA: overall accuracy.

Pixel-Wise Classification Spatial-Spectral Classification

KSRC KCRC KNLS KFCLS JRM CJRM PRM CPRM
dist prob dist prob dist prob

Indian Pines

C01 56.67 43.73 55.69 55.49 56.47 58.24 59.61 60.59 65.88 77.45 77.84
C02 78.35 73.28 78.55 78.63 78.56 83.37 84.05 84.06 83.66 86.74 86.92
C03 64.31 53.03 64.49 64.36 64.53 71.19 72.85 79.39 89.58 81.10 85.34
C04 52.12 41.40 52.88 52.79 52.88 56.98 60.18 68.06 82.61 71.71 83.24
C05 89.03 86.17 89.17 89.17 88.98 89.85 90.04 90.74 91.61 92.22 92.22
C06 96.46 96.80 96.46 96.49 95.85 97.24 97.08 98.28 99.00 98.91 99.48
C07 74.58 54.58 74.17 74.17 70.42 88.33 87.92 87.08 88.33 92.92 90.00
C08 98.75 99.27 98.86 98.86 98.47 99.18 99.09 99.38 99.44 99.59 100
C09 57.78 36.11 57.78 57.78 61.67 67.78 76.11 62.78 78.33 59.44 36.67
C10 72.87 61.60 73.33 72.96 73.04 77.60 79.34 88.18 90.02 87.66 88.07
C11 82.42 89.78 82.53 83.16 82.43 88.70 88.38 92.76 95.68 93.97 96.39
C12 76.76 65.04 78.16 78.37 79.50 85.51 88.64 92.26 97.26 94.34 97.58
C13 98.76 98.86 98.96 99.00 98.51 99.00 99.05 99.25 99.30 99.50 99.80
C14 95.28 97.34 95.68 95.66 95.29 97.27 97.05 98.13 98.62 98.28 98.70
C15 53.80 41.94 53.91 53.68 57.40 52.96 56.37 62.88 72.27 71.33 81.30
C16 88.56 79.89 88.44 87.33 68.78 86.44 79.44 86.56 80.89 86.22 85.00

OA(%) 81.34 78.99 81.61 81.72 81.46 85.53 86.15 89.49 92.26 91.00 92.86
AA(%) 77.28 69.93 77.44 77.37 76.42 81.23 82.20 84.40 88.28 86.96 87.41
KA(%) 78.66 75.69 78.98 79.09 78.80 83.44 84.17 88.00 91.17 89.72 91.84
Time(s) 9.28 0.97 15.89 19.50 19.19 47.26 46.95 14.48 14.28 20.08 19.28

Kennedy Space Center

C01 95.69 97.09 95.80 95.82 95.79 97.58 97.62 99.47 99.92 99.40 99.96
C02 85.09 85.04 85.22 85.35 84.87 85.74 85.78 93.35 93.09 89.96 91.09
C03 90.62 91.48 90.08 90.08 90.29 97.16 97.20 98.11 98.19 98.19 98.93
C04 46.78 41.88 46.15 46.40 46.65 50.92 50.63 52.80 54.60 65.10 64.27
C05 61.64 59.14 61.64 61.71 62.30 70.66 70.99 82.89 82.50 79.87 80.53
C06 45.58 34.10 44.70 44.61 45.16 36.27 36.36 62.30 65.58 61.80 61.38
C07 83.54 84.34 83.94 83.84 84.44 90.10 90.40 97.58 98.59 96.46 97.88
C08 89.29 88.19 88.90 88.88 89.07 93.81 93.94 97.87 99.07 98.34 99.27
C09 96.01 96.66 96.32 96.30 96.28 97.96 97.96 98.34 98.30 98.34 98.30
C10 95.30 94.15 95.30 95.33 93.24 96.66 96.58 98.64 99.27 98.80 99.48
C11 94.30 95.00 94.60 94.60 94.92 95.38 95.15 97.09 97.94 97.49 99.45
C12 88.05 87.42 87.34 87.25 88.28 87.25 87.48 92.01 94.03 93.52 94.30
C13 99.84 99.75 99.69 99.72 99.34 99.89 99.90 100 100 100 100

OA(%) 88.45 87.76 88.32 88.33 88.29 89.97 90.00 93.56 94.26 94.08 94.60
AA(%) 82.44 81.10 82.28 82.30 82.36 84.57 84.61 90.04 90.85 90.56 91.14
KA(%) 87.12 86.31 86.96 86.98 86.94 88.80 88.83 92.81 93.59 93.39 93.97
Time(s) 65.67 6.06 117.8 142.0 140.3 965.5 963.1 113.4 112.2 156.1 155.3
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Table 7. Classification accuracies for the two ROSIS datasets using different classification methods. For
both the pixel-wise classification and spatial-spectral classification, the best results are highlighted in
bold, and the second best results are underlined.

Pixel-Wise Classification Spatial-Spectral Classification

KSRC KCRC KNLS KFCLS JRM CJRM PRM CPRM
dist prob dist prob dist prob

University of Pavia

C1 73.25 72.78 74.77 74.77 75.22 80.03 80.29 94.73 96.19 95.49 98.16
C2 83.24 82.61 83.55 83.57 83.67 87.70 88.32 96.64 98.09 96.55 98.12
C3 78.68 77.64 78.80 78.77 78.52 84.72 84.63 86.77 87.08 92.32 92.51
C4 91.65 93.75 92.68 92.61 91.23 95.00 94.70 94.87 94.86 95.40 93.37
C5 99.42 99.23 99.33 99.34 98.27 99.24 98.67 99.28 98.36 98.94 99.90
C6 84.77 85.64 85.55 85.48 84.72 93.04 93.17 98.78 99.55 99.12 99.91
C7 92.65 94.17 92.54 92.36 92.29 96.75 96.78 99.59 99.87 99.51 99.72
C8 77.99 80.03 78.69 78.57 78.37 87.93 87.82 95.88 97.30 96.44 96.14
C9 99.27 99.22 99.25 99.28 98.80 99.29 98.92 99.37 99.43 99.23 99.54

OA(%) 82.96 83.05 83.57 83.55 83.39 88.45 88.71 96.13 97.19 96.60 97.65
AA(%) 86.77 87.23 87.24 87.20 86.79 91.52 91.48 96.21 96.75 97.00 97.48
KA(%) 78.21 78.37 78.97 78.94 78.72 85.16 85.47 94.94 96.32 95.57 96.92
Time(s) 59.59 5.74 101.7 119.1 117.2 344.1 342.1 75.84 74.86 124.5 119.0

Center of Pavia

C1 99.67 99.73 99.69 99.69 99.70 99.86 99.90 100 100 100 100
C2 91.09 91.33 91.16 91.18 91.07 91.71 91.67 97.66 97.77 95.86 96.62
C3 89.71 90.43 89.60 89.59 89.25 90.93 90.10 83.58 81.81 91.21 88.72
C4 89.40 88.84 88.99 89.00 88.72 90.85 90.78 99.38 99.09 99.39 99.52
C5 87.95 89.43 89.16 89.07 89.82 93.21 93.39 96.46 97.08 95.54 96.23
C6 96.84 97.62 96.93 96.94 97.01 97.95 98.01 99.55 99.50 99.70 99.83
C7 86.29 85.52 86.57 86.57 86.23 88.78 88.64 94.53 94.46 93.25 93.44
C8 98.83 98.76 98.93 98.94 98.83 99.22 99.15 96.94 96.66 99.52 99.75
C9 99.98 99.97 99.98 99.98 99.97 100 99.99 95.96 95.20 94.04 93.69

OA(%) 96.74 96.89 96.84 96.84 96.85 97.56 97.56 98.56 98.52 98.57 98.61
AA(%) 93.31 93.51 93.44 93.44 93.40 94.72 94.63 96.01 95.73 96.50 96.42
KA(%) 94.40 94.66 94.58 94.57 94.60 95.80 95.80 97.52 97.45 97.53 97.61
Time(s) 75.93 5.81 91.89 109.3 106.9 462.3 460.6 70.98 69.86 116.8 110.7

4.3. Analysis of Parameters

In the first set of experiments, we investigated the impact of the input parameters on KFCLS.
Apart from the ADMM parameter µ that is empirically set to 10−4, KFCLS has only one parameter γ,
which is used for the RBF kernel. Figure 11 shows the impact of γ on the four given datasets, where γ is
varied from 2−9 to 27. It can be observed that for all four given datasets, there is a wide optimal range
for the choice of γ. When γ is small, the classification rule “prob” is more robust than the classification
rule “dist” in most cases, and the difference between them is unapparent when γ is large.

In the next set of experiments, we investigated the impact of the input parameters on CJRM, PRM,
and CPRM. Notably, JRM is dropped owing to its low accuracy and heavy computational cost. Apart
from the parameters µ and γ that are empirically set to the same values as those used in KFCLS, there
are two parameters needing to be tuned. One is the balance parameter λ used in (24)–(26), which
is varied in the range [10−4, 102] for CJRM and [10−3, 109] for PRM and CPRM; and the other is the
weight parameter β used in (22), which is varied in the range [5, 500] for CJRM and [100, 1000] for
PRM and CPRM. Figure 12 shows the classification accuracies for CJRM when applied to the four
given datasets. It can be observed that the tuning of λ should synchronize with that of β, the optimal
parameters of CJRM-dist are almost the same as those of CJRM-prob, and it is not difficult for us to
get a good result in all cases, since there is a wide range for us to choose a suboptimal combination
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of parameters. Figure 13 shows the classification accuracies for PRM and CPRM when applied to
the four given datasets. It is evident that the optimal value of λ is 106 in all cases. Notably, a small
positive constant ε = 10−6 is used in (22), and the majority of Wij will be very small if β is relatively
large. In order to connect all the spatially adjacent pixels, it is preferable to fix λ = 1/ε. As for the
parameter β, we can choose it in a wide range.
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Figure 11. OA as a function of γ for KFCLS when applied to the four given datasets.
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Figure 12. OA with respect to λ and β for CJRM when applied to the four given datasets. (a) CJRM-dist
(Indian Pines), (b) CJRM-prob (Indian Pines), (c) CJRM-dist (Kennedy Space Center), (d) CJRM-prob
(Kennedy Space Center), (e) CJRM-dist (University of Pavia), (f) CJRM-prob (University of Pavia),
(g) CJRM-dist (Center of Pavia), (h) CJRM-prob (Center of Pavia).
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Figure 13. OA with respect to λ and β for PRM and CPRM when applied to the four given datasets.
(a) PRM (Indian Pines), (b) CPRM (Indian Pines), (c) PRM (Kennedy Space Center), (d) CPRM (Kennedy
Space Center), (e) PRM (University of Pavia), (f) CPRM (University of Pavia), (g) PRM (Center of
Pavia), (h) CPRM (Center of Pavia).

4.4. Impact of the Number of Training Pixels

In this set of experiments, we evaluated the eleven classification methods compared in Section 4.2
in an ill-posed scenario, where different numbers of training pixels are considered. The parameters
of these methods are fixed to be the same as those used in Section 4.2. For the two AVIRIS datasets,
different percentages of the labeled pixels per class, varied in the range [1%, 20%], were randomly
chosen for training, where a minimum of two training pixels per class were taken for very small
classes. For the two ROSIS datasets, different numbers of training pixels per class were randomly
chosen to build the training sets. Specifically, for University of Pavia, the number was varied to be
10, 20, 40, 60, 80, and 100, and for Center of Pavia, the number was varied to be 5, 10, 20, 40, 60, and
80. Table 8 presents the classification results of the compared methods for the two AVIRIS datasets.
It can be observed that for all the compared methods, the OAs increase monotonically as the number
of training pixels increases. For the pixel-wise classification, there are no significant gaps between
the five methods, and the two investigated classification rules are suitable for the proposed KFCLS.
For the spatial-spectral classification, CPRM performs the best, and JRM performs the worst.

Table 9 presents the classification results for the two ROSIS datasets. From this table, we can
conclude almost the same results as Table 8. It is evident that the OAs increase monotonically as
the number of training pixels increases. For the pixel-wise classification, the proposed KNLS and
KFCLS get competitive results compared with KSRC and KCRC. For the spatial-spectral classification,
CPRM consistently yields better results than the other five methods, and the improvement of JRM
over KFCLS is not significant. Among the three methods CJRM-dist, CJRM-prob, and PRM, CJRM-prob
outperformed the others in most cases when applied to the University of Pavia dataset, and they
obtained almost the same results when applied to the Center of Pavia dataset.
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Table 8. OA as a function of the number of training pixels per class for different classification methods
when applied to the two AVIRIS datasets. The standard deviation (in parentheses) of the ten random
tests is also reported in each case. For both the pixel-wise classification and spatial-spectral classification,
the best results are highlighted in bold, and the second-best results are underlined.

Pixel-Wise Classification Spatial-Spectral Classification

KSRC KCRC KNLS KFCLS JRM CJRM PRM CPRM
dist prob dist prob dist prob

Indian Pines

1% 66.47 66.12 66.39 66.36 65.83 69.96 70.53 72.28 74.98 76.50 79.11
(1.83) (1.83) (1.78) (1.80) (1.95) (2.18) (2.04) (2.36) (2.73) (2.82) (2.80)

3% 77.59 75.67 77.90 77.90 77.55 82.17 82.89 85.49 89.42 87.49 89.74
(1.12) (1.10) (1.21) (1.00) (1.00) (0.93) (0.81) (0.69) (0.71) (0.59) (0.72)

5% 81.34 78.99 81.61 81.72 81.46 85.53 86.15 89.50 92.25 91.00 92.86
(0.52) (0.75) (0.56) (0.42) (0.57) (0.36) (0.33) (0.81) (1.34) (0.79) (1.18)

10% 85.92 83.25 86.22 86.23 85.93 90.40 90.98 93.27 93.85 94.37 95.75
(0.59) (0.63) (0.57) (0.58) (0.51) (0.64) (0.62) (0.77) (0.84) (0.74) (0.76)

15% 88.38 85.98 88.69 88.68 88.40 92.47 92.88 95.54 96.75 95.98 96.82
(0.28) (0.20) (0.30) (0.31) (0.41) (0.60) (0.58) (0.48) (0.37) (0.53) (0.31)

20% 89.41 86.81 89.70 89.70 89.41 93.17 93.50 96.05 96.34 96.29 97.10
(0.41) (0.46) (0.43) (0.41) (0.36) (0.44) (0.49) (0.26) (0.45) (0.28) (0.21)

Kennedy Space Center

1% 80.26 80.24 80.16 80.10 79.97 82.37 82.49 84.71 85.19 85.94 87.02
(2.03) (2.18) (2.09) (2.09) (2.30) (2.32) (2.43) (2.54) (2.76) (2.40) (2.67)

3% 86.61 86.04 86.72 86.69 86.69 88.31 88.58 91.79 92.29 92.47 92.86
(0.89) (1.09) (0.78) (0.78) (0.97) (1.50) (1.53) (1.56) (1.80) (1.69) (1.71)

5% 88.45 87.76 88.32 88.33 88.29 89.97 90.00 93.56 94.26 94.08 94.60
(0.93) (0.85) (1.02) (1.02) (0.97) (1.52) (1.56) (2.08) (2.17) (1.83) (1.86)

10% 91.00 89.88 91.12 91.13 91.13 92.93 93.07 96.70 97.16 97.90 98.34
(0.57) (0.33) (0.50) (0.51) (0.53) (0.57) (0.56) (1.42) (1.48) (0.60) (0.69)

15% 91.98 90.63 92.15 92.15 92.12 94.31 94.40 98.28 98.60 98.49 98.86
(0.53) (0.41) (0.45) (0.44) (0.44) (0.56) (0.57) (0.59) (0.56) (0.47) (0.48)

20% 92.72 91.21 92.87 92.84 92.87 95.09 95.18 99.23 99.45 99.18 99.42
(0.40) (0.44) (0.52) (0.50) (0.47) (0.62) (0.58) (0.33) (0.30) (0.26) (0.24)
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Table 9. OA as a function of the number of training pixels per class for different classification methods
when applied to the two ROSIS datasets. The standard deviation (in parentheses) of the ten random
tests is also reported in each case. For both the pixel-wise classification and spatial-spectral classification,
the best results are highlighted in bold, and the second-best results are underlined.

Pixel-Wise Classification Spatial-Spectral Classification

KSRC KCRC KNLS KFCLS JRM CJRM PRM CPRM
dist prob dist prob dist prob

University of Pavia

10 71.50 72.33 72.44 72.36 71.52 76.57 76.62 84.38 85.62 85.59 87.85
(4.17) (4.21) (4.39) (4.48) (4.56) (5.41) (5.39) (5.48) (5.96) (6.91) (5.69)

20 77.50 77.81 78.14 78.13 77.78 83.11 83.21 91.30 92.45 91.97 93.44
(2.33) (2.14) (2.24) (2.25) (2.24) (2.92) (2.90) (2.71) (3.61) (3.44) (3.49)

40 82.96 83.05 83.57 83.55 83.39 88.45 88.71 96.13 97.19 96.60 97.65
(1.05) (1.14) (1.17) (1.19) (1.30) (1.84) (1.92) (1.64) (1.47) (2.07) (1.80)

60 85.42 85.43 85.78 85.78 85.63 90.80 90.93 96.63 97.38 97.16 98.27
(1.26) (1.43) (1.23) (1.25) (1.15) (1.39) (1.40) (1.02) (1.03) (0.76) (0.64)

80 86.38 86.26 86.78 86.77 86.68 91.33 91.37 97.80 98.30 98.17 98.74
(0.75) (0.97) (0.91) (0.91) (0.99) (0.79) (0.86) (0.83) (0.74) (0.62) (0.63)

100 87.70 87.54 88.05 88.04 87.90 92.34 92.41 98.12 98.40 98.59 99.14
(0.82) (0.89) (0.68) (0.68) (0.61) (0.90) (0.89) (0.56) (0.49) (0.70) (0.24)

Center of Pavia

5 94.46 94.71 94.82 94.79 94.93 95.97 96.14 96.43 96.63 96.60 96.71
(0.99) (0.95) (0.74) (0.75) (0.76) (0.74) (0.69) (0.74) (0.71) (0.83) (0.81)

10 95.50 96.03 95.89 95.88 95.95 96.86 96.93 97.50 97.49 97.52 97.53
(0.53) (0.41) (0.46) (0.47) (0.38) (0.47) (0.45) (0.31) (0.32) (0.43) (0.41)

20 96.74 96.89 96.84 96.84 96.85 97.56 97.56 98.56 98.52 98.57 98.61
(0.42) (0.43) (0.38) (0.38) (0.41) (0.48) (0.51) (0.44) (0.47) (0.49) (0.48)

40 97.56 97.55 97.58 97.58 97.57 98.11 98.11 98.77 98.25 99.06 99.10
(0.21) (0.16) (0.22) (0.22) (0.24) (0.24) (0.24) (0.26) (0.39) (0.24) (0.26)

60 97.91 97.80 97.93 97.94 97.92 98.42 98.41 99.07 98.99 99.33 99.36
(0.19) (0.20) (0.21) (0.21) (0.20) (0.25) (0.25) (0.30) (0.32) (0.30) (0.29)

80 98.10 97.91 98.12 98.12 98.11 98.55 98.54 99.22 99.11 99.49 99.52
(0.12) (0.17) (0.11) (0.11) (0.10) (0.17) (0.17) (0.17) (0.21) (0.13) (0.16)

4.5. Comparison to Other Classification Techniques

In this set of experiments, CPRM is compared with three other techniques that can incorporate
the spatial-spectral information into KFCLS-prob. For these methods, the free parameters introduced
by KFCLS are set to the same values as those used in KFCLS. The first method is the composite
kernel technique [33] using the original spectral features and the extended multiattribute profile
(EMAP) features [61,62], termed as CKEMAP, where the EMAP features are extracted from the first
three principal components of the hyperspectral image and built by the area and standard deviation
attributes as reported in [63]. The additional parameters of CKEMAP are chosen using cross-validation.
The second method is the pixel-wise KFCLS-prob followed by Markov random fields (MRF) [36,37],
where the MRF technique is utilized to incorporate the spatial-spectral information by refining the
posterior probabilistic outputs. The free parameters of MRF are chosen using cross-validation. The last
method is the pixel-wise KFCLS-prob followed by majority voting within superpixel regions [39],
termed as MV, where the superpixel segmentation algorithm and its free parameters are chosen with
reference to [64,65]. Moreover, two baseline classifiers KFCLS-prob and SVM are also included for
reference. For SVM, the RBF kernel is used and the free parameters are chosen using cross-validation.

Figure 14 shows the classification accuracies of the six compared methods when different numbers
of training pixels are used. It can be observed that CKEMAP performs the best for the two AVIRIS
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datasets and CPRM performs the best for the two ROSIS datasets. Among the three post-processing
methods (i.e., MRF, MV, and the proposed CPRM), CPRM outperforms the other methods in most cases.
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Figure 14. OA as a function of the number of training pixels when applied to the four given datasets.
(a) AVIRIS Indian Pines dataset, (b) AVIRIS Kennedy Space Center dataset, (c) ROSIS University of
Pavia dataset, (d) ROSIS Center of Pavia dataset.

5. Conclusions

This paper considers using the nonnegative constraint to achieve the collaborative representation
mechanism under SRC and CRC in the kernel space, and thereby proposes KNLS for hyperspectral
image classification by replacing `1-norm or `2-norm with the nonnegative constraint. In order to
provide the posterior probabilistic outputs, we propose KFCLS by enforcing the summation of the
nonnegative coding coefficients of each pixel to be one, and subsequently introduce two classification
rules to determine the class labels. Compared with KSRC and KCRC, KFCLS can get competitive
results and its coding coefficients are more meaningful and useful for the subsequent processing steps.
Furthermore, in order to incorporate the spatial-spectral information into KFCLS using regularization
technique, we investigated the co-processing and post-processing methods by applying coefficient-level
and class-level regularization strategies. Experimental results conducted on four real hyperspectral
images have demonstrated: (1) the proposed KFCLS can get competitive results comparing with the
other pixel-wise classifiers; (2) the proposed classification rule “prob” is effective; (3) the class-level
regularization strategy is better than the coefficient-level regularization strategy; and (4) CPRM is an
effective and efficient post-processing method and the most efficient method among the investigated
four kinds of methods. In future work, we expect that the suggested regularization method can
facilitate the development of spectral unmixing.
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