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Abstract: The measurement of semantic similarity has been widely recognized as having
a fundamental and key role in information science and information systems. Although various
models have been proposed to measure semantic similarity, these models are not able effectively to
quantify the weights of relevant factors that impact on the judgement of semantic similarity, such
as the attributes of concepts, application context, and concept hierarchy. In this paper, we propose
a novel approach that comprehensively considers the effects of various factors on semantic similarity
judgment, which we name semantic similarity measurement based on a weighted concept lattice
(SSMWCL). A feature model and network model are integrated together in SSMWCL. Based on the
feature model, the combined weight of each attribute of the concepts is calculated by merging its
information entropy and inclusion-degree importance in a specific application context. By establishing
the weighted concept lattice, the relative hierarchical depths of concepts for comparison are computed
according to the principle of the network model. The integration of feature model and network
model enables SSMWCL to take account of differences in concepts more comprehensively in semantic
similarity measurement. Additionally, a workflow of SSMWCL is designed to demonstrate these
procedures and a case study of geo-information is conducted to assess the approach.

Keywords: semantic similarity measurement; weighted concept lattice; formal concept analysis;
feature model; geo-information

1. Introduction

In information science and systems, semantic similarity plays a major role in various fields
such as information retrieval, data integration, data mining etc. [1–3]. Since its emergence in these
fields, various theories on semantic similarity have been proposed [4]. At the same time, a large
number of approaches based on these theories have been developed and utilized to measure semantic
similarity [5–8]. The objects of semantic similarity measurement are usually called different terms,
such as classes or concepts, across various articles. In this paper, the term ‘concept’ is used to represent
the measurement object. The classical models of semantic similarity measurement, named feature
models [9], are based on the representation of object-attribute knowledge, in which concepts are
represented as a set of features and sometimes the relationships between them. Following this,
semantic similarity can be translated into a comparison of the commonalities and differences of sets of
features that represent different concepts. Some other semantic similarity measurement approaches
are based on network models, which encode knowledge in a form of a semantic network [10].
Concepts in the semantic network are represented as vertices, which are connected with links.
Thus, the ‘distances’ between vertices, which can be defined with various meanings, such as shortest
path, weighted path length and so on, can be regarded as measurements of semantic similarity between
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concepts. Apart from these two main models mentioned above, some other models and approaches to
measuring semantic similarity have been proposed [4,11]. Some new approaches aim to overcome the
shortcomings of existing solutions by integrating different models [8,12].

Although many different models and approaches have been proposed to deal with this issue, there
is no general model or approach, which is broadly applicable for all fields. This is partly because the
methods used to judge semantic similarity are dependent on different factors, such as the application
context, purpose etc. [13]. Most of the existing approaches are incapable of dealing with the issue of the
dependence of semantic similarity judgment on different application contexts. Although some modern
approaches take into account the influence of distinguishing contexts, they still cannot effectively
assign weights to various factors, such as the semantic granularity of a concept and application
context, which have different influences on semantic similarity judgment. With reference to various
existing approaches, we propose a novel approach to semantic similarity measurement based on
a weighted concept lattice (SSMWCL) in this paper, which combines both a feature model and network
model. SSMWCL has the power to quantify the effects of different contexts on semantic similarity.
Based on the knowledge representation of the feature model [9], SSMWCL first calculates the combined
weight of each attribute of the concepts by merging its information entropy and the importance of its
inclusion-degree in a specific application context. After this, our approach generates the weighted
formal concepts using formal concept analysis and builds a network hierarchical structure, which is
named the weighted concept lattice. In this lattice, the weighted concepts are represented as vertices
linked with edges. Following this, the absolute semantic similarity between concepts is measured
by comparing the commonalities and differences of their weighted attributes, in which the relative
hierarchical depth of the concepts in the lattice is taken into account based on the principle of the
network model. Finally, the semantic similarity is measured using the proportion of absolute semantic
similarity in the semantic intent of the concept. Finally, the semantic similarity is normalized by
introducing an exponential function. In our work, there are three main innovative points. The first
involves transforming the impact of the specific application context on semantic similarity judgement
into weights of attributes of concepts; the second includes integrating the feature model and network
model in SSMWCL; while the third introduces the size of the concept intent’s weight as an influencing
factor on semantic similarity judgement.

The remainder of this article is organized as follows: Section 2 provides a brief survey of work
related to semantic similarity measurement, formal concept analysis and the weighted concept lattice
applied in information science and systems. At the same time, we present a workflow of SSMWCL.
In Section 3, we introduce relevant algorithms to construct a weighted concept lattice based on the
knowledge representation of the feature model. For this construction, some mathematical tools are
applied, including the rough set, information entropy, and formal concept analysis. In Section 4,
a novel approach for semantic similarity measurement based on a weighted concept lattice (SSMWCL)
is proposed, and an implementation workflow of SSMWCL is presented at the end of the section.
Section 5 demonstrates a case of measuring semantic similarities of geo-concepts in accordance with
the workflow of SSMWCL, and the results are discussed briefly. Section 6 summarizes our approach,
qualitatively compares it to other similar methods, and presents an outlook for the future.

2. Background

The importance of semantic similarity in theory and practice has been acknowledged for decades
in information science and systems, with increasing numbers of relevant studies having been conducted.
Being first proposed and used in psychology [14], the geometric model regarded semantic distance
(similarity) in the analogy of spatial distance. Semantic distance (similarity) in the geometric model
is computed to be a function of spatial distance. On the basis of this model, Gärdenfors, Raubal and
Schwering used conceptual spaces, which developed the geometric model to measure semantic
distance [15,16]. Tversky et al. introduced and used a set-theoretical similarity measurement,
nowadays known as the feature model. Based on the feature model, Rodriguez and Egenhofer
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proposed the matching-distance similarity measure (MDSM), which distinguished three different
types of features of spatial entity classes to determine the semantic similarity of these classes [8].
Furthermore, Janowicz et al. developed SIM-DL and SIM-DLA theories, which tried to introduce
description logics into the feature model [17,18]. Based on the network model that connects concepts to
establish a semantic network, Ballatore et al. computed the semantic similarity of geographic concepts
in the OpenStreetMap (OSM) semantic network [7]. Janowicz et al. proposed a generic framework
for semantic similarity measurements in geographic information retrieval, which allows designers
to compare and select different measurement approaches for the specific application [19]. Kim et al.
matched place descriptions with overall similarity (including string, linguistic and spatial similarities),
which can be regarded as combined semantic similarity [20]. More recently, some other theories
have been introduced to measure semantic similarity. Francis-Landau et al. tried to capture semantic
similarity for entity linking with a convolutional neural network, which is known as the machine
learning approach [21]. Mihalcea et al. assessed the semantic similarity of the cross level with deep
learning [22].

In this work, we focus on the semantic similarity measurement between a pair of concepts. In this
specific field, four main sets of approaches are used to achieve this goal [23]. The most popular method
is the structural approach which uses the network model and relies on graph traversal. The shortest
path [24], random-walk [25] and other interconnections [26] between nodes are the main variables used
to define the semantic similarity function. Based on the feature model, the feature-based approach [8,27]
compares the commonalities and differences between a pair of concepts in order to obtain the semantic
similarity. The information theoretical approach relies on Shannon’s information theory [28]. With this
approach, the semantic similarity of concepts is measured by comparing their information context
(IC) [29,30]. The hybrid approach takes advantage of various aforementioned paradigms. Singh et al.
mixed the information theoretical and structural strategies [31]. Rodríguez and Egenhofer proposed
mixing the structural approach and the feature-based approach [2]. However, the aforementioned
approaches have several limitations. All these approaches require a taxonomy or ontology structure
describing the elements to compare [23]. The structural approaches require knowledge to be modeled
in a specific manner in the graph and are not designed to take non-binary relationships into account.
That means different types of relationships among concepts cannot be distinguished and weighted.
Feature-based approaches usually cannot assign different weights to different attributes according to
the various application backgrounds. In our work, the proposed SSMWCL does not require an existing
taxonomy or ontology structure. However, this does not mean that SSMWCL cannot work based on
a taxonomy or an ontology structure. In fact, existing ontology will make it easier to implement the
SSMWCL by conveniently extracting essential properties and the classification hierarchy of concepts.
On the other hand, the SSMWCL approach enables the assignment of different weights to different
essential properties of concepts based on the various application backgrounds. In order to distinguish
the influence weight of essential properties of concepts for measuring semantic similarity, we first
analyze and calculate the combined weights of properties of concepts by mixing feature-based and
information-theoretical approaches. Following this, the depth of concept in the network structure
integrated with the weights of features can be used to define the semantic similarity between a pair
of concepts.

Formal concept analysis (FCA), proposed by Wille [32], has become an important branch of applied
mathematics. Its application has expanded into various fields, such as linguistics, information science,
software engineering, computer science etc. Integrating heterogeneous data or information from
many sources is an important characteristic of FCA. Stumme and Adche developed the FCA-MERGE
method, which entails building a concept lattice and semi-automatically creating a target ontology
from the lattice [33]. Kokla and Kavouras applied FCA in order to establish a unified concept lattice in
integrating geo-ontologies [34]. Xiao and He proposed the combined weights of formal concepts using
FCA and constructed a weighted concept lattice with these weighted concepts [35]. In most of these
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studies, the semantic integration and semantic similarity measurement are interrelated. In this paper,
we introduce the weighted concept lattice into semantic similarity measurement.

In order to measure semantic similarity based on the weighted concept lattice (SSMWCL) in
a clear and understandable way, a workflow diagram (Figure 1) has been designed to demonstrate
the main procedures. First, the existing classification knowledge and essential features of concepts
that are extracted from the knowledge representations are brought together to build a decision table.
Secondly, building a formal context converted from the decision table and the weights of the attributes
in the formal context are calculated by combining inclusion-degree importance and information
entropy. Following this, a weighted concept lattice is constructed from this concept context with
weighted attributes. Finally, we calculate the semantic similarity between concepts based on the
weighted concept lattice by comparing the commonalities and differences of their weighted attributes,
in which the relative hierarchical depths of the concepts in the lattice are taken into account.
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Figure 1. Workflow for semantic similarity measurement based on a weighted concept lattice
(SSMWCL).

3. Weighted Concept Lattice

3.1. Knowledge Representation of the Feature Model

Discussing and establishing knowledge representation is not the main focus of this present paper.
However, in order to make the discussion and demonstration clearer and more convenient, we first
introduce the dataset, which will be used as the sample data in Section 5.

Ontology, defined as ‘a formal specification of a shared conceptualization’ [36], is considered to
be an effective tool for specifically representing knowledge in various studies [37,38]. In geographic
information science (GIScience), a number of scholars have tried to define essential properties
of geo-ontologies and try to extract these properties from the definitions or descriptions of the
geo-concepts’ categories and specifications [39,40]. Referring to a previous study [35], we extracted the
essential properties of geo-ontologies (representing geo-concepts) based on geo-categories from GB/T
13923-2006 (specifications for feature classification and codes of fundamental geographic information)
and definitions of these geo-categories from GB/T 20258.1-2007 (data dictionary for fundamental
geographic information features). Partial inland hydrological concepts and their essential properties
are presented in Table 1.
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Table 1. Geo-concepts with attributes table.

Concept Material Cause Spatial Morphology Spatial Location Time Material State Function

lake a c f h j ∅ o
pond a d f h j ∅ o

seasonal lake a c f h k ∅ o
ground river a c e h j l m
seasonal river a c e h k l m

reservoir a d f h ∅ ∅ (n, o)
spillway a d e i ∅ ∅ n

dike b d g h ∅ ∅ n

Note: Each letter from ‘a’ to ‘o’ represents the attributes in Table 2, while ∅ indicates that the object does not contain
the attribute. As the object ‘reservoir’ includes two ‘function’ values (n and o), we represent its ‘function’ with
‘(n, o)’ which is a new value of the ‘function’ property.

3.2. Combined Weight of Attribute

Determining the weights of conceptual features is the key to measuring semantic similarity based
on the feature model. In this paper, we represent conceptual features with properties or attributes.
In the decision table, we use the property to refer to features. In the formal context and weighted
concept lattices, a feature is represented as the attribute, which is the value of a specific property.
For example, in Table 1, the geo-concept lake has the attribute of water, which is the value of its property
material in Table 2. The weight of an attribute is computed via merging two factors that have mutually
independent influences in our proposal. The first factor is the inclusion degree importance, which
represents the degree to which the attribute impacts existing conceptual classification knowledge.
We introduce information entropy as the other factor, which represents the average information of the
weight of concepts comprising an attribute. The combination of these two influencing factors on an
attribute, which is also known as its combined weight, represents the degree to which this attribute
influences the semantic understanding of the concept.

Table 2. Comparison table between attributes and identifiers.

Identifier a b c d e f

Attribute
material/ material/ cause/ cause/ spatial

morphology/
spatial

morphology/

water soil or stone nature artificial long strip slot depressions

Identifier g h i j k l

Attribute
spatial

morphology/ spatial location/ spatial location/ time/ time/ material state/

buildings on the earth underground perennial seasonal flow

Identifier m n o

Attribute
function/ function/ function/

shipping prevent flood store water

3.2.1. Inclusion Degree Importance of a Property

In order to calculate the inclusion degree importance of a property, we first introduce the property
importance from rough set theory. For more basic knowledge about the rough set, we refer readers to
a previous study [41].

Definition 1. An information system can be denoted as S = (U, A, V, f ), in which U is a non-empty and finite
set of objects called the universe; A is a non-empty and finite set of attributes; V =

⋃
a∈A Va, while Va is the

domain of a; f : U × A→ V is an information function which assigns an information value to each property
of each object, denoting ∀a ∈ A, x ∈ U, f (x, a) ∈ Va. In particular, let A = C ∪ D, where C is the set of
condition attributes and D is the set of decision properties. If C ∩ D = ∅, S is called a decision table.
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For example, Table 3 is an information system, in which U includes lake, pond, seasonal lake,
ground river, seasonal river, reservoir, spillway and dike; and A includes material, cause, spatial
morphology, spatial location, time, material state, function and category. At the same time, it is
a decision table if the attribute ‘category’ is considered as the decision property.

Definition 2. Let S = (U, A, V, f ) be an information system, with each non-empty subset B ⊆ A.
This determines an indiscernibility relation as follows:

ind(B) = {(x, y) ∈ U ×U | ∀a ∈ B, f (x, a) = f (y, a) (1)

Obviously, ind(B) determines a partition of U denoted as U/ind(B) (for short U/B), which is also called
a quotient set of U:

U/B = {[x]B | x ∈ U} (2)

where [x]B is the equivalence class determined by x with regards to B:

[x]B = {y ∈ U | (x, y) ∈ ind(B)}. (3)

For example, in Table 3, /{material} = {{lake, pond, seasonal lake, ground river, seasonal river,
reservoir, spillway }, {dike}}, and U/{material, cause} = {{lake, seasonal lake, ground river, seasonal
river}, {pond, reservoir, spillway}, {dike}}.

Definition 3. Let S = (U, C ∪ D, V, f ) be a decision table, where X ⊆ U, B ⊆ C ∪ D, BX and BX denote
B-lower and B-upper approximations of X, respectively:

BX = {x ∈ U | [x]B ⊆ X} (4)

BX = {x ∈ U | [x]B ∩ X = ∅} (5)

For example, in Table 3, let B = {cause} and X = {lake, pond, seasonal lake, ground river, seasonal
river}, thus, BX = {lake, pond, seasonal lake, seasonal river} and BX = {lake, pond, seasonal lake,
ground river, seasonal river, reservoir, spillway, dike}.

Definition 4. Let S = (U, C ∪ D, V, f ) be a decision table and B ⊆ C, POSB(D) is called the positive region
of the partition U/D with respect of B:

POSB(D) =
⋃

X∈U/D

BX (6)

For example, in Table 3, let B = {material} and D = {category}, thus, POSB(D) = {dike}.

Definition 5. Let S = (U, C ∪ D, V, f ) be a decision table and B ⊆ C, sigCD(B) denotes the importance of
U/D with respect to B:

sigCD(B) = γC(D)− γC−B(D) (7)

In particular, let B = {a}, the importance of U/D with respect to a is:

sigCD(a) = γC(D)− γC−{a}(D) (8)

where γC(D) = |POSC(D)|/|U|.
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For example, in Table 3, |POSC(D)| = 8 and |U| = 8, thus, γC(D) = 1. γC−{material}(D) =∣∣∣POSC−{material}(D)
∣∣∣/|U| = 8/8 = 1, thus, sigCD(material) = 0.

A decision table is constructed in our work via adding decision properties into the object-attribute
table. For instance, a decision table (Table 3) is built by inserting classification knowledge of concepts
into Table 1. Generally, the decision properties are represented by the existing classification knowledge,
such as industry standards or specifications, expert opinions etc. The existing classification knowledge
of concepts reflects a specific application context to a great extent, which involves the general
understanding of a specific domain within a relatively long period of time. Therefore, the importance
weight of a condition property, which is inversely calculated from decision properties, reflects the
degree of influence of this condition property on the semantic understanding of the concept.

Table 3. Decision table.

Concept Material Cause Spatial
Morphology

Spatial
Location Time Material

State Function Category

lake a c f h j ∅ o 230,000
pond a d f h j ∅ o 230,000

seasonal lake a c f h k ∅ o 230,000
ground river a c e h j l m 210,000
seasonal river a c e h k l m 210,000

reservoir a d f h ∅ ∅ (n, o) 240,000
spillway a d e i ∅ ∅ n 240,000

dike b d g h ∅ ∅ n 270,000

Note: Each letter from ‘a’ to ‘o’ represents the same meaning as in Table 2, while ∅ indicates that the object does
not contain the attribute. The value of field ‘category’ is the classification code of the super-category of the objects,
which is the decision attribute in the decision table. As the object ‘reservoir’ includes two ‘function’ values (n and o)
in the formal context (Table 1), we represent its ‘function’ with ‘(n, o)’ which is a new value of the ‘function’ property
in the decision table.

Although the importance of a condition property could quantify the weight of influence it has on
the semantic understanding of the concept, this parameter will lose its function of distinguishing the
importance of different properties when unnecessary properties exist in the decision table or when
the decision table has more than one reduction result. Therefore, we introduced the inclusion degree
proposed in a previous study [42], which is a solution to this problem.

Given two sets, X and Y, we define a function as follows:

con(X/Y) =

{
0, XY;
1, X ⊆ Y;

(9)

Definition 6. Let S = (U, C ∪ D, V, f ) be a decision table and A1, A2 ⊆ C ∪ D. Therefore, U/ A1 =

{X1, X2 . . . Xn} and U/A2 = {Y1, Y2 . . . Ym} are partitions of U, respectively. We denote CON(A1/A2)

as the inclusion degree of U/A2 to U/A1:

CON (A1/A2) = ∑
0 ≤ i ≤ n
0 ≤ j ≤ m

con

(
Xi
Yj

)
(10)

Obviously, 0 ≤ CON(A1/A2) ≤ n, especially if A1 is smaller than A2. This means that ∀Xi, ∃Yj
makes Xi ⊆ Yj with CON(A1/A2) have the maximum value of n.

For example, in Table 3, U/{material} = {{lake, pond, seasonal lake, ground river, seasonal river,
reservoir, spillway}, {dike}} and U/{category} = {{lake, pond, seasonal lake}, {ground river,
seasonal river}, reservoir, spillway}, {dike}}, thus CON({material}/{category}) = 1 and
CON({category}/{material}) = 4.
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Definition 7. Let S = (U, C ∪ D, V, f ) be a decision table, with property a ∈ C. SIGCD(a) denotes the
property importance of the inclusion degree:

SIGCD(a) = (|U|2sigCD(a) + |U|pa − qa + 1)/(|U|2 + |U|+ 1) (11)

where
pa = (|POSa(D)|+ CON(a/D)/|U|)/(|U|+ 1)

qa = (|POSD(a)|+ CON(D/a)/|U|)/(|U|+ 1)

pa and qa represent the influence of the positive region and the inclusion degree on the property importance,
respectively.

For example, in Table 3, pmaterial = (1 + 1/8)/(8 + 1) = 0.125 and qmaterial = (8 + 4/8)/(8 + 1) =
0.944, thus SIGCD(material) = (0 + 8× 0.125− 0.944 + 1)/(64 + 8 + 1) = 0.0145.

3.2.2. Formal Context

Before discussing the information entropy of attributes, we introduce the formal context from
formal concept analysis (FCA).

Definition 8. In FCA, a formal context is described by a triple K = (G, M, I), where G and M represent two
non-empty sets of objects (called extent) and attributes (called intent), respectively, while I is a subset of the
Cartesian product of G and M (I ⊆ G×M). When g ∈ G and m ∈ M, it means that object g has the attribute
m, and that attribute m belongs to object g if gIm.

For example, Table 4 is a formal context, in which G = {s1, s2, s3, s4, s5, s6, s7, s8} and
M = {a, b, c, d, e, f, g, h, i, j, k, l, m, n, o}.

Table 4. A formal context converted from the decision table.

SN Object a b c d e f g h i j k l m n o

s1 lake * * * * * *
s2 pond * * * * * *
s3 seasonal lake * * * * * *
s4 ground river * * * * * * *
s5 seasonal river * * * * * * *
s6 reservoir * * * * * *
s7 spillway * * * * *
s8 dike * * * * *

Note: Each letter from ‘a’ to ‘o’ represents attributes in Table 2, while * represents a satisfied criterion.

According to Definition 8, we can construct a formal context that is converted from the decision
table (excluding decision properties) in which the value of properties is transformed into attributes of
the formal context. As presented in Table 4, the attribute that holds for a specific concept is marked with
‘*’. Based on the formal context, which is also an object-attribute table, we introduce the information
entropy to quantify the weights of the attributes.

3.2.3. Information Entropy of Attributes

Definition 9. Let K = (G, M, I) be a formal context, where G = {g1, g2, . . . , gn} and M = {m1, m2, . . . , mk}.
Thus, p(m/g) denotes the probability of object g possessing the corresponding attribute m, while E(m)

representing information entropy is the average information of attribute m provided by G, the set of objects.
Following this, we can compute E(mj)(1 ≤ j ≤ k) according to the following formula:
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E
(
mj
)
= −

n

∑
i=1

p(mj/gi)log2 p(mj/gi) (12)

Before the combined weight of the attribute is calculated, we introduce the inclusion degree
importance of the attribute based on the inclusion degree importance of the properties, Equation (11).

For example, in Table 4, E(a) = −∑1
i=1 (7/8)× log2(7/8) = 0.169.

Definition 10. Let K = (G, M, I) be a formal context, which is converted from the conditional properties of the
decision table S, where G = {g1, g2, . . . , gn} and M = {m1, m2, . . . , mk}, SIG

(
mj
)

denotes the importance of
the inclusion degree of attribute mj based on decision table S:

SIG
(
mj
)
= SIGCD

([
mj
])

/|
[
mj
]
| (13)

where
[
mj
]
∈ C represents one of the conditional properties in decision table S, its possible value is mj, and

|
[
mj
]
| is the number of nonempty value of

[
mj
]
.

For example, according to the decision table (Table 3), [a] = [b] = material, thus |[a]| = 2.
Therefore, SIG(a) = SIGCD(material)/|material| = 0.0145/2 = 0.0072.

Thus, we can calculate the combined weight of attributes using the information entropy of
attributes, Equation (12), and the inclusion-degree importance of the attributes, Equation (13).

Definition 11. Let K = (G, M, I) be a formal context, where G = {g1, g2, . . . , gn} and
M = {m1, m2, . . . , mk}, and wmj(1 ≤ j ≤ k) is the combined weight of inclusion-degree importance and
information entropy of attribute mj. Following this, we define KW = (G, M, I, W) as a weighted formal context
generated from K, where wmj ∈W.

wmj = SIG
(
mj
)
∗ E
(
mj
)
/(

k

∑
i=1

SIG
(
mj
)
∗ E
(
mj
)
) (14)

where E
(
mj
)

and SIG
(
mj
)

are calculated via Equations (12) and (13) respectively.

For example, wa = SIG(a) ∗ E(a)/(∑k
i=1 SIG

(
mj
)
∗ E
(
mj
)
) = 0.0153. The combined weights of

all attributes are listed in Section 5.

3.3. Construction of the Weighted Concept Lattice

From Definition 11, the weighted formal context is defined by assigning combined weight to
each attribute of the formal context. Following this, based on the theory of formal concept analysis,
we define the weighted concept lattice from the weighted formal context. We refer readers to [32] to
obtain more basic knowledge about the concept lattice in FCA.

Definition 12. Let K = (G, M, I) be a formal context, with two sets, A ⊆ G and B ⊆ M. If every element
(object) in A contains all of the attributes in B and every element (attribute) in B belongs to all of the objects in
A, respectively, the following operations are denoted:

A = B′ = {a ∈ G | b ∈ B, aIb} (15)

B = A′ = {b ∈ M | a ∈ A, aIb} (16)

then, the tuple (A, B) is a formal concept of K, if A = B′ and B = A′.
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Given that (A1, B1) and (A2, B2) are two formal concepts of K, there is a partial order relation (≤)
between them if they satisfy the following condition:

(A1, B1) ≤ (A2, B2)⇔ A1 ⊆ A2 ⇔ B2 ⊆ B1 (17)

All formal concepts created from the formal context K = (G, M, I) are able to establish
a hierarchical structure based on the partial order relation (≤) between concepts, named the concept
lattice, which is denoted as (L(G, M, I),≤) or (L,≤). A concept lattice is a complete lattice.

For example, according to Definition 12, the tuple ({s6, s8}, {d, h, n}) is a formal concept generated
from the formal context (Table 4) and ({s8}, {b, d, g, h, n}) is a formal concept too. Also, these
two formal concepts have a partial order relation which is denoted as ({s8}, {b, d, g, h, n}) ≤
({s6, s8}, {d, h, n}).

Definition 13. Let K = (G, M, I) be a formal context, KW = (G, M, I, W) is the weighted formal context
generated from K and (L(G, M, I),≤) is the concept lattice established from K. Following this, we define
(LW(G, M, I, W),≤) as the weighted concept lattice of KW . (LW(G, M, I, W),≤) has the same elements of
(G, M, I) and the same structure with (L(G, M, I),≤), while the each attribute in (LW(G, M, I, W),≤) is
assigned with the different weight.

Definition 14. Let (L(G, M, I),≤) and (LW(G, M, I, W),≤) be a concept lattice and weighted concept lattice
respectively. Given that (A, B) is a formal concept in (L,≤), we define (A, B, w) as a weighted formal concept
of (LW ,≤), in which w denotes the sum of weights of attributes that belong to its intent B.

w = ∑
m∈B

wm, (18)

According to Equation (14), the combined weight of each attribute can be calculated.
Following this, we use Equation (18) to assign weight to each formal concept. For example, let
A = ({s8}, {b, d, g, h, n}), A is a formal concept, and the weight of A is the sum of weights of
{b, d, g, h, n}; thus w = ∑m∈{b,d,g,h,n} wm = 0.2184. Therefore, ({s8}, {b, d, g, h, n}, 0.2184) is a weighted
formal concept.

4. Semantic Similarity Measurement

With Definitions 13 and 14, we construct a weighted concept lattice based on a weighted formal
context. Every vertex in this weighted concept lattice represents a weighted formal concept, the weight
of which is calculated using Equation (18). In this section, a novel approach with detailed procedures
is introduced to measure the semantic similarity between different weighted formal concepts in the
weighted concept lattice. In particular, the formal concepts that include only one original geo-concept
in their extent can be regarded as the original geo-concepts themselves. Therefore, the semantic
similarities between these weighted formal concepts are considered to be those of the original
geo-concepts. Meanwhile, the super-categories of these original geo-concepts can be represented
by the weighted concepts that possess the same attributes in the lattice. Therefore, the concepts for
comparison are not only restricted to the original geo-concepts but extended to their super-categories.

Before measuring the semantic similarity of the weighted concepts in the weighted concept lattice,
we first introduce the relative hierarchical depth of concepts in the concept lattice to quantify the
degree of impact that the concept hierarchy has on the semantic differences.

4.1. Relative Hierarchical Depth

Definition 15. Let (L,≤) be a concept lattice. Given L′ ⊆ L is a subset of L, we denote sup(L′) as the
supremum of the subset L′, respectively. As the concept lattice (L,≤) is a complete lattice, sup(L′) ∈ L
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and sup(L′) 6= ∅. In particular, if L′ contains only two elements(L′ = {a, b}), we denote sup(a, b) as the
supremum of concept a and b.

For example, in the concept lattice (L,≤) (Figure 2), sup(g, h) = sup(h, g) = b.ISPRS Int. J. Geo-Inf. 2017, 6, 348  11 of 20 
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Definition 16. Let (L,≤) be a concept lattice. We define a and c as two formal concepts, given that a, c ∈ L
and a ≤ c. Thus, we denote dis (a, c) as the shortest distance from a to c in the lattice, which means the least
count of edges between vertices that connect vertices a and c in the lattice. Furthermore, we define dis (a, a) = 0.

For instance, in the concept lattice (L,≤) (Figure 2), as k ≤ c in the lattice, we can calculate
dis (k, c) = 3 and dis (j, c) = 1. However, because c � k, dis (c, k) is not defined. Thus, dis (i, j)
and dis (j, i) are also not defined. The shortest distance is only defined from a sub-concept to its
super-concept or itself.

In the network model, the distance between vertices representing concepts is usually an important
indicator that reflects their semantic similarity. In the transformation model [43], the steps through
which one concept is transformed to another are also regarded as a specific type of ‘distance’.
This particular ‘distance’ is also used to represent the semantic similarity between these two concepts.
Similarly, the shortest distance from a sub-concept to its super-concept in Definition 16 possesses such
a function. However, this parameter, the shortest distance of dis, focuses on representing the degree of
differences between the sub-concept and one of its super-concepts. In the concept lattice, the intent of
the super-concept is always a proper subset of the intent of its sub-concept. Therefore, the sub-concepts
have the same general characteristics as the super-concept in the concept lattice. Thus, the shortest
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distance reflects the degree of differences between the sets of characteristics of a sub-concept and its
specific super-concept. A longer shortest distance indicates a larger degree of differences between
these two concepts. For instance, in the concept lattice (L,≤) (Figure 2), the concepts i and j have the
same super-concept c, but dis (i, c) = 2 while dis (j, c) = 1. Therefore, the concept i has a larger degree
of difference from c than the concept j does.

Definition 17. Let (L,≤) be a concept lattice. We denote a and b are two formal concepts. Given that a, c ∈ L
and a ≤ c, we denote rhd (a, c) as the relative hierarchical depth of a to c in the concept lattice. rhd (a, c) is
defined as follow:

rhd (a, c) = dis (a, c)/(dis (a, c) + dis (c, sup(L))) (19)

where sup (L) is the supremum of the L that is actually the largest element of the lattice (L,≤). Furthermore,
we define rhd (a, a) = 0.

For instance, in the concept lattice (L,≤) (Figure 2), as k ≤ c in the lattice, we can
calculate rhd (k, c) = 3/(3 + 1) = 3/4 and dis (j, c) = 1/(1 + 1) = 1/2. However, because c � k,
dis (c, k) is not defined. Thus, dis (i, j) and dis (j, i) are not defined too. The relative hierarchical depth
is only defined from a sub-concept to its super-concept or itself.

Although the shortest distance proposed in Definition 16 is able to reflect the different degree
between concepts having partial relations in the concept lattice, this parameter is unable to distinguish
the hierarchical differences of concepts. For instance, in the concept lattice (L,≤) (Figure 2),
dis (k, h) = dis (e, c) = 1. However, it is intuitively clear that the degrees between k, h and e, c are quite
different. Therefore, in Definition 17, we introduce the relative hierarchical depth taking the impact of
different hierarchies on the shortest distance between concepts into account. Thus, rhd (k, h) = 1/4
and rhd (e, c) = 1/2, which demonstrates that a lower hierarchy of the concept results in a smaller
impact on the degree of difference.

4.2. Semantic Similarity Model

Proposed by Tversky, the contrast and ratio models (Equations (20) and (21)) are the prototypes
for most approaches based on the feature model. These algorithm models have been widely used and
developed into many new versions. For example, the MDSM extended it by distinguishing different
types of features including parts, attributes, and functions [8].

S(a, b) = θ ∗ f (A ∩ B) + α ∗ f (A− B) + β ∗ f (B− A) (20)

S(a, b) = f (A ∩ B)/( f (A ∩ B) + α ∗ f (A− B) + β ∗ f (B− A)) (21)

In our work, we first introduce the absolute semantic similarity between concepts in the weighted
concept lattice based on the contrast model, Equation (20). Following this, we propose a relative
semantic similarity of concepts that is able to reflect and explain the cognitive cause of an asymmetric
property of semantic similarity to some extent.

Definition 18. Let (L(G, M, I, W),≤) be a weighted concept lattice, Furthermore, a = (A1, B1)

and b = (A2, B2) are two formal concepts. Given a, b ∈ L and c = sup (a, b) = (A3, B3) we denote
sim (a, b) as the relative semantic similarity between concepts a and b, which is defined as follow:

sim(a, b) = ∑
m1∈B3

wm1 − rhd(a, c) ∗ ∑
m2∈B1−B3

wm2 − rhd(b, c) ∗ ∑
m3∈B2−B3

wm3 , (22)

where rhd (a, c) and rhd (b, c) are the relative hierarchical depths of concepts a and b to c.

For example, let the lattice represented by Figure 2 be a weighted concept lattice, and the concept
k = (A1, {m1, m2, m3, m4}) and j = (A2, {m1, m5}). We assume that wm1 = 0.6, wm2 = 0.2, wm3 = 0.1,
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wm4 = 0.3 and wm5 = 0.2 according to Equation (14). Thus, (k, j) = sim(j, k) = 0.6 − (3/4) ×
(0.2 + 0.1 + 0.3)− (1/2)× 0.2 = 0.05.

In Equation (22), we compare the commonalities and differences of weighted attributes between
concepts based on the contrast model. However, in this formula of the absolute semantic similarity
computation, the combined weighted difference of attributes and hierarchical depth difference of
concepts are taken into account.

From Equation (22), the absolute semantic similarity has a symmetrical property and thus
sim (a, b) = sim (b, a). However, according to Tversky’s famous statement that similarity or
dissimilarity is judged depending on the prominence or relative salience of concepts, the semantic
similarity holds an asymmetrical property. Therefore, we introduce the relative semantic similarity,
which is measured by the proportion of absolute semantic similarity in the semantic intent of
the concept.

Definition 19. Let (L(G, M, I, W),≤) be a weighted concept lattice, while a and b are two formal concepts.
Given a, b ∈ L, we then denote SIM(a, b) as the relative semantic similarity, or semantic similarity, of concepts
a to b, which is defined as follows:

SIM(a, b) = 2sim(a,b)/sim(a,a)−1 (23)

where sim (a, b) = sim (b, a) is the absolute semantic similarity between concepts a to b, and sim (a, a) is the
absolute semantic similarity of concept a to itself.

We set the same assumptions as in the previous example; thus sim (k, j) = sim (j, k) = 0.05.
Using Equation (22), we can calculate sim (k, k) = 1.2 and sim (j, j) = 0.7. Therefore, SIM (k, j) = 0.515
and SIM (j, k) = 0.525.

In Equation (23), sim (a, b)/sim (a, a) represents the relative proportion of the absolute semantic
similarity in the concept a. The range of this parameter is from negative infinity to one, which
means that sim (a, b)/sim (a, a) ∈ (−∞, 1]. Following this, we introduce the exponential function to
normalize it, and define the normalized result as the relative semantic similarity or semantic similarity
of concepts a to b. From Definition 19, we know that this has an asymmetrical property with a range of
0–1 (SIM (a, b) ∈ (0, 1]). In particular, if SIM (a, b) = 1/2, it means that the similarity and dissimilarity
between concepts a to b are approximately equal. In this case, SIM (a, b) = SIM(b, a) = 1/2.

5. Case Study and Discussion

In Section 3.2, by extracting the essential properties of partial geo-concepts from their definitions
in GB/T 20258.1-2007, we build the object-properties table (Table 1) of geo-concepts. Obtaining the
classification of these geo-concepts from GB/T 13923-2006 as the decision property, we subsequently
add this decision property into Table 1 in order to establish a decision table (Table 3). Finally, a formal
context (Table 4) is built by converting the decision table (Table 3).

Using Equation (11) in Section 3.2.1, the inclusion-degree weight of each property in the decision
table is calculated, with the results shown in Table 5. Following this, the information entropy and
inclusion degree of each attribute are calculated via Equations (12) and (13) respectively. Next, we
substitute these parameters in Equation (14) to obtain the combined weight of each attribute. The results
of the combined weights of attributes are shown in Table 6 after normalization.

Table 5. Weights of properties in the decision table.

Inclusion Degree Material Cause Spatial Morphology Spatial Location Time Material State Function

SIG (property) 0.0145 0.0055 0.0177 0.0177 0.0875 0.0266 0.0816
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Table 6. Attribute weight value of the formal context.

Attribute p (x) E (x) SIG (x) w (x)

a 0.875 0.169 0.0072 0.0153
b 0.125 0.375 0.0072 0.0342
c 0.500 0.500 0.0028 0.0174
d 0.500 0.500 0.0028 0.0174
e 0.375 0.531 0.0059 0.0395
f 0.500 0.500 0.0059 0.0372
g 0.125 0.375 0.0059 0.0279
h 0.875 0.169 0.0089 0.0188
i 0.125 0.375 0.0089 0.0419
j 0.375 0.531 0.0044 0.0293
k 0.250 0.500 0.0044 0.0276
l 0.250 0.500 0.0266 0.168

m 0.250 0.500 0.0272 0.1716
n 0.375 0.531 0.0272 0.1821
o 0.500 0.500 0.0272 0.1716

We calculate all formal concepts from the formal context of Table 4. After calculating the weight of
each formal concept based on Equation (18), all weighted formal concepts are demonstrated as follows.

C0 = ({s1, s2, s3, s4, s5, s6, s7, s8};∅; 0);

C1 = ({s1, s2, s3, s4, s5, s6, s7}; {a}; 0.0154);

C2 = ({s1, s2, s3, s4, s5, s6, s8}; {h}; 0.0188);

C3 = ({s1, s2, s3, s4, s5, s6}; {a, h}; 0.0342);

C4 = ({s1, s3, s4, s5}; {a, c, h}; 0.0516);

C5 = ({s2, s6, s7, s8}; {d}; 0.0174);

C6 = ({s1, s2, s3, s6}; {a, f, h, o}; 0.243);

C7 = ({s2, s6, s7}; {a, d}; 0.0328);

C8 = ({s4, s5, s7}; {a, e}; 0.0549);

C9 = ({s2, s6, s8}; {d, h}; 0.0362);

C10 = ({s1, s2, s4}; {a, h, j}; 0.0635);

C11 = ({s6, s7, s8}; {d, n}; 0.2);

C12 = ({s4, s5}; {a, c, e, h, l, m}; 0.4307);

C13 = ({s1, s3}; {a, c, f, h, o}; 0.26);

C14 = ({s2, s6}; {a, d, f, h, o}; 0.26);

C15 = ({s1, s4}; {a, c, h, j}; 0.0809);

C16 = ({s1, s2}; {a, f, h, j, o}; 0.2723);

C17 = ({s3, s5}; {a, c, h, k}; 0.0792);

C18 = ({s6, s7}; {a, d, n}; 0.2149);

C19 = ({s6, s8}; {d, h, n}; 0.2184);

C20 = ({s8}; {b, d, g, h, n}; 0.28);

C21 = ({s7}; {a, d, e, i, n}; 0.2963);

C22 = ({s2}; {a, d, f, h, j, o}; 0.2897);

C23 = ({s4}; {a, c, e, h, j, l, m}; 0.46);

C24 = ({s1}; {a, c, f, h, j, o}; 0.2897);

C25 = ({s3}; {a, c, f, h, k, o}; 0.288);

C26 = ({s5}; {a, c, e, h, k, l, m}; 0.4583);

C27 = ({s6}; {a, d, f, h, n, o}; 0.4426);

C28 = (∅; {a, b, c, e, f, g, h, i, j, k, l, m, n, o}; 1);
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All weighted formal concepts are used to establish a weighted concept lattice (Figure 3) via
a partial order relation according to Definition 12. Noticing that each of the formal concepts
C24, C22, C25, C23, C26, C27, C21, C20 includes only one original geo-concept in their extent, we use
them to represent the original geo-concepts of s1−8. That means that the semantic similarities of formal
concepts in the weighted concept lattice represent those of the original geo-concepts corresponding to
them. Elsewhere in this paper, we used these without distinction.
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Figure 3. The weighted concept lattice (established by linking weighted formal concepts).

According to Definitions 18 and 19, the semantic similarities of one concept to another can be
calculated. As the semantic similarity, (SIM) in Equation (23) has an asymmetrical property, we
measure the semantic similarities of concepts of s1−8, which is demonstrated in Table 7. In order to
estimate the SMMWCL, we calculate semantic similarity between every pair of concepts based on the
feature-based approach. According to Equation (21), we design an executable equation as following:

S(a, b) = |A ∩ B|/(|A ∩ B|+ 0.5 ∗ |A− B|+ 0.5 ∗ |B− A|) (24)

In Equation (22), A and B are the sets of attributes of a and b respectively, and |A| denotes the
number of elements of A. For example, in Table 4, |s1| = 6, S(s1, s2) = 5/(5 + 0.5 + 0.5) = 0.83.
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With this equation, the semantic similarity results between every pair of concepts in Table 4 are listed
in Table 8.

Table 7. Semantic similarity table.

SIM(row, col) s1 s2 s3 s4 s5 s6 s7 s8

s1 1 0.943 0.907 0.458 0.305 0.707 0.196 0.195
s2 0.943 1 0.819 0.321 0.205 0.822 0.29 0.333
s3 0.911 0.822 1 0.304 0.343 0.709 0.196 0.194
s4 0.473 0.378 0.366 1 0.937 0.248 0.355 0.225
s5 0.366 0.284 0.395 0.939 1 0.247 0.355 0.225
s6 0.627 0.692 0.628 0.241 0.241 1 0.62 0.629
s7 0.2 0.294 0.201 0.293 0.294 0.69 1 0.648
s8 0.188 0.328 0.189 0.135 0.135 0.719 0.658 1

In Table 7, we list the results of semantic similarities between original geo-concepts. The value in
each cell of that table represents the semantic similarity of the concept in its row to that of its column.
For example, SIM (s5, s8) = 0.225, while SIM (s8, s5) = 0.135. According to the properties of semantic
similarity (Definition 19), we can see that the values of semantic similarity in the table are in the range
of 0–1 and thus, SIM ∈ (0, 1]. If SIM (a, b) > 0.5, it means that the semantic similarity of concept
a to b is larger than their difference and vice versa while SIM(a, b) < 0.5. Comparing the results
in Tables 7 and 8 from Figure 4, we find that the distribution between their results is quite similar.
Moreover, the correlation coefficient between them is 0.944, which means that two results of semantic
similarity are highly correlated. At the same time, there are some differences between these two results.
We will analyze the results to illustrate the validity of SMMWCL.

Table 8. Semantic similarity table (feature-based approach).

S(row, col) s1 s2 s3 s4 s5 s6 s7 s8

s1 1 0.83 0.83 0.62 0.46 0.67 0.18 0.18
s2 0.83 1 0.67 0.46 0.31 0.83 0.36 0.36
s3 0.83 0.67 1 0.46 0.62 0.67 0.18 0.18
s4 0.62 0.46 0.46 1 0.86 0.31 0.33 0.17
s5 0.46 0.31 0.62 0.86 1 0.31 0.33 0.17
s6 0.67 0.83 0.67 0.31 0.31 1 0.55 0.55
s7 0.18 0.36 0.18 0.33 0.33 0.55 1 0.40
s8 0.18 0.36 0.18 0.17 0.17 0.55 0.40 1
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First, the results in Tables 7 and 8 both show that those concepts belonging to the same
super-category in the specification (GB/T 13923-2006) originally have relatively larger semantic
similarities to each other. For instance, the lake, pond and seasonal lake (s1, s2, s3) in the specification
are under the same super-category. There are relatively large semantic similarities between them.
The pair of ground river and seasonal river (s4, s5) as well as the pair of reservoir and spillway (s6, s7)
belong to the same super-categories, respectively. The semantic similarities between them are also
relatively large. However, the feature-based approach sometimes cannot reveal the small difference of
semantic similarity between concepts. For example, in Table 8, S(s1, s2) = S(s1, s3) = S(s2, s6) = 0.83,
while in Table 7, SIM(s1, s2) = 0.943, S(s1, s3) = 0.907 and S(s2, s6) = 0.822.

Secondly, the results show that the concepts belonging to different categories in the specification
possibly could have high semantic similarity. The concept of reservoir (s6) is quite similar to the
concept of lake, pond and seasonal lake (s1, s2, s3). Dike (s6) was found to have high semantic
similarities with reservoir and spillway (s6, s7). Sometimes, the semantic similarity between concepts
in different categories originally is greater than that of concepts in the same one, such as the semantic
similarity of pond to reservoir (SIM(s2, s6) = 0.822), which is greater than that of pond to seasonal
lake (SIM(s2, s3) = 0.776). In this sense, our method might be able to reveal some implicit similarity
of concepts and is a valid complement to the existing knowledge of classification.

Third, from Table 7, between two concepts the one that possesses a smaller weight (indicating
poorer semantic intent) has a larger semantic similarity to the other. For example, for the two
concepts of pond (s2) and reservoir (s6), s6 has a larger weight (0.4426) than that (0.2897) of s2, which
means that the granularity of s6 is finer than that of s2. The semantic similarity of pond to reservoir
(SIM (s2, s6) = 0.822) is larger than that of reservoir to pond (SIM (s6, s2) = 0.692). The results
demonstrate the asymmetrical property of semantic similarities and show that a fine-grained concept
is apt to be more similar to a coarser one than that of a coarse-grained concept to a finer one.

Finally, there are some formal concepts in the lattice that can match to the corresponding concepts
of super-categories in the specification. For example, the nodes C6, C12 and C18 can correspond
to the super-categories of (s1, s2, s3), (s4, s5) and (s6, s7), respectively. Similarly, we can bring those
super-concepts into the semantic similarity measurement calculation in the same way in SSMWCL.
For instance, we can calculate the semantic similarity of concept reservoir to its super-concept C18,
thus obtaining SIM(C18, s6) = 0.832 and SIM(s6, C18) = 0.64. In fact, the semantic similarity of each
concept to another in the weighted concept lattice can be calculated via SSMWCL.

6. Conclusions and Outlook

We propose semantic similarity measurement based on a weighted concept lattice (SSMWCL)
as a new approach to measuring semantic similarity among concepts. The concepts are represented
by the feature model and the existing conceptual classification is applied. SSMWCL introduces the
decision table from the rough set theory and information entropy in order to calculate the combined
weight of features. Following this, formal concept analysis is used to establish the weighted concept
lattice. Based on the hierarchical characteristics of the lattice, SSMWCL combines the feature model
with the network model for semantic similarity measurement. The feature model is applied to
compare the commonalities and differences of weighted conceptual features. At the same time,
the network model is used to assign different weights to various concepts based on their relative
hierarchical depths in the lattice. Finally, the absolute semantic similarity and the relative semantic
similarity are distinguished. The absolute semantic similarity is one factor that impacts on the semantic
similarity, while the other factor is the size of the concept intent’s weight. As semantic similarity
measurement between a pair of geo-concepts is widely applied in fields such as geo-information
retrieval, geospatial semantic integration, spatial data mining etc., SSMWCL has the same function in
those fields. Although SSMWCL is a knowledge-based approach, an ontology is not an indispensable
element to support its implementation. In other words, SSMWCL can be used based on an ontology
by extracting essential properties of classes (concepts) from the ontology, while it can also be applied
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by extracting essential properties from text analysis or domain specification. Indeed, how to extract
essential properties from text analysis requires further study. Furthermore, if the formal context is
large, involving for example a few thousand concepts, the algorithm for building a concept lattice
will need much more time and space. Therefore, it is will be one of our future efforts to optimize the
algorithm of SSMWCL.

In similar works [44,45] introducing formal concept analysis (FCA) in their algorithms, either
the feature model and network model or the feature model and information theory are combined to
measure semantic similarity. The attributes of the objects in the algorithms are potentially considered
to impose the same weight impacts on the semantic similarity. To some extent, objective things almost
contain infinite features. It is natural for us to understand a concept’s semantic meaning based on
its features, and different features have different influences upon understanding. On the other hand,
the approaches proposed in the aforementioned papers could not maintain the asymmetrical property
of the semantic similarity. In our work, we have distinguished the weight differences among features
according to the application context. Furthermore, the application of the hierarchical depth of the
concept node in the lattice enables us to preserve the asymmetrical property of semantic similarity.

There are several main characteristics of the SSMWCL: (1) the transformation from the
specific application context (existing classification knowledge) to combined weights of attributes;
(2) the application of the combined weight of an attribute with integration of the inclusion-degree
importance and information entropy; (3) the combination of the feature model and the network
model, which takes advantage of the hierarchical depth of concept in the concept lattice; and (4) the
preservation of the asymmetrical property of semantic similarity between concepts. Geo-information is
widely applied in various fields today. However, researchers in different fields or application contexts
possess quite different cognition, which used to be represented through distinct classification systems.
Therefore, it is quite significant to be able to measure the semantic similarity of geo-concepts based on
different application backgrounds. Whether SSMWCL is valid or not in other application backgrounds
and fields requires more evidence. Our future work will aim to generalize SSMWCL to broader areas.

There are two main aims for future studies following this work. First, we aim to extend SSMWCL
to the measurement of semantic relatedness. Semantic similarity has been regarded as a particular
subset of the notion of semantic relatedness [46]. In SSMWCL, the network hierarchy of a weighted
concept lattice is only applied to assign weights to the concepts according to the conceptual relative
hierarchical depth in the lattice. However, we can also use the network hierarchy of the lattice to take
advantage of network models and approaches, such as the semantic network. Therefore, further work
should focus on studying the semantic relatedness measurement based on SSMWCL by constructing
and evaluating the relationships of concepts in a concept lattice and integrating these network
relationships into SSMWCL. Next, we plan to study the extraction of essential features based on the
feature model. Although ontology has been identified as an effective tool for representing entity class or
concept with essential features, it is not as effective in dealing with the entity object. Therefore, another
focus of our work is to develop an approach to extracting essential features that are able to represent not
only the entity class but also the entity objects. We hope that the knowledge representation (whether
entity class or object) obtained using this approach will be applicable for SSMWCL.

Acknowledgments: The authors gratefully acknowledge the support of all the members of our research group.
This research was financially supported by the National Natural Science Foundation of China (Grant No. 41071290,
41201463).

Author Contributions: Jia Xiao and Zongyi He conceived and designed the workflow and the study; Jia Xiao
performed the case experiment, analyzed the data and wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.



ISPRS Int. J. Geo-Inf. 2017, 6, 348 19 of 20

References

1. Varelas, G.; Voutsakis, E.; Raftopoulou, P.; Petrakis, E.G.; Milios, E.E. Semantic similarity methods
in wordNet and their application to information retrieval on the web. In Proceedings of the 7th
Annual ACM International Workshop on Web Information and Data Management, Bremen, Germany,
31 October–5 November 2005; ACM: New York, NY, USA, 2005; pp. 10–16.

2. Rodríguez, M.A.; Rodríguez, M.J. Determining semantic similarity among entity classes from different
ontologies. IEEE Trans. Knowl. Data Eng. 2003, 15, 442–456. [CrossRef]

3. Han, J.; Pei, J.; Kamber, M. Data Mining: Concepts and Techniques; Elsevier: Amsterdam, The Netherlands, 2011.
4. Schwering, A. Approaches to Semantic Similarity Measurement for Geo-Spatial Data: A Survey. Trans. GIS

2008, 12, 5–29. [CrossRef]
5. Resnik, P. Semantic similarity in a taxonomy: An information-based measure and its application to problems

of ambiguity in natural language. J. Artif. Intell. Res. 1999, 11, 95–130.
6. Pedersen, T.; Patwardhan, S.; Michelizzi, J. WordNet:: Similarity: Measuring the relatedness of concepts.

In Proceedings of the Demonstration Papers at HLT-NAACL 2004, Boston, MA, USA, 2–7 May 2004;
Association for Computational Linguistics: Stroudsburg, PA, USA, 2004; pp. 38–41.

7. Ballatore, A.; Bertolotto, M.D.; Wilson, C. Geographic knowledge extraction and semantic similarity in
OpenStreetMap. Knowl. Inf. Syst. 2013, 37, 61–81. [CrossRef]

8. Rodríguez, M.A.; Egenhofer, M.J. Comparing geospatial entity classes: An asymmetric and
context-dependent similarity measure. Int. J. Geogr. Inf. Sci. 2004, 18, 229–256. [CrossRef]

9. Tversky, A.; Gati, I. Similarity, separability, and the triangle inequality. Psychol. Rev. 1982, 89, 123. [CrossRef]
[PubMed]

10. Luger, G.F. Artificial Intelligence: Structures and Strategies for Complex Problem Solving; Pearson: Boston, MA,
USA, 2005.

11. Gentner, D.; Arthur, A.B. Structure mapping in analogy and similarity. Am. Psychol. 1997, 52, 45. [CrossRef]
12. Schwering, A. Hybrid model for semantic similarity measurement. In Proceedings of the OTM

Confederated International Conferences “On the Move to Meaningful Internet Systems”, Rhodes, Greece,
23–27 September 2005; Springer: Berlin/Heidelberg, Germany, 2005; pp. 1449–1465.

13. Goldstone, R.L.; Son, J.Y. The transfer of scientific principles using concrete and idealized simulations.
J. Learn. Sci. 2005, 14, 69–110. [CrossRef]

14. Torgerson, W.S. Multidimensional scaling of similarity. Psychometrika 1965, 30, 379–393. [CrossRef] [PubMed]
15. Gärdenfors, P. Conceptual Spaces: The Geometry of Thought; MIT Press: London, UK, 2004.
16. Schwering, A.; Raubal, M. Spatial relations for semantic similarity measurement. In Proceedings of the

International Conference on Conceptual Modeling, Klagenfurt, Austria, 24–28 October 2005; Springer:
Berlin/Heidelberg, Germany, 2005; pp. 259–269.

17. Janowicz, K.; Wilkes, M. Sim-dla: A novel semantic similarity measure for description logics reducing
inter-concept to inter-instance similarity. In Proceedings of the European Semantic Web Conference, Crete,
Greece, 31 May–4 June 2009; Springer: Berlin/Heidelberg, Germany, 2009; pp. 353–367.

18. Janowicz, K. Sim-DL: Towards a Semantic Similarity Measurement Theory for the Description Logic ALCNR
in Geographic Information Retrieval. In Proceedings of the OTM Confederated International Conferences
“On the Move to Meaningful Internet Systems”, Montpellier, France, 29 October–3 November 2006; Springer:
Berlin/Heidelberg, Germany, 2006; pp. 1681–1692.

19. Janowicz, K.; Raubal, M.; Kuhn, W. The semantics of similarity in geographic information retrieval. J. Spat.
Inf. Sci. 2011, 29–57. [CrossRef]

20. Kim, J.; Vasardani, M.; Winter, S. Similarity matching for integrating spatial information extracted from place
descriptions. J. Spat. Inf. Sci. 2017, 31, 56–80. [CrossRef]

21. Francis-Landau, M.; Durrett, G.; Klein, D. Capturing semantic similarity for entity linking with convolutional
neural networks. arXiv, 2016 arXiv:1604.00734.

22. Mihalcea, R.; Wiebe, J. Simcompass: Using deep learning word embeddings to assess cross-level similarity.
In Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), Dublin, Ireland,
23–24 August 2014; Volume 2014, p. 560.

23. Harispe, S.; Ranwez, S.; Janaqi, S.; Montmain, J. Semantic Similarity from Natural Language and
Ontology Analysis; Morgan & Claypool Publishers: San Rafael, CA, USA, 2015; pp. 85–86.

http://dx.doi.org/10.1109/TKDE.2003.1185844
http://dx.doi.org/10.1111/j.1467-9671.2008.01084.x
http://dx.doi.org/10.1007/s10115-012-0571-0
http://dx.doi.org/10.1080/13658810310001629592
http://dx.doi.org/10.1037/0033-295X.89.2.123
http://www.ncbi.nlm.nih.gov/pubmed/7089125
http://dx.doi.org/10.1037/0003-066X.52.1.45
http://dx.doi.org/10.1207/s15327809jls1401_4
http://dx.doi.org/10.1007/BF02289530
http://www.ncbi.nlm.nih.gov/pubmed/5217606
http://dx.doi.org/10.5311/JOSIS.2011.2.3
http://dx.doi.org/10.1080/13658816.2016.1188930


ISPRS Int. J. Geo-Inf. 2017, 6, 348 20 of 20

24. Bulskov, H.; Knappe, R.; Andreasen, T. On measuring similarity for conceptual querying. In Proceedings
of the 5th International Conference on Flexible Query Answering Systems, Copenhagen, Denmark,
27–29 October 2002; Springer: London, UK, 2002; pp. 100–111.

25. Alvarez, M.; Yan, C. A graph-based semantic similarity measure for the gene ontology. J. Bioinform. Comput.
Biol. 2011, 9, 681–695. [CrossRef]

26. Olsson, C.; Petrov, P.; Sherman, J.; Perez-Lopez, A. Finding and explaining similarities in Linked Data.
In Proceedings of the Semantic Technology for Intelligence, Defense, and Security (STIDS 2011), Fairfax, VA,
USA, 16–17 November 2011; pp. 52–59.

27. Sánchez, D.; Batet, M.; Isern, D.; Valls, A. Ontology-based semantic similarity: A new feature-based approach.
Expert Syst. Appl. 2012, 39, 7718–7728. [CrossRef]

28. Shannon, C. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [CrossRef]
29. Cross, V.; Yu, X. A fuzzy set framework for ontological similarity measures. In Proceedings of the IEEE

International Conference on Fuzzy Systems (FUZZ-IEEE), Barcelona, Spain, 18–23 July 2010; pp. 1–8.
30. Mazandu, G.K.; Mulder, N.J. Information content-based Gene Ontology semantic similarity approaches:

Toward a unified framework theory. BioMed Res. Int. 2013, 2013. [CrossRef] [PubMed]
31. Singh, J.; Saini, M.; Siddiqi, S. Graph-based computational model for computing semantic similarity.

In Proceedings of the Emerging Research in Computing, Information, Communication and Applications
(ERCICA2013), Bangalore, India, 2–3 August 2013; Elsevier: New Delhi, India, 2013; pp. 501–507.

32. Ganter, B.; Wille, R. Formal Concept Analysis: Mathematical Foundations; Springer: Berlin, Germany, 1999.
33. Stumme, G.; Adche, M.A. FCA-Merge: Bottom-up merging of ontologies. In Proceedings of the Seventeenth

International Conference on Artificial Intelligence (IJCAI’01), Seattle, WA, USA, 4–10 August 2001;
pp. 225–230.

34. Kokla, M.; Kavouras, M. Fusion of top-level and geographical domain ontologies based on context formation
and complementarity. Int. J. Geogr. Inf. Sci. 2001, 15, 679–687. [CrossRef]

35. Xiao, J.; He, Z. A Concept Lattice for Semantic Integration of Geo-Ontologies Based on Weight of Inclusion
Degree Importance and Information Entropy. Entropy 2016, 18, 399. [CrossRef]

36. Borst, P.; Akkermans, H.; Top, J. Engineering ontologies. Int. J. Hum.-Comput. Stud. 1997, 46, 365–406.
[CrossRef]

37. Sowa, J.F. Knowledge Representation: Logical, Philosophical, and Computational Foundations; Brooks/Cole:
Pacific Grove, CA, USA, 2000; Volume 13.

38. Bechhofer, S. OWL: Web ontology language. In Encyclopedia of Database Systems; Springer: New York, NY,
USA, 2009; pp. 2008–2009.

39. Guarino, N.; Welty, C. A formal ontology of properties. In Proceedings of the International Conference on
Knowledge Engineering and Knowledge Management, Juan-les-Pins, France, 2–6 October 2000; Springer:
Berlin/Heidelberg, Germany, 2000; pp. 97–112.

40. Kavouras, M.; Kokla, M.; Tomai, E. Comparing categories among geographic ontologies. Comput. Geosci.
2005, 31, 145–154. [CrossRef]

41. Pawlak, Z. Rough Sets. Int. J. Comput. Inf. Sci. 1982, 11, 341–356. [CrossRef]
42. Ji, J.; Wu, G.X.; Li, W. Significance of attribute based on inclusion degree. J. Jiangxi Norm. Univ. (Nat. Sci.)

2009, 33, 656–660. (In Chinese)
43. Hahn, U.; Chater, N.; Richardson, L.B. Similarity as transformation. Cognition 2003, 87, 1–32. [CrossRef]
44. Wang, L.; Liu, X. A new model of evaluating concept similarity. Knowl.-Based Syst. 2008, 21, 842–846.

[CrossRef]
45. Formica, A. Concept Similarity in Formal Concept Analysis: An Information Content Approach; Elsevier Science

Publishers B.V.: New York, NY, UK, 2008.
46. Ballatore, A.; Bertolotto, M.D.; Wilson, C. An evaluative baseline for geo-semantic relatedness and similarity.

GeoInformatica 2014, 18, 747–767. [CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1142/S0219720011005641
http://dx.doi.org/10.1016/j.eswa.2012.01.082
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1155/2013/292063
http://www.ncbi.nlm.nih.gov/pubmed/24078912
http://dx.doi.org/10.1080/13658810110061153
http://dx.doi.org/10.3390/e18110399
http://dx.doi.org/10.1006/ijhc.1996.0096
http://dx.doi.org/10.1016/j.cageo.2004.07.010
http://dx.doi.org/10.1007/BF01001956
http://dx.doi.org/10.1016/S0010-0277(02)00184-1
http://dx.doi.org/10.1016/j.knosys.2008.03.042
http://dx.doi.org/10.1007/s10707-013-0197-8
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Background 
	Weighted Concept Lattice 
	Knowledge Representation of the Feature Model 
	Combined Weight of Attribute 
	Inclusion Degree Importance of a Property 
	Formal Context 
	Information Entropy of Attributes 

	Construction of the Weighted Concept Lattice 

	Semantic Similarity Measurement 
	Relative Hierarchical Depth 
	Semantic Similarity Model 

	Case Study and Discussion 
	Conclusions and Outlook 

