
 International Journal of

Geo-Information

Article

A Hybrid Parallel Spatial Interpolation Algorithm for
Massive LiDAR Point Clouds on Heterogeneous
CPU-GPU Systems

Hongyan Wang, Xuefeng Guan * and Huayi Wu

The State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing,
Wuhan University, 129 Luoyu Road, Wuhan 430079, China; wanghongyan@whu.edu.cn (H.W.);
wuhuayi@whu.edu.cn (H.W.)
* Correspondence: guanxuefeng@whu.edu.cn

Received: 30 September 2017; Accepted: 14 November 2017; Published: 16 November 2017

Abstract: Nowadays, heterogeneous CPU-GPU systems have become ubiquitous, but current parallel
spatial interpolation (SI) algorithms exploit only one type of processing unit, and thus result in a waste
of parallel resources. To address this problem, a hybrid parallel SI algorithm based on a thin plate
spline is proposed to integrate both the CPU and GPU to further accelerate the processing of massive
LiDAR point clouds. A simple yet powerful parallel framework is designed to enable simultaneous
CPU-GPU interpolation, and a fast online training method is then presented to estimate the optimal
decomposition granularity so that both types of processing units can run at maximum speed. Based on
the optimal granularity, massive point clouds are continuously partitioned into a collection of discrete
blocks in a data processing flow. A heterogeneous dynamic scheduler based on the greedy policy
is also proposed to achieve better workload balancing. Experimental results demonstrate that the
computing power of the CPU and GPU is fully utilized under conditions of optimal granularity,
and the hybrid parallel SI algorithm achieves a significant performance boost when compared with
the CPU-only and GPU-only algorithms. For example, the hybrid algorithm achieved a speedup of
20.2 on one of the experimental point clouds, while the corresponding speedups of using a CPU or a
GPU alone were 8.7 and 12.6, respectively. The interpolation time was reduced by about 12% when
using the proposed scheduler, in comparison with other common scheduling strategies.

Keywords: CPU-GPU; hybrid parallel algorithm; spatial interpolation; thin plate spline;
LiDAR point clouds

1. Introduction

Spatial interpolation (SI) is a well-studied spatial analysis functionality in GIS for deriving a
smoothed surface from a limited but usually large number of scattered sample points. SI analysis can
help researchers understand implicit spatial trends of geographical phenomena, such as elevation,
rainfall, or chemical concentrations. A variety of SI methods have been developed [1], including Inverse
Distance Weighting (IDW), Natural Neighbor, and Spline and Kriging. These interpolation methods,
however, are usually computationally expensive and time-consuming. Furthermore, given the rapid
and ongoing development of spatial data acquisition technologies, an explosive increase in data
volume has dramatically aggravated the performance issues confronting SI algorithms. For example,
the point density of airborne LiDAR data can reach up to 100 pts/m2, and thus easily generates
billions of points [2]. Faced with these massive point clouds, traditional sequential SI methods cannot
perform efficiently.

To address these challenges, numerous acceleration methods have been put forward to take
advantage of available parallel resources. In the last decades, most parallel SI algorithms were

ISPRS Int. J. Geo-Inf. 2017, 6, 363; doi:10.3390/ijgi6110363 www.mdpi.com/journal/ijgi

http://www.mdpi.com/journal/ijgi
http://www.mdpi.com
http://dx.doi.org/10.3390/ijgi6110363
http://www.mdpi.com/journal/ijgi

ISPRS Int. J. Geo-Inf. 2017, 6, 363 2 of 17

implemented in super computing systems, e.g., MasPar [3], Cray T3D [4], CM5 [5], and parallel
clusters [6]. While being highly efficient, these methods were implemented on high-end hardware,
and thus were unaffordable and inaccessible to normal users. With the emergence and development
of multicore CPUs, many researchers began to accelerate SI algorithms on these cost-effective and
accessible platforms. For example, Cheng et al. parallelized universal Kriging interpolation based on
OpenMP [7]; Guan et al. [8] accelerated the IDW algorithm by leveraging the power of multicores.
In recent years, the rapid rise of general-purpose GPUs (GPGPU) has attracted considerable attention
for their superior computing power, high memory bandwidth, and low power consumption. As a
result, more and more SI algorithms, such as ordinary Kriging [9], universal Kriging [10], and Natural
Neighbor interpolation [11] have been further accelerated on many-core GPU platforms.

Modern commodity computers including laptops, desktops, and high performance workstations,
are usually equipped with both multicore CPUs and many-core GPUs. These heterogeneous computing
systems are ubiquitous, but current CPU-only and GPU-only algorithms exploit just one type of parallel
processor, thus resulting in a waste of computing resources. To the best of our knowledge, few studies
have explored the acceleration of SI algorithms simultaneously leveraging both types of Processing
Units (PUs).

In this paper, we address the gap and propose a hybrid parallel algorithm that parallelizes the
Thin Plate Spline (TPS) algorithm to speed up spatial interpolation from massive LiDAR point clouds.
On heterogeneous platforms, the hardware architecture, programming models, and computing power
of multicore CPUs and many-core GPUs are dramatically different. The integration challenges therefore
include unavailable uniform programming models, inefficient CPU-GPU collaboration, and task
scheduling. Our research focuses on addressing the last two challenges. A parallel interpolation
framework based on a hybrid-programming model was designed to leverage the computing power of
both CPU and GPU. Based on this framework, a fast online training method for computing capability
estimation is proposed for rapidly finding the optimal task decomposition granularity to keep each PU
running at maximum speed. Workload balance is realized with a Heterogeneous Dynamic Scheduler
based on the Greedy policy (HDSG), which supports data subdivision. This HDSG policy also helps
to improve GPU utilization by task priority declaration. Experimental results demonstrate that
both PUs are fully exploited under the optimal granularity, and the hybrid parallel TPS algorithm
obtains significant performance improvement. For example, the highest speedup achieved on one
of the experimental point clouds was about 20.2. In contrast, the corresponding speedups of the
CPU-only and GPU-only algorithms were about 8.7 and 12.6, respectively. Using our HDSG policy,
the interpolation time was reduced by about 12% in comparison with other common scheduling
strategies (i.e., greedy policy, work stealing).

The rest of this paper is organized as follows: Section 2 reviews the background of the CPU/GPU
hardware architecture, programming models, and heterogeneous computing. Section 3 introduces
TPS interpolation algorithm and the transformation to local TPS. Section 4 explains the details of the
proposed hybrid parallel interpolation framework, including fast online training, streaming spatial
decomposition, and the HDSG scheduling strategy. Section 5 presents a performance evaluation and
discussion. Finally, Section 6 draws conclusions and outlines directions for future research.

2. Background

2.1. CPU/GPU Architecture and Programming

In a heterogeneous CPU-GPU system, the architecture of the CPU and GPU are quite different.
As shown in Figure 1 (adapted from [12]), a CPU core uses a large fraction of the die area for the
cache and control logic, and leaves only a small part for integer and floating-point execution (i.e.,
Arithmetic Logic Units, ALU). Large-sized caches enable low-latency access to cached data sets,
while the control unit is dedicated to out-of-order and speculative execution. Thus, a CPU is optimized
for single-threaded performance and is suitable for latency-critical applications. As CPUs move toward

ISPRS Int. J. Geo-Inf. 2017, 6, 363 3 of 17

multicore architectures, modern CPUs usually integrate two or more, or even tens of cores on a single
chip to realize a performance leap through parallel processing. For example, the current top-end Intel
server processor, the Xeon E7-8894 v4, is equipped with 24 CPU cores with a base clock speed of
2.4 GHz, and a 60 MB cache.

ISPRS Int. J. Geo-Inf. 2017, 6, 363 3 of 17

optimized for single-threaded performance and is suitable for latency-critical applications. As CPUs
move toward multicore architectures, modern CPUs usually integrate two or more, or even tens of
cores on a single chip to realize a performance leap through parallel processing. For example, the
current top-end Intel server processor, the Xeon E7-8894 v4, is equipped with 24 CPU cores with a
base clock speed of 2.4 GHz, and a 60 MB cache.

Figure 1. Different architectures of a CPU and GPU.

In contrast, a many-core GPU is comprised of hundreds, even thousands, of stream processors,
which share common control units and execute instructions in order. Within a GPU, most of the
transistors are used for computation rather than complex instruction-level parallelism and large
caches. Although GPU cores run at a lower frequency and use smaller-sized caches [13], they are
able to issue thousands of concurrent threads, and thus hide memory latency and achieve massive
parallelism. Therefore, a many-core GPU is well-suited for data-parallel and high throughput
computation.

Multi-threaded programming for multicore CPUs has been studied extensively, and many
programming languages and software libraries have been developed. Typical programming
languages/libraries include Pthreads, OpenMP, Threading Building Blocks (TBB), and the Math
Kernel Library (MKL). Among them, Pthreads is a low-level API (Application Program Interface)
and provides basic thread operations, such as creation, destruction, and synchronization. OpenMP
has been widely used and is the de facto standard for shared-memory parallel programming due to
its portability and ease of programming. TBB and MKL were both launched by the Intel Corporation
and were specially optimized for Intel multicore processors. TBB is an open source C++ template
library for parallel programming, while MKL contains many optimized math routines for scientific
computation.

For many-core GPUs, typical programming languages include OpenCL, Brook+ and CUDA.
OpenCL (Open Computing Language) is a recent standard, which is ratified by the Khronos Group,
for cross-platform parallel programming with diverse processors [14]. OpenCL is welcomed for its
portability, but it cannot achieve the highest possible performance for its high-level abstraction [15].
Brook [16] is an extension to the C-language for stream programming that was originally developed
by Stanford University; Brook+ is an implementation of the Brook GPU specification on AMD's
compute abstraction layer. CUDA (Compute Unified Device Architecture) [12] is a programming
model that was created by the NVIDIA company for general purpose processing on CUDA-enabled
GPUs. Among them, CUDA is the most widely used because of its ease of programming and much
bigger market share of NVIDIA GPUs. CUDA is also superior for its mature ecosystem. Many
GPU-accelerated libraries have been developed along with CUDA, e.g., cuBLAS, Thrust, Magma, cuFFT.

2.2. Heterogeneous Computing

Recently high performance computing has increasingly turned to CPU-GPU heterogeneous
systems to fulfill super large-scale scientific and engineering computations. A large proportion of
global supercomputers have adopted the heterogeneous CPU-GPU architecture from the TOP500
and Green500 websites. Furthermore, commodity computers, servers, and workstations are also
typical heterogeneous CPU-GPU platforms. On these ubiquitous platforms, heterogeneous

Figure 1. Different architectures of a CPU and GPU.

In contrast, a many-core GPU is comprised of hundreds, even thousands, of stream processors,
which share common control units and execute instructions in order. Within a GPU, most of the
transistors are used for computation rather than complex instruction-level parallelism and large caches.
Although GPU cores run at a lower frequency and use smaller-sized caches [13], they are able to issue
thousands of concurrent threads, and thus hide memory latency and achieve massive parallelism.
Therefore, a many-core GPU is well-suited for data-parallel and high throughput computation.

Multi-threaded programming for multicore CPUs has been studied extensively, and many
programming languages and software libraries have been developed. Typical programming
languages/libraries include Pthreads, OpenMP, Threading Building Blocks (TBB), and the Math
Kernel Library (MKL). Among them, Pthreads is a low-level API (Application Program Interface) and
provides basic thread operations, such as creation, destruction, and synchronization. OpenMP has
been widely used and is the de facto standard for shared-memory parallel programming due to its
portability and ease of programming. TBB and MKL were both launched by the Intel Corporation and
were specially optimized for Intel multicore processors. TBB is an open source C++ template library for
parallel programming, while MKL contains many optimized math routines for scientific computation.

For many-core GPUs, typical programming languages include OpenCL, Brook+ and CUDA.
OpenCL (Open Computing Language) is a recent standard, which is ratified by the Khronos Group,
for cross-platform parallel programming with diverse processors [14]. OpenCL is welcomed for its
portability, but it cannot achieve the highest possible performance for its high-level abstraction [15].
Brook [16] is an extension to the C-language for stream programming that was originally developed by
Stanford University; Brook+ is an implementation of the Brook GPU specification on AMD's compute
abstraction layer. CUDA (Compute Unified Device Architecture) [12] is a programming model that was
created by the NVIDIA company for general purpose processing on CUDA-enabled GPUs. Among
them, CUDA is the most widely used because of its ease of programming and much bigger market
share of NVIDIA GPUs. CUDA is also superior for its mature ecosystem. Many GPU-accelerated
libraries have been developed along with CUDA, e.g., cuBLAS, Thrust, Magma, cuFFT.

2.2. Heterogeneous Computing

Recently high performance computing has increasingly turned to CPU-GPU heterogeneous
systems to fulfill super large-scale scientific and engineering computations. A large proportion of
global supercomputers have adopted the heterogeneous CPU-GPU architecture from the TOP500
and Green500 websites. Furthermore, commodity computers, servers, and workstations are also
typical heterogeneous CPU-GPU platforms. On these ubiquitous platforms, heterogeneous computing
arises and aims to exploit all of the available resources from different types of PUs thus achieving

ISPRS Int. J. Geo-Inf. 2017, 6, 363 4 of 17

better performance gains. However, due to the dramatically different architectures, programming
models, and computational capabilities of the CPU and GPU, the following challenges are involved in
heterogeneous computing.

The lack of uniform programming techniques is the first challenge. Current CPU programming
languages and software libraries cannot be directly ported for GPU application development.
Although OpenCL offers a common API for task-parallel and data-parallel heterogeneous computing,
and has been used in many fields [17–19], OpenCL applications usually suffer from performance loss
due to its high-level programming abstraction. Brook+ and CUDA only work for their own compatible
GPUs. Thus, no uniform programming language can fully exploit the potential of a heterogeneous
CPU-GPU system. Hybrid-programming models are usually chosen to realize the highest possible
performance, e.g., OpenMP + CUDA [20]. On the CPU side, leveraging typical programming languages
and software libraries can easily realize the efficient utilization of multicore CPUs. On the GPU side,
CUDA is a good choice for its ease of programming and ecosystem maturity. The disadvantage of a
hybrid-programming model is that it exerts additional learning burden to users.

The second challenge is inefficient CPU-GPU collaboration. Currently in heterogeneous CPU-GPU
systems, the multicore CPU is conventionally responsible for task scheduling and I/O control,
while the GPU is burdened with all of the computation. For example, recent research on spatial
interpolation [21–23] have efficiently exploited the power of GPUs and other accelerators, but left the
parallel computing resources of multicore CPU underutilized. In heterogeneous computing, multicore
CPUs must not only work as hosts, but also offload computation from GPUs so that closer collaboration
and better performance can be achieved.

Task scheduling is the third challenge. A scheduling strategy should consider both the
internal characteristics of target algorithms and the external hardware attributes of the underlying
PUs to determine suitable task partitioning and allocation. Currently, Many research focuses on
algorithm-level workload partitioning and scheduling [15]. Workload partitioning techniques have
been designed based on the relative performance of PUs [20,24], the nature of subtasks [25], or other
partitioning criteria for different algorithms and applications. As for scheduling, dynamic and static
scheduling policies have been extensively studied in order to maintain workload balance. However,
task scheduling still remains a challenge since empirical analyses are always needed to design proper
workload partitioning methods and scheduling policies for specific scenarios.

3. Thin Plate Spline Interpolation

3.1. TPS Introduction

TPS is a spline-based SI method that can preserve the derived interpolation surface as smoothly
as possible. Here, a short introduction to two-dimensional (2D) TPS interpolation is presented.

Given a set of three-dimensional (3D) sample points {Pi = (xi, yi, zi)|i = 1, . . . , n}, (xi, yi) denotes
the 2D space coordinates of the ith sample point with an associated sampling value zi. The TPS
algorithm aims to seek a smoothness function F that passes through each sample point exactly while
minimizing the “bending energy”. The case of 2D bending energy is defined as

I(F) =
x

R2
(F
′′2
xx + 2F

′′2
xy + F

′′2
yy)dxdy (1)

Further, it has been shown [26] that the problem of minimizing Equation (1) is subject to the
constraints in Equation (2)

n

∑
i=1

λi = 0,
n

∑
i=1

λixi = 0,
n

∑
i=1

λiyi = 0, (2)

ISPRS Int. J. Geo-Inf. 2017, 6, 363 5 of 17

where λi is the coefficient for the ith spline term. Thus, we derive a TPS interpolation function
that satisfies

F(x, y) = a0 + a1x + a2y +
n
∑

i=1
λiφ(‖(x, y)− (xi, yi)‖)

= a0 + a1x + a2y +
n
∑

i=1
λir2

i ln ri

(3)

In Equation (3), we define φ as φ(r) = r2 ln r, which is in fact a radial basis function.
The ||·|| denotes the Euclidean distance between the interpolation point and each sample point,

i.e., ri =
√
(x− xi)

2 + (y− yi)
2, and a0, a1, a2 are the coefficients of the planar term of the spline.

Therefore, TPS interpolation contains two steps, i.e., coefficient solution and z-value estimation.
With Equations (2) and (3), the coefficient solution can be represented in the form of a linear system as
in Equation (4)

0 . . . ϕ(r1n) 1 x1 y1

ϕ(r21) . . . ϕ(r2n) 1 x2 y2

.
ϕ(rn1) . . . 0 1 xn yn

1 . . . 1 0 0 0
x1 . . . xn 0 0 0
y1 . . . yn 0 0 0

λ1

λ2

. . .
λn

a0

a1

a2

=

z1

z2

. . .
zn

0
0
0

(4)

The z-value for each interpolation point can be estimated with the derived function F as in
Equation (3). The computational complexity of the two steps is O(n3) and O(n · p), where n and p
denote the number of the sample points and interpolation points, respectively.

3.2. Local TPS Interpolation

In global TPS interpolation, with the increase of sample points, the linear system in Equation (4)
is prone to ill-condition that will result in incorrect coefficients. Direct computing without matrix
transformation is only suitable for a very small n [27]. Unfortunately, the number of points in massive
LiDAR point clouds can easily reach millions, or even billions. Global TPS interpolation therefore
becomes unfeasible and extremely time-consuming.

Thus, to overcome this problem, TPS interpolation in this paper was implemented as a local
interpolation. Local interpolation only requires a few tens of neighboring sample points to derive an
estimation value. Figure 2 displays the main steps of using local TPS interpolation for massive LiDAR
point clouds. The input point clouds are firstly read and divided into a collection of discrete data blocks
so that they are able to fit into main memory and graphic memory. A grid index is then constructed for
each block in order to reduce the time spent in the nearest neighbor search for each interpolation point.
Next, local TPS interpolation, including nearest neighbor search, coefficient solution, and z-value
estimation can be implemented point by point within each block. After interpolating all of the
blocks, a raster Digital Elevation Model (DEM) will be generated. Throughout the process, local TPS
interpolation is the most time-consuming step. Interpolation among local points and that among
different blocks are both independent and ideal for parallelization.

ISPRS Int. J. Geo-Inf. 2017, 6, 363 6 of 17

ISPRS Int. J. Geo-Inf. 2017, 6, 363 5 of 17

0 1 2
1

2
0 1 2

1

(,) ((,) (,))

ln

n

i i i
i

n

i i i
i

F x y a a x a y x y x y

a a x a y r r

λ φ

λ

=

=

= + + + −

= + + +

 (3)

In Equation (3), we define φ as 2() lnr r rφ = , which is in fact a radial basis function. The || ||⋅
denotes the Euclidean distance between the interpolation point and each sample point, i.e.,

2 2() ()i i ir x x y y= − + − , and 0 1 2, ,a a a are the coefficients of the planar term of the spline.
Therefore, TPS interpolation contains two steps, i.e., coefficient solution and z-value estimation.

With Equations (2) and (3), the coefficient solution can be represented in the form of a linear system
as in Equation (4)

1 1 1 1 1

21 2 2 2 2 2

1

0

1 1

1 2

0 ... () 1
() ... () 1
...
() ... 0 1
1 ... 1 0 0 0 0

... 0 0 0 0

... 0 0 0 0

n

n

n n n n n

n

n

r x y z

r r x y z

r x y z

a

x x a

y y a

ϕ λ
ϕ ϕ λ

ϕ λ

=

 (4)

The z-value for each interpolation point can be estimated with the derived function F as in
Equation (3). The computational complexity of the two steps is O(n3) and O(n ⋅ p), where n and p
denote the number of the sample points and interpolation points, respectively.

3.2. Local TPS Interpolation

In global TPS interpolation, with the increase of sample points, the linear system in Equation (4)
is prone to ill-condition that will result in incorrect coefficients. Direct computing without matrix
transformation is only suitable for a very small n [27]. Unfortunately, the number of points in
massive LiDAR point clouds can easily reach millions, or even billions. Global TPS interpolation
therefore becomes unfeasible and extremely time-consuming.

Thus, to overcome this problem, TPS interpolation in this paper was implemented as a local
interpolation. Local interpolation only requires a few tens of neighboring sample points to derive an
estimation value. Figure 2 displays the main steps of using local TPS interpolation for massive
LiDAR point clouds. The input point clouds are firstly read and divided into a collection of discrete
data blocks so that they are able to fit into main memory and graphic memory. A grid index is then
constructed for each block in order to reduce the time spent in the nearest neighbor search for each
interpolation point. Next, local TPS interpolation, including nearest neighbor search, coefficient
solution, and z-value estimation can be implemented point by point within each block. After
interpolating all of the blocks, a raster Digital Elevation Model (DEM) will be generated. Throughout
the process, local TPS interpolation is the most time-consuming step. Interpolation among local
points and that among different blocks are both independent and ideal for parallelization.

Figure 2. Main steps of using local Thin Plate Spline (TPS) interpolation for LiDAR point clouds. Figure 2. Main steps of using local Thin Plate Spline (TPS) interpolation for LiDAR point clouds.

4. Framework of the Hybrid Parallel Interpolation

4.1. Introduction of the Interpolation Framework

As shown in Figure 3, a parallel framework based on a hybrid-programming model
(Pthreads + Intel TBB + CUDA) was designed to accelerate TPS interpolation from massive LiDAR
point clouds. This parallel interpolation framework contains four stages: fast online training, streaming
decomposition, task scheduling, and parallel interpolation. The first stage quickly finds the optimal
decomposition granularity so that each PU is able to run at maximum speed. Based on the derived
granularity, raw point clouds are then decomposed into a stream of discrete blocks with a streaming
decomposition method. In the third stage, a dynamic scheduler called HDSG is proposed to
assign blocks and computation to each PU so that parallel TPS interpolation can be executed in
the fourth stage.

ISPRS Int. J. Geo-Inf. 2017, 6, 363 6 of 17

4. Framework of the Hybrid Parallel Interpolation

4.1. Introduction of the Interpolation Framework

As shown in Figure 3, a parallel framework based on a hybrid-programming model (Pthreads +
Intel TBB + CUDA) was designed to accelerate TPS interpolation from massive LiDAR point clouds.
This parallel interpolation framework contains four stages: fast online training, streaming
decomposition, task scheduling, and parallel interpolation. The first stage quickly finds the optimal
decomposition granularity so that each PU is able to run at maximum speed. Based on the derived
granularity, raw point clouds are then decomposed into a stream of discrete blocks with a streaming
decomposition method. In the third stage, a dynamic scheduler called HDSG is proposed to assign
blocks and computation to each PU so that parallel TPS interpolation can be executed in the fourth stage.

Figure 3. The framework of the hybrid parallel interpolation.

Once a block is ready, it is delivered to a First-In-First-Out (FIFO) task queue. This task queue is
shared by CPU threads and supports concurrent accesses. Two operations are supported on this
queue: task submission (push), and request for a task to execute (pop). In implementation, more than
one task queue is generated and used for data storage and task scheduling.

In this framework, N + 2 CPU threads are generated. One I/O thread is responsible for data
reading and decomposition, and another thread is dedicated to GPU management, including device
initialization, data transfer, and kernel launching. The other N CPU threads are assigned to do TPS
interpolation in parallel. The multicore CPU can process N blocks simultaneously, while the GPU
handles only one block at a time. Since interpolation of each point is independent in local TPS, it is
executed in a GPU thread as the smallest work unit. By launching a massive number of GPU threads
simultaneously, the parallel computing power of the GPU can be fully exploited.

4.2. Fast Online Training

In a heterogeneous CPU-GPU system, as the computing capability of the CPU and GPU are
much different, block size becomes a key factor to achieve a balanced workload and efficient
resource utilization. GPU performance is much more sensitive to block size than a CPU given the
massive-threaded parallelism of a GPU. If the block size is too small, thread initialization and data
transfer between the CPU and GPU will take most of the time, thus leading to GPU underutilization.
On the other hand, larger blocks can achieve better GPU performance, but may result in a severe
workload imbalance between the CPU and GPU.

Figure 3. The framework of the hybrid parallel interpolation.

Once a block is ready, it is delivered to a First-In-First-Out (FIFO) task queue. This task queue
is shared by CPU threads and supports concurrent accesses. Two operations are supported on this
queue: task submission (push), and request for a task to execute (pop). In implementation, more than
one task queue is generated and used for data storage and task scheduling.

In this framework, N + 2 CPU threads are generated. One I/O thread is responsible for data
reading and decomposition, and another thread is dedicated to GPU management, including device

ISPRS Int. J. Geo-Inf. 2017, 6, 363 7 of 17

initialization, data transfer, and kernel launching. The other N CPU threads are assigned to do TPS
interpolation in parallel. The multicore CPU can process N blocks simultaneously, while the GPU
handles only one block at a time. Since interpolation of each point is independent in local TPS, it is
executed in a GPU thread as the smallest work unit. By launching a massive number of GPU threads
simultaneously, the parallel computing power of the GPU can be fully exploited.

4.2. Fast Online Training

In a heterogeneous CPU-GPU system, as the computing capability of the CPU and GPU are
much different, block size becomes a key factor to achieve a balanced workload and efficient
resource utilization. GPU performance is much more sensitive to block size than a CPU given the
massive-threaded parallelism of a GPU. If the block size is too small, thread initialization and data
transfer between the CPU and GPU will take most of the time, thus leading to GPU underutilization.
On the other hand, larger blocks can achieve better GPU performance, but may result in a severe
workload imbalance between the CPU and GPU.

To find the optimal decomposition granularity, a series of experiments were conducted to
model the quantitative relationship between block size and GPU processing speed. Sample data
consisting of four point clouds at different point densities were chosen for the decomposition
experiments implemented on an NVIDIA Fermi C2050 GPU. According to empirical research, only
about 10–30 neighboring points are required to interpolate each point [28]. In these experiments,
the number of neighboring points requested for local interpolation was set to 15, and the radius of
neighbor search and interpolation resolution were set to 15 m and one meter, respectively.

In Figure 4, block sizes are represented by the number of pixels (i.e., interpolation points),
while GPU processing speed is measured in pixels per second. Based on the distribution of scatter
points in Figure 4, we infer that GPU processing speed over block size obeys a logarithmic curve.
When the block size is very small, the GPU is underutilized due to lack of enough GPU threads.
The interpolation speed increases rapidly with block size, finally evolving towards stability as the block
size exceeds the number of CUDA cores inside the GPU. This trend illustrates that the massive-threaded
parallelism within the GPU was gradually exploited. For validation, R square was used to measure the
confidence of fit curves. Figure 4 shows that the R square values for different LiDAR point clouds were
very high, ranging from 0.9256 to 0.9709. A higher value for R square indicates a better fit. Therefore,
the curve fit results validate the assumption that GPU processing speed over block size indeed obeys a
logarithmic curve.

Hence, the optimal block size u0 (in pixels) can be predicted with a logarithmic equation

v = a ln(u) + b (5)

where u and v denote the number of pixels in a block and GPU processing speed, respectively. In order
to reach convergence quickly, least squares estimation is used in online training to fit the logarithmic
curve with as few samples as possible (e.g., four block sizes). As long as the parameters a, b are
calculated, the slope of the fitted logarithmic curve is used to measure whether the GPU processing
speed reaches stability. When the slope decreases to a reasonable threshold, which is empirically set as
0.01, the GPU processing speed will be treated as stable. Thus, the optimal block size u0 is obtained
and the optimal decomposition granularity d (in meters) can be calculated according to

d = r ∗
√

u0 (6)

where r denotes the raster resolution for spatial interpolation. The online training method is fast and
timesaving because the logarithmic curve fitting is rapid and the calculation of d is simple.

ISPRS Int. J. Geo-Inf. 2017, 6, 363 8 of 17

ISPRS Int. J. Geo-Inf. 2017, 6, 363 7 of 17

To find the optimal decomposition granularity, a series of experiments were conducted to
model the quantitative relationship between block size and GPU processing speed. Sample data
consisting of four point clouds at different point densities were chosen for the decomposition
experiments implemented on an NVIDIA Fermi C2050 GPU. According to empirical research, only
about 10–30 neighboring points are required to interpolate each point [28]. In these experiments, the
number of neighboring points requested for local interpolation was set to 15, and the radius of
neighbor search and interpolation resolution were set to 15 m and one meter, respectively.

In Figure 4, block sizes are represented by the number of pixels (i.e., interpolation points), while
GPU processing speed is measured in pixels per second. Based on the distribution of scatter points in
Figure 4, we infer that GPU processing speed over block size obeys a logarithmic curve. When the
block size is very small, the GPU is underutilized due to lack of enough GPU threads. The
interpolation speed increases rapidly with block size, finally evolving towards stability as the block
size exceeds the number of CUDA cores inside the GPU. This trend illustrates that the
massive-threaded parallelism within the GPU was gradually exploited. For validation, R square was
used to measure the confidence of fit curves. Figure 4 shows that the R square values for different
LiDAR point clouds were very high, ranging from 0.9256 to 0.9709. A higher value for R square
indicates a better fit. Therefore, the curve fit results validate the assumption that GPU processing
speed over block size indeed obeys a logarithmic curve.

(a) (b)

(c) (d)

Figure 4. GPU processing speed (pixels per second) for different block sizes. (a) sample data 1;
(b) sample data 2; (c) sample data 3; (d) sample data 4.

Hence, the optimal block size 0u (in pixels) can be predicted with a logarithmic equation

ln()v a u b= + (5)

where u and v denote the number of pixels in a block and GPU processing speed, respectively. In
order to reach convergence quickly, least squares estimation is used in online training to fit the
logarithmic curve with as few samples as possible (e.g., four block sizes). As long as the parameters
a, b are calculated, the slope of the fitted logarithmic curve is used to measure whether the GPU
processing speed reaches stability. When the slope decreases to a reasonable threshold, which is
empirically set as 0.01, the GPU processing speed will be treated as stable. Thus, the optimal block

Figure 4. GPU processing speed (pixels per second) for different block sizes. (a) sample data 1;
(b) sample data 2; (c) sample data 3; (d) sample data 4.

4.3. Streaming Decomposition

After calculating the optimal decomposition granularity d, the input point clouds are split into
discrete blocks so that all of the blocks can be dispatched to different PUs for parallel interpolation.
Based on d and the overlap width w, a regular square block decomposition strategy is adopted.
The overlap width w is used to guarantee the same nearest neighbor search results on the edge of each
block and preserve the smoothness and continuity of the derived raster surface. Therefore, the overlap
width w should be no smaller than the neighbor search radius. Since the data volume of LiDAR point
clouds can be tens or even hundreds of times of the memory capacity, a streaming decomposition
method is implemented to continuously generate discrete blocks.

Shown in Figure 5, the streaming decomposition method reads LiDAR points twice.
The decomposition grid frame is established from the obtained block width d and the boundary
rectangle of input data. A first read pass is applied over all of the input points to count the number of
points within each block. These counts are later used to identify whether blocks are full in the second
read pass and therefore ready to pipe into FIFO task queues. Due to the streaming decomposition, at
any given time only a small fraction of the raw point clouds resides in the main memory, while the
remainder still resides on the hard drive.

ISPRS Int. J. Geo-Inf. 2017, 6, 363 8 of 17

size 0u is obtained and the optimal decomposition granularity d (in meters) can be calculated
according to

0*d r u= (6)

where r denotes the raster resolution for spatial interpolation. The online training method is fast and
timesaving because the logarithmic curve fitting is rapid and the calculation of d is simple.

4.3. Streaming Decomposition

After calculating the optimal decomposition granularity d, the input point clouds are split into
discrete blocks so that all of the blocks can be dispatched to different PUs for parallel interpolation.
Based on d and the overlap width w, a regular square block decomposition strategy is adopted. The
overlap width w is used to guarantee the same nearest neighbor search results on the edge of each
block and preserve the smoothness and continuity of the derived raster surface. Therefore, the
overlap width w should be no smaller than the neighbor search radius. Since the data volume of
LiDAR point clouds can be tens or even hundreds of times of the memory capacity, a streaming
decomposition method is implemented to continuously generate discrete blocks.

Shown in Figure 5, the streaming decomposition method reads LiDAR points twice. The
decomposition grid frame is established from the obtained block width d and the boundary
rectangle of input data. A first read pass is applied over all of the input points to count the number of
points within each block. These counts are later used to identify whether blocks are full in the second
read pass and therefore ready to pipe into FIFO task queues. Due to the streaming decomposition, at
any given time only a small fraction of the raw point clouds resides in the main memory, while the
remainder still resides on the hard drive.

Figure 5. Streaming decomposition of input point clouds.

4.4. HDSG Scheduling Strategy

Due to the irregular shape of input point clouds (illustrated in Figure 6), square block
decomposition generates many edge blocks that are much smaller and contain fewer points than the
other blocks. These blocks, if allocated to GPU, will cause resource underutilization. At the same
time, fixed block size partitioning is prone to load imbalance due to the huge performance gap
between the CPU and GPU. For example, when interpolation ends, the GPU is very likely to be idle
and waits for slow CPU cores to finish the remaining tasks.

For fixed block size partitioning, the two best available dynamic scheduling strategies are the
greedy policy and work stealing. In the greedy policy, idle workers (i.e., computation resources)
actively request tasks from a central queue to process. Work stealing creates per-worker queues
instead of a central queue. If a worker becomes idle, it steals a task from the worker with the heaviest
load. These two scheduling strategies are easy to implement, but they cannot address the differences
in CPU/GPU computing capabilities. Thus, HDSG, a heterogeneous dynamic scheduler based on the
greedy policy, is proposed with two extensions—task priority declaration and block resizing.

Figure 5. Streaming decomposition of input point clouds.

ISPRS Int. J. Geo-Inf. 2017, 6, 363 9 of 17

4.4. HDSG Scheduling Strategy

Due to the irregular shape of input point clouds (illustrated in Figure 6), square block
decomposition generates many edge blocks that are much smaller and contain fewer points than
the other blocks. These blocks, if allocated to GPU, will cause resource underutilization. At the same
time, fixed block size partitioning is prone to load imbalance due to the huge performance gap between
the CPU and GPU. For example, when interpolation ends, the GPU is very likely to be idle and waits
for slow CPU cores to finish the remaining tasks.

For fixed block size partitioning, the two best available dynamic scheduling strategies are the
greedy policy and work stealing. In the greedy policy, idle workers (i.e., computation resources)
actively request tasks from a central queue to process. Work stealing creates per-worker queues instead
of a central queue. If a worker becomes idle, it steals a task from the worker with the heaviest load.
These two scheduling strategies are easy to implement, but they cannot address the differences in
CPU/GPU computing capabilities. Thus, HDSG, a heterogeneous dynamic scheduler based on the
greedy policy, is proposed with two extensions—task priority declaration and block resizing.ISPRS Int. J. Geo-Inf. 2017, 6, 363 9 of 17

Figure 6. Edge blocks with slight computation burden.

As shown in Figure 7, the generated blocks are divided into two groups based on the
computational weight, which represents the computation burden of each block. The computational
weight of each block is expressed as

i i
i

avg std

D S
W

D S
= × (7)

where ,i iD S are the average point density and the block size (in pixels) of the ith block, respectively;

stdS denotes the optimal block size 0u ; avgD represents the global average point density; and,

stdW is a threshold set empirically as 0.1. Blocks with larger computational weight (i stdW W>) are
pushed into a task queue called cg_queue, and the rest of the blocks that may lead to GPU
underutilization will be delivered into c_queue and processed only by the CPU. Each task queue will
be given at least one priority level, represented by a string (e.g., “C1”). Taking the cg_queue as an
example, it has two priority levels—“G1” and “C3”, meaning that both the GPU and CPU have
access to the cg_queue; and processing blocks in the cg_queue is the highest priority for the GPU but
only the third highest priority for the CPU.

Figure 7. Illustration of the Heterogeneous Dynamic Scheduler based on the Greedy policy (HDSG)
scheduling strategy.

Since the CPU is less sensitive to block sizes, block resizing is adopted for the CPU to ensure
better load balancing. Blocks in the cg_queue can be popped and further divided into a collection of
sub-blocks. These sub-blocks are stored in another task queue called sub_queue, which is shared by

Figure 6. Edge blocks with slight computation burden.

As shown in Figure 7, the generated blocks are divided into two groups based on the
computational weight, which represents the computation burden of each block. The computational
weight of each block is expressed as

Wi =
Di

Davg
× Si

Sstd
(7)

where Di, Si are the average point density and the block size (in pixels) of the ith block, respectively;
Sstd denotes the optimal block size u0; Davg represents the global average point density; and, Wstd is
a threshold set empirically as 0.1. Blocks with larger computational weight (Wi > Wstd) are pushed
into a task queue called cg_queue, and the rest of the blocks that may lead to GPU underutilization
will be delivered into c_queue and processed only by the CPU. Each task queue will be given at least
one priority level, represented by a string (e.g., “C1”). Taking the cg_queue as an example, it has
two priority levels—“G1” and “C3”, meaning that both the GPU and CPU have access to the cg_queue;
and processing blocks in the cg_queue is the highest priority for the GPU but only the third highest
priority for the CPU.

ISPRS Int. J. Geo-Inf. 2017, 6, 363 10 of 17

ISPRS Int. J. Geo-Inf. 2017, 6, 363 9 of 17

Figure 6. Edge blocks with slight computation burden.

As shown in Figure 7, the generated blocks are divided into two groups based on the
computational weight, which represents the computation burden of each block. The computational
weight of each block is expressed as

i i
i

avg std

D S
W

D S
= × (7)

where ,i iD S are the average point density and the block size (in pixels) of the ith block, respectively;

stdS denotes the optimal block size 0u ; avgD represents the global average point density; and,

stdW is a threshold set empirically as 0.1. Blocks with larger computational weight (i stdW W>) are
pushed into a task queue called cg_queue, and the rest of the blocks that may lead to GPU
underutilization will be delivered into c_queue and processed only by the CPU. Each task queue will
be given at least one priority level, represented by a string (e.g., “C1”). Taking the cg_queue as an
example, it has two priority levels—“G1” and “C3”, meaning that both the GPU and CPU have
access to the cg_queue; and processing blocks in the cg_queue is the highest priority for the GPU but
only the third highest priority for the CPU.

Figure 7. Illustration of the Heterogeneous Dynamic Scheduler based on the Greedy policy (HDSG)
scheduling strategy.

Since the CPU is less sensitive to block sizes, block resizing is adopted for the CPU to ensure
better load balancing. Blocks in the cg_queue can be popped and further divided into a collection of
sub-blocks. These sub-blocks are stored in another task queue called sub_queue, which is shared by

Figure 7. Illustration of the Heterogeneous Dynamic Scheduler based on the Greedy policy (HDSG)
scheduling strategy.

Since the CPU is less sensitive to block sizes, block resizing is adopted for the CPU to ensure
better load balancing. Blocks in the cg_queue can be popped and further divided into a collection of
sub-blocks. These sub-blocks are stored in another task queue called sub_queue, which is shared by the
CPU and GPU. Block resizing can be implemented at any time during the interpolation, and as long
as the sub_queue is not empty, the CPU will request blocks from the sub_queue instead of the cg_queue.
GPU may turn to the sub_queue for blocks near the end of interpolation if the cg_queue becomes empty.
Block resizing is realized based on the average interpolation speed of GPU (VGPU) and CPU (VCPU),
which is tracked and updated throughout the execution. A block in the cg_queue is divided into a
collection of stripes horizontally/vertically on the condition that the number of stripes is equal to
VGPU/VCPU. Notably, the size of sub_queue is set to a small value (e.g., N) so as not to generate too
many sub-blocks, which would reduce GPU utilization near the end of completion.

5. Experiments and Discussion

5.1. Design and Configuration

Two performance evaluation experiments were conducted. The first validated the effectiveness
of online training. The second experiment evaluated the overall performance of the hybrid parallel
framework and the scheduling efficiency of our HDSG policy. The proposed method was compared
with the greedy policy and work stealing.

These experiments were carried out on two high-performance computers. The first computer
(named hpc_01) was equipped with two 6-core Intel Xeon E5-2620 CPUs (i.e., 12 cores total) and an NVIDIA
Tesla C2050 GPU, while the second one (named hpc_02) was equipped with an Intel Core i7-6850K CPU
and an NVIDIA GTX 1060 GPU. Detailed information for each PU is listed in Tables 1 and 2.

Table 1. Detailed information of experimental Processing Units (Pus) on hpc_01.

PU Name Intel Xeon E5-2620 NVIDIA Tesla C2050

Frequency 2.0 GHz 1.15 GHz
Number of cores 6 cores 448 CUDA cores

Memory bandwidth 42.6 GB/s 144 GB/s
Double-precision gigaflops 96.0 GFLOPS 515.2 GFLOPS

ISPRS Int. J. Geo-Inf. 2017, 6, 363 11 of 17

Table 2. Detailed information of experimental PUs on hpc_02.

PU Name Intel Core i7-6850K NVIDIA GTX 1060

Frequency 3.6 GHz 1.71 GHz
Number of cores 6 cores 1152 CUDA cores

Memory bandwidth 76.8 GB/s 192.2 GB/s
Double-precision gigaflops 345.6 GFLOPS 1967.6 GFLOPS

Two experimental LiDAR point clouds (listed in Table 3) were downloaded from the
OpenTopography website (www.opentopography.org). Figure 8 shows the general shapes and
decomposed blocks from the point cloud data. The irregular outline of pcd_02 resulted in more
blocks with slight computation burden when compared with pcd_01. Such a difference is helpful
when verifying the effectiveness of our HDSG policy. Fifteen neighboring points were searched for
local interpolation, and the interpolation resolution was set to one meter. The search radius was set
to 15 m, which is reasonably large so that enough neighboring points could be searched for each
interpolation point.

Table 3. Basic information about experimental LiDAR point clouds.

Data Name Point Density Area Source File Size

pcd_01 2.62 pts/m2 365 km2 Airborne Lidar 24.9 GB
pcd_02 3.61 pts/m2 371 km2 Airborne Lidar 34.9 GBISPRS Int. J. Geo-Inf. 2017, 6, 363 11 of 17

(a) (b)

Figure 8. Grid decomposition of different LiDAR point clouds. (a) pcd_01 and pcd_02 on hpc_01;
(b) pcd_01 and pcd_02 on hpc_02.

5.2. Online Training Efficiency Experiment

Online training was performed repeatedly on different point clouds to evaluate the time
efficiency. The training datasets were clipped from the original data and only covered a small
region. The time spent in training, reading, and decomposition was recorded as in Table 4. The time
spent in reading data and decomposition was recorded from the start of reading to the moment
when the first block was sent to the task queue. As shown in Table 4, the ratio between online
training and reading and decomposition was less than 3%. Therefore, the online training quickly
finds the optimal decomposition granularity, and the training time can be neglected.

Table 4. Training time and the optimal decomposition granularities of different datasets.

Platform Data Name Training The Optimal Granularity Data Reading & Decomposition

hpc_01
pcd_01 3.7 s 3040 m 131.8 s
pcd_02 4.2 s 3030 m 166.5 s

hpc_02
pcd_01 3.7 s 5910 m 155.2 s
pcd_02 4.2 s 5860 m 184.7 s

To validate that the GPU runs at maximum speed with the optimal decomposition granularity
d, an interpolation with different block sizes was carried out with only GPU acceleration. The
experimental data was randomly clipped from the original data. As shown in Figure 9, the
interpolation time reduced sharply with an increase in block size, and became stable when the block
size was near or over d, that is, the interpolation time under the block size d was almost the shortest
and showed little improvement over larger block sizes. Therefore, the online training method with a
logarithmic curve fit is valid and cost-effective when finding the optimal decomposition granularity
that maximizes GPU utilization.

(a) (b)

Figure 8. Grid decomposition of different LiDAR point clouds. (a) pcd_01 and pcd_02 on hpc_01;
(b) pcd_01 and pcd_02 on hpc_02.

5.2. Online Training Efficiency Experiment

Online training was performed repeatedly on different point clouds to evaluate the time efficiency.
The training datasets were clipped from the original data and only covered a small region. The time
spent in training, reading, and decomposition was recorded as in Table 4. The time spent in reading
data and decomposition was recorded from the start of reading to the moment when the first block
was sent to the task queue. As shown in Table 4, the ratio between online training and reading and
decomposition was less than 3%. Therefore, the online training quickly finds the optimal decomposition
granularity, and the training time can be neglected.

www.opentopography.org

ISPRS Int. J. Geo-Inf. 2017, 6, 363 12 of 17

Table 4. Training time and the optimal decomposition granularities of different datasets.

Platform Data Name Training The Optimal Granularity Data Reading & Decomposition

hpc_01 pcd_01 3.7 s 3040 m 131.8 s
pcd_02 4.2 s 3030 m 166.5 s

hpc_02 pcd_01 3.7 s 5910 m 155.2 s
pcd_02 4.2 s 5860 m 184.7 s

To validate that the GPU runs at maximum speed with the optimal decomposition granularity
d, an interpolation with different block sizes was carried out with only GPU acceleration.
The experimental data was randomly clipped from the original data. As shown in Figure 9,
the interpolation time reduced sharply with an increase in block size, and became stable when
the block size was near or over d, that is, the interpolation time under the block size d was almost
the shortest and showed little improvement over larger block sizes. Therefore, the online training
method with a logarithmic curve fit is valid and cost-effective when finding the optimal decomposition
granularity that maximizes GPU utilization.

ISPRS Int. J. Geo-Inf. 2017, 6, 363 11 of 17

(a) (b)

Figure 8. Grid decomposition of different LiDAR point clouds. (a) pcd_01 and pcd_02 on hpc_01;
(b) pcd_01 and pcd_02 on hpc_02.

5.2. Online Training Efficiency Experiment

Online training was performed repeatedly on different point clouds to evaluate the time
efficiency. The training datasets were clipped from the original data and only covered a small
region. The time spent in training, reading, and decomposition was recorded as in Table 4. The time
spent in reading data and decomposition was recorded from the start of reading to the moment
when the first block was sent to the task queue. As shown in Table 4, the ratio between online
training and reading and decomposition was less than 3%. Therefore, the online training quickly
finds the optimal decomposition granularity, and the training time can be neglected.

Table 4. Training time and the optimal decomposition granularities of different datasets.

Platform Data Name Training The Optimal Granularity Data Reading & Decomposition

hpc_01
pcd_01 3.7 s 3040 m 131.8 s
pcd_02 4.2 s 3030 m 166.5 s

hpc_02
pcd_01 3.7 s 5910 m 155.2 s
pcd_02 4.2 s 5860 m 184.7 s

To validate that the GPU runs at maximum speed with the optimal decomposition granularity
d, an interpolation with different block sizes was carried out with only GPU acceleration. The
experimental data was randomly clipped from the original data. As shown in Figure 9, the
interpolation time reduced sharply with an increase in block size, and became stable when the block
size was near or over d, that is, the interpolation time under the block size d was almost the shortest
and showed little improvement over larger block sizes. Therefore, the online training method with a
logarithmic curve fit is valid and cost-effective when finding the optimal decomposition granularity
that maximizes GPU utilization.

(a) (b)

ISPRS Int. J. Geo-Inf. 2017, 6, 363 12 of 17

(c) (d)

Figure 9. GPU interpolation time under different decomposition granularities. (a) pcd_01 on hpc_01;
(b) pcd_02 on hpc_01; (c) pcd_01 on hpc_02; (d) pcd_02 on hpc_02.

5.3. Parallel TPS Interpolation Experiment

The second experiment evaluated the speedup of the hybrid parallel TPS interpolation algorithm
in comparison with the sequential mode and other parallel modes that only utilize either the CPU or
GPU. Furthermore, different task scheduling strategies were also used to measure the efficiency of the
proposed HDSG policy. Tables 5 and 6 show the interpolation time and corresponding speedups of
different execution modes on hpc_01 and hpc_02. For the GPU-only mode and the hybrid (CPU-GPU)
mode, the interpolation time refers to the total time spent in TPS interpolation and data delivery
between the CPU and GPU. The derived raster DEMs are shown in Figure 10.

Table 5. Interpolation time (s) and speedups of different execution modes on hpc_01.

Execution Mode
pcd_01 pcd_02

Time (s) Speedup Time (s) Speedup
CPU (serial) 11038.9 — 8453.8 —

CPU (parallel) 1268.7 8.7 975.7 8.6
GPU 876.1 12.6 661.4 12.7

CPU-GPU (HDSG) 546.1 20.2 459.9 18.3

Table 6. Interpolation time (s) and speedups of different execution modes on hpc_02.

Execution Mode
pcd_01 pcd_02

Time (s) Speedup Time (s) Speedup
CPU (serial) 3348.5 — 2673.4 —

CPU (parallel) 496.3 6.7 473.8 5.6
GPU 263.2 12.7 261.4 10.2

CPU-GPU (HDSG) 189.5 17.7 176.1 15.2

(a) (b)

Figure 9. GPU interpolation time under different decomposition granularities. (a) pcd_01 on hpc_01;
(b) pcd_02 on hpc_01; (c) pcd_01 on hpc_02; (d) pcd_02 on hpc_02.

5.3. Parallel TPS Interpolation Experiment

The second experiment evaluated the speedup of the hybrid parallel TPS interpolation algorithm
in comparison with the sequential mode and other parallel modes that only utilize either the CPU or
GPU. Furthermore, different task scheduling strategies were also used to measure the efficiency of the
proposed HDSG policy. Tables 5 and 6 show the interpolation time and corresponding speedups of
different execution modes on hpc_01 and hpc_02. For the GPU-only mode and the hybrid (CPU-GPU)

ISPRS Int. J. Geo-Inf. 2017, 6, 363 13 of 17

mode, the interpolation time refers to the total time spent in TPS interpolation and data delivery
between the CPU and GPU. The derived raster DEMs are shown in Figure 10.

Table 5. Interpolation time (s) and speedups of different execution modes on hpc_01.

Execution Mode
pcd_01 pcd_02

Time (s) Speedup Time (s) Speedup

CPU (serial) 11038.9 — 8453.8 —
CPU (parallel) 1268.7 8.7 975.7 8.6

GPU 876.1 12.6 661.4 12.7
CPU-GPU (HDSG) 546.1 20.2 459.9 18.3

Table 6. Interpolation time (s) and speedups of different execution modes on hpc_02.

Execution Mode
pcd_01 pcd_02

Time (s) Speedup Time (s) Speedup

CPU (serial) 3348.5 — 2673.4 —
CPU (parallel) 496.3 6.7 473.8 5.6

GPU 263.2 12.7 261.4 10.2
CPU-GPU (HDSG) 189.5 17.7 176.1 15.2

ISPRS Int. J. Geo-Inf. 2017, 6, 363 12 of 17

(c) (d)

Figure 9. GPU interpolation time under different decomposition granularities. (a) pcd_01 on hpc_01;
(b) pcd_02 on hpc_01; (c) pcd_01 on hpc_02; (d) pcd_02 on hpc_02.

5.3. Parallel TPS Interpolation Experiment

The second experiment evaluated the speedup of the hybrid parallel TPS interpolation algorithm
in comparison with the sequential mode and other parallel modes that only utilize either the CPU or
GPU. Furthermore, different task scheduling strategies were also used to measure the efficiency of the
proposed HDSG policy. Tables 5 and 6 show the interpolation time and corresponding speedups of
different execution modes on hpc_01 and hpc_02. For the GPU-only mode and the hybrid (CPU-GPU)
mode, the interpolation time refers to the total time spent in TPS interpolation and data delivery
between the CPU and GPU. The derived raster DEMs are shown in Figure 10.

Table 5. Interpolation time (s) and speedups of different execution modes on hpc_01.

Execution Mode
pcd_01 pcd_02

Time (s) Speedup Time (s) Speedup
CPU (serial) 11038.9 — 8453.8 —

CPU (parallel) 1268.7 8.7 975.7 8.6
GPU 876.1 12.6 661.4 12.7

CPU-GPU (HDSG) 546.1 20.2 459.9 18.3

Table 6. Interpolation time (s) and speedups of different execution modes on hpc_02.

Execution Mode
pcd_01 pcd_02

Time (s) Speedup Time (s) Speedup
CPU (serial) 3348.5 — 2673.4 —

CPU (parallel) 496.3 6.7 473.8 5.6
GPU 263.2 12.7 261.4 10.2

CPU-GPU (HDSG) 189.5 17.7 176.1 15.2

(a) (b)

Figure 10. Raster Digital Elevation Model (DEM) interpolated by the hybrid parallel TPS algorithm.
(a) pcd_01; (b) pcd_02.

Our hybrid parallel algorithm delivered a significant reduction in interpolation time, not only from
the serial CPU mode but also from the CPU-only and GPU-only parallel modes. The hybrid parallel
mode also showed a considerable jump in performance speedup on both experimental platforms.
For example, the speedup S exceeded 20 in pcd_01 on hpc_01, while the corresponding speedups
of the CPU-only mode and GPU-only mode were 8.7 and 12.6, respectively. On hpc_02, although
the theoretical performance gap between the multicore CPU and GPU is much larger than that on
hpc_01, the hybrid parallel algorithm still achieved better performance gain as compared to the
GPU-only mode.

We use a max speedup Smax to evaluate if the hybrid parallel mode fully exploits all of the
available parallel resources in a heterogeneous CPU-GPU system. Assuming that computation within
each block is equal, the parallel interpolation time Tcg in a heterogeneous CPU-GPU system can be
represented by

Tcg = max(
mc

m
Tc,

m−mc

m
Tg), (8)

ISPRS Int. J. Geo-Inf. 2017, 6, 363 14 of 17

where Tc, Tg represents the parallel interpolation time using either the CPU or GPU; m denotes the
total number of generated blocks, and mc represents the number of blocks interpolated by the CPU.
The minimum of Tcg in Equation (7) is determined only if the interpolation time of CPU is equal to
that of GPU. Thus, mc and Tcg−min can be calculated by

Tcg−min = mc
m ∗ Tc =

m−mc
m ∗ Tg ⇒ mc =

m∗Tg
Tc+Tg

⇒ Tcg−min =
Tc∗Tg
Tc+Tg

(9)

According to Amdahl’s Law, the max speedup Smax achieved in a heterogeneous CPU-GPU
system is defined as

Smax =
Ts

Tcg−min
=

Ts
Tc∗Tg
Tc+Tg

=
Ts

Tc
+

Ts

Tg
, (10)

where Ts is the serial interpolation time using only the CPU. With Equation (9), the max speedup Smax

for pcd_01 and pcd_02 can be calculated. As shown in Figure 11, the difference between the actual
speedup S and Smax was small, e.g., 1.1 for pcd_01 on hpc_01. For pcd_02 on hpc_01, the speedup
difference was a little bigger (i.e., 3.0). This bigger difference could be attributed to the irregular
shape of point clouds, which led to load imbalances near the end of the interpolation. Therefore,
the comparison of the actual speedup S with Smax demonstrates that the hybrid parallel mode can
efficiently exploits all of the available computing resources in a heterogeneous CPU-GPU system.ISPRS Int. J. Geo-Inf. 2017, 6, 363 14 of 17

(a) (b)

Figure 11. Speedups of different parallel execution modes for different point clouds. (a) hpc_01;
(b) hpc_02.

For further evaluating the efficiency of HDSG policy, two common dynamic scheduling
strategies were also implemented for comparative purposes, i.e., the greedy policy and work
stealing. The interpolation time and speedups of the hybrid parallel algorithm with different
scheduling strategies are displayed in Tables 7 and 8 and Figure 12. When compared to the greedy
policy and work stealing, the HDSG policy showed considerable load balancing improvement. On
hpc_01, about 12% and more than 20% of the total interpolation time were reduced for pcd_01 and
pcd_02. The improvement for pcd_02 was much bigger since blocks with slight computation burden
accounted for a larger proportion. By declaring priorities, the HDSG policy demonstrates a
capability for improving GPU utilization when there are a large percentage of blocks with a slight
computation burden. On hpc_02, attributing to the huge performance gap between the CPU and
GPU, the hybrid interpolation algorithm using greedy policy or work stealing was even slower than
the GPU-only mode. Given that very few blocks were pushed into the c_queue, declaring priority
made little contribution to load balancing on hpc_02. By implementing block subdivision, load
imbalance between the CPU and GPU was greatly alleviated. Therefore, the HDSG policy designed
for heterogeneous CPU-GPU systems can effectively alleviate load imbalances.

Table 7. Interpolation time (s) and speedups of the hybrid parallel algorithm with different
scheduling strategies on hpc_01.

Scheduling Strategy
pcd_01 pcd_02

Time (s) Speedup Time (s) Speedup
greedy policy 621.8 17.7 580.4 14.5
work stealing 622.0 17.7 575.0 14.7

HDSG (no priority) 557.9 19.7 497.1 17.0
HDSG 546.1 20.2 459.9 18.3

Table 8. Interpolation time (s) and speedups of the hybrid parallel algorithm with different
scheduling strategies on hpc_02.

Scheduling Strategy
pcd_01 pcd_02

Time (s) Speedup Time (s) Speedup
greedy policy 289.8 11.6 265.0 10.1
work stealing 281.0 11.9 281.2 9.5

HDSG (no priority) 189.0 17.7 179.0 14.9
HDSG 189.5 17.7 176.1 15.2

Figure 11. Speedups of different parallel execution modes for different point clouds. (a) hpc_01;
(b) hpc_02.

For further evaluating the efficiency of HDSG policy, two common dynamic scheduling
strategies were also implemented for comparative purposes, i.e., the greedy policy and work stealing.
The interpolation time and speedups of the hybrid parallel algorithm with different scheduling
strategies are displayed in Tables 7 and 8 and Figure 12. When compared to the greedy policy and
work stealing, the HDSG policy showed considerable load balancing improvement. On hpc_01,
about 12% and more than 20% of the total interpolation time were reduced for pcd_01 and pcd_02.
The improvement for pcd_02 was much bigger since blocks with slight computation burden accounted
for a larger proportion. By declaring priorities, the HDSG policy demonstrates a capability for
improving GPU utilization when there are a large percentage of blocks with a slight computation
burden. On hpc_02, attributing to the huge performance gap between the CPU and GPU, the hybrid
interpolation algorithm using greedy policy or work stealing was even slower than the GPU-only mode.
Given that very few blocks were pushed into the c_queue, declaring priority made little contribution
to load balancing on hpc_02. By implementing block subdivision, load imbalance between the CPU
and GPU was greatly alleviated. Therefore, the HDSG policy designed for heterogeneous CPU-GPU
systems can effectively alleviate load imbalances.

ISPRS Int. J. Geo-Inf. 2017, 6, 363 15 of 17

Table 7. Interpolation time (s) and speedups of the hybrid parallel algorithm with different scheduling
strategies on hpc_01.

Scheduling Strategy
pcd_01 pcd_02

Time (s) Speedup Time (s) Speedup

greedy policy 621.8 17.7 580.4 14.5
work stealing 622.0 17.7 575.0 14.7

HDSG (no priority) 557.9 19.7 497.1 17.0
HDSG 546.1 20.2 459.9 18.3

Table 8. Interpolation time (s) and speedups of the hybrid parallel algorithm with different scheduling
strategies on hpc_02.

Scheduling Strategy
pcd_01 pcd_02

Time (s) Speedup Time (s) Speedup

greedy policy 289.8 11.6 265.0 10.1
work stealing 281.0 11.9 281.2 9.5

HDSG (no priority) 189.0 17.7 179.0 14.9
HDSG 189.5 17.7 176.1 15.2

ISPRS Int. J. Geo-Inf. 2017, 6, 363 15 of 17

(a) (b)

Figure 12. Speedups of the hybrid parallel algorithm with different scheduling strategies. (a) hpc_01;
(b) hpc_02.

6. Conclusions and Future Work

Nowadays, CPU-GPU computing platforms are available everywhere, from commercial
personal computers to dedicated powerful workstations. The emergent challenge for researchers is
how to design and implement efficient parallel algorithms to harvest all of the available
heterogeneous parallel resources. In this paper, a TPS interpolation for massive point clouds was
explored to address this challenge in the integration of multicore CPUs and many-core GPUs.

A simple yet powerful SI framework was designed to leverage the power of both the CPU and
GPU. Using a logarithmic function model, optimum decomposition granularity can be rapidly
calculated to maximize the GPU utilization. Our HDSG scheduling strategy keeps the heterogeneous
system fully loaded and alleviates workload imbalance by priority declaration and block resizing.
Experiments on high-end workstations demonstrate the efficient exploitation of heterogeneous
parallel resources.

In the future, this hybrid parallel SI framework will integrate more local spatial interpolation
algorithms, such as IDW and Kriging, to make it more feasible for practical use. When faced with
even larger volumes of point clouds, this framework can be extended to accommodate
heterogeneous CPU-GPU clusters for further improvement in overall performance.

Acknowledgments: This work is supported by National Key R&D Program of China (2017YFB0503801) and the
Natural Science Foundation of China (Grant No. 41301411).

Author Contributions: Hongyan Wang and Xuefeng Guan conceived and designed the algorithm and
experiments; Hongyan Wang performed the experiments; all authors analyzed the data and experimental
results; Huayi Wu contributed the high-performance computing infrastructure and gave other financial aid;
and Hongyan Wang and Xuefeng Guan wrote the paper. In addition, we sincerely thank Steve McClure for the
language polishing and revising.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

PU processing unit
SI spatial interpolation
TPS thin plate spline
DEM Digital Elevation Model
HDSG heterogeneous dynamic scheduler based on the greedy policy

References

1. Lam, N.S.-N. Spatial interpolation methods: A review. Cartogr. Geogr. Inf. Sci. 1983, 10, 129–150.

Figure 12. Speedups of the hybrid parallel algorithm with different scheduling strategies. (a) hpc_01;
(b) hpc_02.

6. Conclusions and Future Work

Nowadays, CPU-GPU computing platforms are available everywhere, from commercial personal
computers to dedicated powerful workstations. The emergent challenge for researchers is how to
design and implement efficient parallel algorithms to harvest all of the available heterogeneous parallel
resources. In this paper, a TPS interpolation for massive point clouds was explored to address this
challenge in the integration of multicore CPUs and many-core GPUs.

A simple yet powerful SI framework was designed to leverage the power of both the CPU
and GPU. Using a logarithmic function model, optimum decomposition granularity can be rapidly
calculated to maximize the GPU utilization. Our HDSG scheduling strategy keeps the heterogeneous
system fully loaded and alleviates workload imbalance by priority declaration and block resizing.
Experiments on high-end workstations demonstrate the efficient exploitation of heterogeneous
parallel resources.

In the future, this hybrid parallel SI framework will integrate more local spatial interpolation
algorithms, such as IDW and Kriging, to make it more feasible for practical use. When faced with
even larger volumes of point clouds, this framework can be extended to accommodate heterogeneous
CPU-GPU clusters for further improvement in overall performance.

ISPRS Int. J. Geo-Inf. 2017, 6, 363 16 of 17

Acknowledgments: This work is supported by National Key R&D Program of China (2017YFB0503801) and the
Natural Science Foundation of China (Grant No. 41301411).

Author Contributions: Hongyan Wang and Xuefeng Guan conceived and designed the algorithm and
experiments; Hongyan Wang performed the experiments; all authors analyzed the data and experimental
results; Huayi Wu contributed the high-performance computing infrastructure and gave other financial aid;
and Hongyan Wang and Xuefeng Guan wrote the paper. In addition, we sincerely thank Steve McClure for the
language polishing and revising.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

PU processing unit
SI spatial interpolation
TPS thin plate spline
DEM Digital Elevation Model
HDSG heterogeneous dynamic scheduler based on the greedy policy

References

1. Lam, N.S.-N. Spatial interpolation methods: A review. Cartogr. Geogr. Inf. Sci. 1983, 10, 129–150. [CrossRef]
2. Jaboyedoff, M.; Oppikofer, T.; Abella´n, A.; Derron, M.-H.; Loye, A.; Metzger, R.; Pedrazzini, A. Use of lidar

in landslide investigations: A review. Nat. Hazards 2012, 61, 5–28. [CrossRef]
3. Armstrong, M.P.; Marciano, R. Massively parallel processing of spatial statistics. Int. J. Geogr. Inf. Syst. 1995,

9, 169–189. [CrossRef]
4. Gajraj, A.; Joubert, W.; Jones, J. A Parallel Implementation of Kriging with a Trend; Technical Report; Los Alamos

National Laboratory: Los Alamos, NM, USA, 1 November 1997; Volume 22, pp. 239–261.
5. Kerry, K.E.; Hawick, K.A. Kriging interpolation on high-performance computers. In Proceedings of the

International Conference and Exhibition on High-Performance Computing and Networking, Amsterdam,
The Netherlands, 21–23 April 1998; Springer: Berlin/Heidelberg, Germany; pp. 429–438.

6. Hawick, K.A.; Coddington, P.D.; James, H.A. Distributed frameworks and parallel algorithms for processing
large-scale geographic data. Parallel Comput. 2003, 29, 1297–1333. [CrossRef]

7. Cheng, T.; Li, D.; Wang, Q. On parallelizing universal kriging interpolation based on openmp. In Proceedings
of the 2010 Ninth International Symposium on Distributed Computing and Applications to Business
Engineering and Science (DCABES), Hong Kong, China, 10–12 August 2010; pp. 36–39.

8. Guan, X.; Wu, H. Leveraging the power of multi-core platforms for large-scale geospatial data processing:
Exemplified by generating dem from massive lidar point clouds. Comput. Geosci. 2010, 36, 1276–1282.
[CrossRef]

9. Ravé, E.G.; Jiménez-Hornero, F.J.; Ariza-Villaverde, A.B.; Gómez-López, J.M. Using general-purpose
computing on graphics processing units (GPGPU) to accelerate the ordinary kriging algorithm.
Comput. Geosci. 2014, 64, 1–6. [CrossRef]

10. Cheng, T. Accelerating universal kriging interpolation algorithm using CUDA-enabled GPU. Comput. Geosci.
2013, 54, 178–183. [CrossRef]

11. Beutel, A.; Mølhave, T.; Agarwal, P.K. Natural neighbor interpolation based grid dem construction using
a gpu. In Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic
Information Systems, San Jose, CA, USA, 2–5 November 2010; pp. 172–181.

12. NVIDIA Corporation. Cuda C Programming Guide. Available online: http://docs.nvidia.com/cuda/cuda-
c-programming-guide/ (accessed on 15 September 2017).

13. Mittal, S. A survey of techniques for managing and leveraging caches in GPUS. J. Circuits Syst. Comput. 2014,
23, 229–236. [CrossRef]

14. Stone, J.E.; Gohara, D.; Shi, G. Opencl: A parallel programming standard for heterogeneous computing
systems. Comput. Sci. Eng. 2010, 12, 66–72. [CrossRef] [PubMed]

15. Mittal, S.; Vetter, J.S. A survey of cpu-gpu heterogeneous computing techniques. ACM Comput. Surv. 2015,
47, 1–35. [CrossRef]

http://dx.doi.org/10.1559/152304083783914958
http://dx.doi.org/10.1007/s11069-010-9634-2
http://dx.doi.org/10.1080/02693799508902032
http://dx.doi.org/10.1016/j.parco.2003.04.001
http://dx.doi.org/10.1016/j.cageo.2009.12.008
http://dx.doi.org/10.1016/j.cageo.2013.11.004
http://dx.doi.org/10.1016/j.cageo.2012.11.013
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://dx.doi.org/10.1142/S0218126614300025
http://dx.doi.org/10.1109/MCSE.2010.69
http://www.ncbi.nlm.nih.gov/pubmed/21037981
http://dx.doi.org/10.1145/2788396

ISPRS Int. J. Geo-Inf. 2017, 6, 363 17 of 17

16. Buck, I.; Foley, T.; Horn, D.; Sugerman, J.; Fatahalian, K.; Houston, M.; Hanrahan, P. Brook for gpus: Stream
computing on graphics hardware. ACM Trans. Gr. 2004, 23, 777–786. [CrossRef]

17. Gummaraju, J.; Morichetti, L.; Houston, M.; Sander, B.; Gaster, B.R.; Zheng, B. Twin peaks: A software
platform for heterogeneous computing on general-purpose and graphics processors. In Proceedings of
the 19th International Conference on Parallel Architectures and Compilation Techniques, Vienna, Austria,
11–15 September 2010; pp. 205–216.

18. Lee, V.W.; Kim, C.; Chhugani, J.; Deisher, M.; Kim, D.; Nguyen, A.D.; Satish, N.; Smelyanskiy, M.;
Chennupaty, S.; Hammarlund, P.; et al. Debunking the 100x GPU vs. CPU myth: An evaluation of
throughput computing on CPU and GPU. ACM Sigarch Comput. Archit. News 2010, 38, 451–460. [CrossRef]

19. Shen, J.; Varbanescu, A.L.; Sips, H.; Arntzen, M.; Simons, D.G. Glinda: A framework for accelerating
imbalanced applications on heterogeneous platforms. In Proceedings of the ACM International Conference
on Computing Frontiers, Ischia, Italy, 14–16 May 2013; pp. 1–10.

20. Jang, H.; Park, A.; Jung, K. Neural network implementation using cuda and openmp. In Proceedings of the
Digital Image Computing: Techniques and Applications (DICTA), Canberra, Australia, 1–3 December 2008;
pp. 155–161.

21. Huang, F.; Bu, S.; Tao, J.; Tan, X. Opencl implementation of a parallel universal kriging algorithm for massive
spatial data interpolation on heterogeneous systems. ISPRS Int. J. Geo. Inf. 2016, 5, 96. [CrossRef]

22. Shi, X.; Ye, F. Kriging interpolation over heterogeneous computer architectures and systems.
GISci. Remote Sens. 2013, 50, 196–211.

23. Yan, C.; Liu, J.; Zhao, G.; Chen, C.; Yue, T. A high accuracy surface modeling method based on GPU
accelerated multi-grid method. Trans. GIS 2016, 20, 991–1003. [CrossRef]

24. Belviranli, M.E.; Bhuyan, L.N.; Gupta, R. A dynamic self-scheduling scheme for heterogeneous
multiprocessor architectures. ACM Trans. Archit. Code Optim. 2013, 9, 1–20. [CrossRef]

25. Brodtkorb, A.R.; Dyken, C.; Hagen, T.R.; Hjelmervik, J.M.; Storaasli, O.O. State-of-the-art in heterogeneous
computing. Sci. Prog. 2010, 18, 1–33. [CrossRef]

26. Duchon, J. Splines Minimizing Rotation-Invariant Seminorms in Sobolev Spaces; Springer: Berlin/Heidelberg,
Germany, 1977.

27. Powell, M.J.D. A Review of Algorithms for Thin Plate Spline Interpolation in Two Dimensions; World Scientific
Publishing: London, UK, 1996; pp. 303–322.

28. Mitas, L.; Mitasova, H. Spatial interpolation. In Geographical Information Systems: Principles, Techniques,
Management and Applications; Wiley: New York, NY, USA, 1999; pp. 481–492.

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/1015706.1015800
http://dx.doi.org/10.1145/1816038.1816021
http://dx.doi.org/10.3390/ijgi5060096
http://dx.doi.org/10.1111/tgis.12224
http://dx.doi.org/10.1145/2400682.2400716
http://dx.doi.org/10.1155/2010/540159
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	CPU/GPU Architecture and Programming
	Heterogeneous Computing

	Thin Plate Spline Interpolation
	TPS Introduction
	Local TPS Interpolation

	Framework of the Hybrid Parallel Interpolation
	Introduction of the Interpolation Framework
	Fast Online Training
	Streaming Decomposition
	HDSG Scheduling Strategy

	Experiments and Discussion
	Design and Configuration
	Online Training Efficiency Experiment
	Parallel TPS Interpolation Experiment

	Conclusions and Future Work

