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Abstract: Driven by the urgent demand of remote sensing big data management and knowledge
discovery, large-scale remote sensing image retrieval (LSRSIR) has attracted more and more attention.
As is well known, hashing learning has played an important role in coping with big data mining
problems. In the literature, several hashing learning methods have been proposed to address LSRSIR.
Until now, existing LSRSIR methods take only one type of feature descriptor as the input of hashing
learning methods and ignore the complementary effects of multiple features, which may represent
remote sensing images from different aspects. Different from the existing LSRSIR methods, this paper
proposes a flexible multiple-feature hashing learning framework for LSRSIR, which takes multiple
complementary features as the input and learns the hybrid feature mapping function, which projects
multiple features of the remote sensing image to the low-dimensional binary (i.e., compact) feature
representation. Furthermore, the compact feature representations can be directly utilized in LSRSIR
with the aid of the hamming distance metric. In order to show the superiority of the proposed
multiple feature hashing learning method, we compare the proposed approach with the existing
methods on two publicly available large-scale remote sensing image datasets. Extensive experiments
demonstrate that the proposed approach can significantly outperform the state-of-the-art approaches.

Keywords: multiple feature hashing learning; large-scale remote sensing image retrieval; remote
sensing big data management

1. Introduction

Along with the rapid development of remote sensing observation technology, the volume of
available remote sensing (RS) images has dramatically increased. We have entered an era of remote
sensing big data [1–3]. It is well known that a large amount of actionable information hides in remote
sensing big data. Information identification from remote sensing images based on manual labor is
time-consuming and even impossible when the volume of remote sensing images is oversized. As one
of the most fundamental problems in remote sensing big data mining, large-scale remote sensing image
retrieval (LSRSIR) is a potential technique to automatically discover knowledge from remote sensing
big data. Benefiting from the efforts from multi-domains, such as the remote sensing community
and the computer vision community, large numbers of remote sensing image retrieval methods have
been proposed and have achieved a certain degree of success when the volume of the remote sensing
image dataset is relatively small. However, they often cannot be accustomed to the large-scale case.
There exists an intense contradiction between the volume of remote sensing images and the capacity
of existing remote sensing image processing methods. As a whole, LSRSIR is an urgent technique in
remote sensing big data mining and deserves much more exploration.
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As an effective method to manage a large number of images, content-based image retrieval
(CBIR) can retrieve the interesting images according to their visual content. Recently, several
kinds of CBIR methods have been utilized to cope with the RS image retrieval problem. As is
well known, the CBIR performance largely relies on the capability and effectiveness of the feature
representations. To characterize remote sensing images, many low-level features have been presented
and evaluated in the remote sensing image retrieval task. More specifically, the proposed low-level
features included spectral features [4–6], shape features [7–9], texture features [10–12], local invariant
features [13], and so forth. Although low-level features have been employed with a certain degree
of success, they have a very limited capability in representing the high-level concepts that are
presented by remote sensing images (i.e., the semantic content). In order to mine the high-level
concept of these low-level feature descriptors, Zhou et al. [14] exploited the auto-encoder model to
encode the low-level features. Furthermore, a few graph-based approaches were utilized to remote
sensing image retrieval [15–17], which represent and retrieve images by graph models. For instance,
Du et al. [15] exploited the intrinsic structural information of the original data to learn the representation
of images by incorporating graph regularization, while Chaudhuri et al. [17] presented an unsupervised
graph-theoretic approach for region-based RS image retrieval. However, these proposed approaches
still depend on hand-crafted features (e.g., the scale-invariant feature transform descriptor). In order
to potentially mine the complete characteristic of the original remote sensing image, we proposed
an unsupervised cross-diffusion graph model [18], which can collaboratively fuse multiple features,
including the hand-crafted features and the data-driven features via multi-layer feature learning [19].
Although some encouraging progress has been made, developing suitable retrieval methods for LSRSIR
remains an ongoing challenge, because existing methods depend highly on the high-dimensional
feature descriptor and cannot be scalable to the large-scale remote sensing image retrieval task.
Accordingly, the scalability problem and the storage of the image descriptors have become critical
bottlenecks in LSRSIR.

Hashing learning is a potential technique to cope with big data retrieval because of its excellent
ability in compact feature representation. Hashing learning methods generally construct a set of
hash functions to project a high-dimensional feature vector into low-dimensional binary features,
while preserving the original similarity structure when the image features are represented by binary
hash codes. The binary codes can significantly reduce the amount of memory that is required for
storing the content of images, and extremely improve the retrieval efficiency because the calculation
of the pairwise distance can be performed efficiently in the low-dimensional binary feature space
(i.e., hamming space). Thus, hashing learning is a potential and ideal approach to cope with
big data problems. The existing hashing methods can be broadly classified into two categories:
data-independent and data-dependent methods. Data-dependent algorithms require training data to
learn the hashing mapping function. On the contrary, the hashing mapping function is empirically
designed in the data-independent methods. Locality sensitive hashing (LSH) [20] is one of the
representative data-independent methods that adopts random projections as hash functions without
using any training data, while its practical efficiency is limited since it requires long hash codes
to achieve a high retrieval performance. Data-dependent methods can learn compact hash codes
effectively and organize massive amounts of data efficiently. It can be further divided into unsupervised
hashing and supervised hashing methods. More specifically, unsupervised hashing does not utilize
the label information of training examples [21–24]. On the contrary, supervised hashing methods try
to incorporate semantic (label) information for hashing function learning [25–30]. Although hashing
learning has been successfully applied in the natural image retrieval, few studies have been devoted to
hashing learning-based RS image retrieval. Generally speaking, remote sensing images often contain
abundant and complex visual contents [31]. As a consequence, the complex surface structures and very
large variations of image resolutions pose a significant challenge to hashing learning-based RS image
retrieval. Hence, it is of great interest to investigate the retrieval of RS images using hashing learning.
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In the literature, several data-dependent hashing learning methods have been proposed to retrieve
remote sensing images in the recent years. More specifically, Demir and Bruzzone [32] introduced the
kernel-based nonlinear hashing learning methods to the remote sensing community. Afterwards, Li and
Ren [33] proposed a novel unsupervised hashing method called partial randomness hashing (PRH),
which aims to enable an efficient hashing function construction and learns a transformation weight
matrix based on the training remote sensing images in an efficient way. However, most existing hashing
models only consider one type of feature descriptor for learning hash functions. With the consideration
that RS images are represented by complex image categories and various texture structures, the single
feature descriptor is insufficient to provide a complete characterization of the RS image content.
More recently, the study in [18] has shown the improvement of retrieval precision by multiple features
fusion. As depicted in [18], unsupervised multilayer feature learning is utilized for remote sensing
image retrieval. However, this approach used the graph-based cross-diffusion model to measure the
similarity between the query image and the test image, which is difficult to extend into the large-scale
RS image retrieval case due to the high computational complexity and storage complexity of graphs.
Therefore, it is necessary to develop appropriate hashing learning methods for LSRSIR.

In this paper, we propose a novel multiple-feature hashing framework for large-scale remote
sensing image retrieval (MFH-LSRSIR) to address the LSRSIR problem. Different from the hand-crafted
features, which are empirically designed but generally lack a high generalization ability, the proposed
approach exploits the data-driven feature by unsupervised multi-layer feature learning [18,19].
The experimental results have shown that the unsupervised features derived from unsupervised
feature learning can achieve a higher precision than the conventional features in computer vision [18].
As a first attempt, the proposed approach utilizes the data-driven feature with one layer for
calculation efficiency. As for remote sensing image, the unsupervised feature learning approach
can automatically extract intrinsic features from RS imagery and can mine the spectral signatures
with multiple bands. In addition, multiple features are represented according to different receptive
fields. Generally, different features can reflect the different characteristics of one given image and play
complementary roles. The features from different sizes of the receptive fields show complementary
discrimination abilities. Hence, these features represent the RS image content in various spatial scales.
Furthermore, the proposed method takes multiple features as the input and learns the hybrid feature
mapping function. The proposed MFH-LSRSIR framework involves two main modules: the feature
representation module and the hashing learning module. The feature representation module combines
different features with serial fusion to construct multiple representations of images. Based on the hybrid
feature vector, the hashing learning module explores the hashing function. The main contributions of
this paper are summarized as follows:

• Based on recent supervised hashing learning method, a flexible framework for LSRSIR, named
MFH-LSRSIR, is proposed by exploiting data-driven features from multi-spectral bands and
investigates hashing learning approach to project the high-dimensional feature to low-dimensional
binary feature.

• When considering the characteristics of RS images, the unsupervised feature learning approach
with different receptive fields are proposed to generate multiple features of each image, which are
further taken as the input of MVH-LSRSIR. The adopted features can make full use of the spectra
information and the spatial context. Experimental results show that the multiple features-based
method can outperform the single feature-based method.

• The complexity of the adopted hashing learning method is mainly concentrated on the
optimization of hash code matrix, which is irrelevant to the feature input. Hence, the advocated
hashing learning approach is impactful to implement multiple feature hashing learning.

The other parts of this paper are organized as follows. In Section 2, the proposed MFH-LSRSIR is
described in detail. Section 3 presents the experimental results and gives qualitative and quantitative
comparisons with existing approaches, and Section 4 provides a summary of this paper.
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2. Multiple Feature Hashing Learning for Large-Scale Remote Sensing Image Retrieval

The proposed multiple feature hashing method for large-scale remote sensing image retrieval
(MFH-LSRSIR) framework consists of three modules: (1) multiple feature representation; (2) multiple
feature hashing learning; and, (3) hamming distance ranking. The flowchart is shown in Figure 1.

As depicted in Figure 1, the proposed MFH-LSRSIR framework contains an offline training stage
and an online retrieval stage. In the multiple feature representation step, a series of feature sets are
obtained from the training data of image dataset by unsupervised feature learning. Then, the features
sets further combine to take multiple complementary features as the input and learn the hybrid feature
hashing function. In the hamming distance ranking stage, for a given query image, calculating the
distance of a query image corresponding to the hash code with other hash codes in the hamming space
is performed. Finally, ranking the similarity between the query image with each image in the dataset
based on the hamming distance is conducted to obtain the retrieval result.
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2.1. Multiple Feature Representation

Most of the works in the image retrieval literature focus on feature extraction because retrieval
performance greatly depends on the power of feature representations. However, most of existing
image feature techniques and methods are too limited to represent large-scale RS image features
due to the complexity of RS data. For instance, Li and Ren [33] adopted hand-crafted Gist feature
extraction to characterize remote sensing images, which led to the loss of spectra information.
On the contrary, Han and Chen [34] investigated a hybrid aggregation of multi-spectral analysis
approach for remote sensing image feature extraction, but it only takes one scale of spatial information
into account. Accordingly, the unsupervised feature learning approach has shown an encouraging
performance [18,19]. As is well known, remote sensing images contain rich structure information.
In our implementation, the unsupervised feature learning approach is adapted to fully depict the
visual content of remote sensing images by employing multispectral signatures with near-infrared
band and visible light bands (red, green, blue). Therefore, the advocated unsupervised feature learning
method can make full use of the spectra information and the spatial context, simultaneously.

Moreover, in order to describe different scales of spatial context information, we adopt multiple
receptive fields to generate the feature set of each image for MFH-LSRSIR. Experimental results show
that multiple scales of spatial information can further improve the image retrieval performance.

The RS image can be depicted by a set of features using the different sizes of receptive field.
To improve the image retrieval performance, it is desirable to incorporate these heterogeneous feature
descriptors into hash function learning, leading to the multiple hashing approach. In this paper,
our proposal is to fuse multiple view information with a serial strategy [35].

Suppose that we have n RS images for training data, the feature set contains K types of features
for each image. xi =

{
f 1
i , f 2

i , · · · , f k
i

}
is the feature set of the i-th image data, where f k

i ∈ Rd(k)

denotes the vector of the k-th type of feature and d(k) denotes the dimension of the k-th type of feature.

Our method constructs the hybrid feature xi =
(

f 1
i , · · · , f k

i

)T
by a serial fusion strategy. The total

feature dimension of xi is defined as D = [d(1) + d(2) + · · ·+ d(k)].
As depicted in [19], the more layers that the unsupervised feature learning has, the better

the performance of the generated features. However, more layers would remarkably increase the
computational complexity. In order to achieve the balance between performance and complexity,
this paper only adopts a single-layer network, but extracted the unsupervised features from
multi-spectral images, including the near-infrared spectrum and visible spectrum (R, G, B).
The significant accuracy gains of the experimental results have shown that the unsupervised feature
with the single-layer network has the sufficient ability to characterize remote sensing images.

In addition, the features with different receptive fields of the unsupervised feature extraction
network construct different spatial scales of the image. This process is the same as the visual perception
ability from simple to complex, which shows complementary discrimination abilities. Hence, this paper
attempts to extract many complementary features to depict the remote sensing images. As illustrated
in Figure 2, the single-layer unsupervised feature extraction network includes three basic operations:

(1) The convolutional operation: convolutional operation works for feature mapping, which is
constrained by the function bases. More specifically, the function bases are generated by
unsupervised K-means clustering. Through convolutional operation, we can map the d-channel’s
RS image to the k-channel’s (i.e., the number of cluster) image. Given any w-by-w image patch
(i.e., the receptive field), we can thus compute a new k-channel representation of the RS image for
that patch.

(2) The local pooling operation: local pooling works to keep the layer invariant to slight translation
and rotation and is implemented by the traditional calculation process (i.e., the local maximum).

(3) The global pooling operation: global pooling is implemented by sum-pooling in multiple large
windows, which facilitates improving the feature discrimination efficiency. We implement the
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global pooling operation by sum-pooling into four equal-sized quadrants, and integrate the
multiple sum-pooling results as a feature vector. Therefore, the dimension of the feature vector is 4k.
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2.2. Multiple Feature Hashing Learning Based on Column Sampling

In the hashing learning module, our approach is to learn the hybrid feature mapping function to
generate a binary code for a fast search in the hamming space based on column sampling hashing [29].
Specifically, denote X = {x1, x2, . . . xn} ∈ Rn×D as the whole data matrix. In addition to the feature
vectors, we assume the semantic similarity matrix S ∈ (−1, 1)n×n that does not miss label entries,
where Sij = 1 means that xi and xj are the similar pairs (with the same label), Sij = −1 means that xi
and xj are the dissimilar pairs (with different labels). The goal of hashing is to learn a binary code
matrix B = {b1, b2, . . . bn} ∈ (1,−1)n×r to preserve their similarities in the original space, where bi
denotes the r-bit code for xi. For one RS image feature vector xi, we adopt the commonly used hashing
function form, which project it from the D-dimensional feature space to an r-dimensional hamming
space by:

bi = f (xi) = sgn
(

WTxi

)
(1)

where sgn(·) is the element-wise sign function, which returns 1 if the element is a positive number
and the other returns −1. W = [w1, w2, . . . , wr] is the projection matrix.

Similarly, the whole data matrix is mapped to the hamming space as follows:

B = f (X) = sgn
(

WTX
)

(2)

The objective function of the optimization problem can be defined as:
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min
B∈(1,−1)n×r

‖rS− BBT‖2
F (3)

where ‖ · ‖F is the Frobenius norm of a matrix.
According to Equation (3), the objective function learns binary code matrix B based on the

semantic similarity matrix S, so our method is insensitive to the dimension of the feature vector.
Moreover, existing methods attempt to sample only a small subset with m (m < n) points for training
and discard the rest of the training points, which leads to unsatisfactory accuracy. Column sampling
hashing adopts a strategy that can effectively exploit all of the training data by sampling columns.
This is to say, the strategy proposes to sample several columns from S in each iteration and several
iterations are performed for training. By randomly sampling a set Ω of N = {1, 2, . . . , n} and then
sampling |Ω| column of S, S is divided into two kinds of parts in each iteration, one being those
indexed by Ω and the other being those indexed by Γ = N−Ω. Then, Equation (3) is associated with
the sampled columns in each iteration it can be reformulated as follows:

min
BΩ ,BΓ

‖rSΓ − BΓ[BΩ]
T‖2

F + ‖rSΩ − BΓ[BΩ]
T‖2

F (4)

where SΩ ∈ {−1, 1}|Ω|×|Ω|, SΓ ∈ {−1, 1}|Γ|×|Ω|, BΩ ∈ {−1, 1} |Ω|×r, and BΓ ∈ {−1, 1} |Γ|×r.
The optimization of Equation (4) involves two alternating steps: (1) updating BΓ with BΩ fixed;

and (2) updating BΩ with BΓ fixed. This two-step alternating optimization procedure will be repeated
several times.

Updating BΓ with BΩ fixed: By fixing BΩ, the objective function of BΓ is given by:

min
BΓ∈{−1,1}|Γ|×r

= ‖rSΓ − BΓ[BΩ]
T‖2

F (5)

Through changing the loss from Frobenius norm to L1 norm, the BΓ is easily to be computed:

BΓ = sgn
(

SΓBΩ
)

(6)

Updating BΩ with BΓ fixed: When BΓ is fixed, the objective function of BΩ is defined as:

min
BΩ∈{−1,1}|Ω|×r

= ‖rSΓ − BΓ[BΩ]
T‖2

F + ‖rSΩ − BΩ[BΩ]
T‖2

F (7)

According to the 2-approximation algorithm, the k-th column of BΩ can be acquired in the t-th
iteration. As a result, we can recover B by combining BΩ and BΓ. Please refer to [29] for details.

By choosing linear regularized least-squares classifier, we use linear regression to train W over
the training set. The optimal W can be computed as:

W =
(

XTX + I
)−1

XTB (8)

Therefore, the hashing codes bq for a new query image can be computed as follows:

bq = f
(
xq
)
= sgn

(
WTxq

)
(9)

As a whole, the main algorithm complexity of our proposed hashing learning method is to
optimize B instead of the image features. Thus, when compared with single features, multiple feature
hashing learning can not only affect the complexity, but can also flexibly incorporate the merit of
multiple features.



ISPRS Int. J. Geo-Inf. 2017, 6, 364 8 of 19

2.3. Hamming Distance Ranking

The query image (i.e., the xq) and each image of training set is represented by a binary code
through the above steps. We used the hamming distance as the similarity measure to compare two
images’ degree of similarity and the ranking of the hamming distance can be treated as retrieval result.
For binary strings b1 and b2, the hamming distance is equal to the number of ones in b1 XOR b2.

The specific implementation of the proposed MFH-LSRSIR is summarized in Algorithm 1.

Algorithm 1. MFH-LSRSIR for large-scale RS image retrieval.

Input: the large-scale remote sensing image dataset that contains n images, testing query xq and code length r.

1. Calculate the feature set xi =
{

f 1
i , f 2

i , · · · , f k
i

}
and the whole data matrix X = {x1, x2, . . . xn} ∈ Rn×D.

2. Construct the multiple feature set xi =
(

f 1
i , · · · , f k

i

)T
by serial fusion and get the whole data matrix

X = {x1, x2, . . . xn} ∈ Rn×D.
3. Repeat:

Sample |Ω| columnto set up SΩ, SΓ, BΩ, and BΓ.
Loop until converge or reach maximum iterations:

Calculate BΓ using Equation (6) by fixing BΩ.
Compute BΩ by solving the problem (7) when BΓ is fixed.

Recover B by combining BΩ and BΓ.
Until converge or reach maximum iterations.

4. Compute the optimal parameter W according to (8), and compute the binary code for the image database
and query image by B = f (X) = sgn

(
WTX

)
and bq = f

(
xq
)
= sgn

(
WTxq

)
.

5. Get the indexes of the most related images by ranking hamming distance.
Output: Binary code matrix B = {b1, b2, . . . bn} ∈ (1,−1)n×r and binary code of query image bq ∈ (1,−1)r,
the most related images.

Finally, we give the computational complexity and running time of key modules. With the
consideration that the training stage can be pre-processed in an offline stream, we focus on the
complexity analysis of the test stage as it reflects the actual efficiency of the proposed method. For the
multiple feature representation stage, the complexity of the feature extraction is O(whkv), where w
and h represent the width and height of the image data, respectively, k is the cluster number and
v = w × w ×d stands for the dimension of the image patches with the w-by-w receptive field.
The average running time of feature extraction per image is 0.0178 s. For the multiple feature
hashing learning stage, the complexity of the hybrid features mapping is O(lr), where l represents the
dimension of the hybrid feature, and r is the length of hash code. The average time consumption of
hybrid feature mapping per image is 0.000058 s. Similar to other hashing methods, the final hashing
codes can be efficiently utilized to retrieve similar remote sensing images. As a whole, the proposed
method is not only very effective, but efficient.

3. Experimental Result

In this section, we first introduce two adopted evaluation datasets and criteria in Section 3.1;
Section 3.2 analyzes the sensitivity of the key parameter in clustering; Section 3.3 demonstrates the
retrieval result on the two datasets, and analyzes the performance with different features of the multiple
feature hashing method for a large-scale remote sensing image retrieval (MFH-LSRSIR) framework;
Section 3.4 provides a comparison of the results with those of state-of-the-art approaches.

3.1. Evaluation Datasets and Criteria

Two recently released large-scale remote sensing datasets with semantic labels are used to verify
the superiority of our proposed method. They are SAT-4 and SAT-6 airborne datasets, which were
extracted from the National Agriculture Imagery Program (NAIP) dataset [36]. SAT-4 consists of a
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total of 500,000 image patches that are covering four broad land cover classes. These include barren
land, trees, grassland, and a class that consists of all land cover classes other than the above three.
SAT-6 consists of a total of 405,000 image patches and covering six land-cover classes: barren land,
trees, grassland, roads, buildings, and water bodies. The images consist of four bands: red, green,
blue, and near-infrared (NIR), and each image patch is size normalized to 28 × 28 pixels. The sample
images from each class in these two datasets are shown in Figures 3 and 4.

For all of the methods, we randomly choose 1000 points as query (test) set with the rest of the
data as the training set. The experimental results are reported in terms of mean average precision
(MAP) and precision-recall curves to evaluate the retrieval performance in the literature. The MAP
score is calculated by:

MAP =
1
|Q|

|Q|

∑
i=1

1
ni

ni

∑
k=1

precision(Rik) (10)

where qi ∈ Q is a query and ni is the number of points relevant to qi in the dataset. Suppose that the
relevant points are ordered as {r1, r2, · · · , rni}, and then Rik is the set of ranked retrieval results
from the top result until getting to rk [33].
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Furthermore, we also take the precision-recall curve as the evaluation indicator. More specifically,
precision and recall are defined as below:

precision =
tp

tp + f p
(11)
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recall =
tp

tp + f n
(12)

where tp is the number of similar points, f p is the number of non-similar points, and f n is the number
of similar points that are not retrieved [30].

In the following, all experiments are conducted on Cloud Virtual Machine with an Intel E5-2667
Broadwell (v4) 3.2 GHz CPU and 32 GB RAM. We evaluate the results of the SAT-4 dataset and SAT-6
dataset, respectively.

3.2. Sensitivity Analysis of the Key Parameter

In the process of multiple feature representation based on unsupervised feature learning, a lot
of parameters are involved. The selection of the number of clusters is critical for the whole method.
Furthermore, our experiments considered cluster numbers with 64, 128, 256, and 512 to analyze the
effect on the MAP scores. In this comparison, we consider one feature when the receptive field is set to
2 and the length of hash codes is fixed to 32.

Figure 5 clearly shows effect of the number of clusters. The MAP score lifts along with the increase
of the cluster number on SAT-4 and SAT-6 datasets. When compared with the cluster number 64
and 128, k = 256 can obviously lift the MAP score. Although k = 512 can also improve the MAP
score, the increasing amplitude of accuracy has been relatively small. Based on the aforementioned
computational complexity introduction discussion in Section 2.3, the computational complexity is
linearly correlated with the number of clusters. With the overall consideration of the retrieval accuracy
and computational efficiency, the cluster k is set to 256.
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3.3. Superiority of Multiple Feature Hashing Learning

The number of cluster k is set to 256 and the dimension of the final feature vector is 1024. Given
one input remote sensing image, we make full use of ample band information (i.e., the near-infrared
band and visible light bands) to obtain different types of features via the different sizes of the receptive
field. In Table 1, the three different types of features represented by the receptive field sizes w with 2, 4,
6 are abbreviated as UF1, UF2, and UF3, respectively.
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Table 1. Feature set for remote sensing images.

Feature Type Feature Dimension Receptive Field

UF1 1024 2
UF2 1024 4
UF3 1024 6

In the framework of our proposed MFH-LSRSIR, different type of feature introduced in Section 2.2
and multiple features are tested for demonstrating the complementary characteristics of the introduced
features. MAP is one of the most comprehensive criteria to evaluate the retrieval performance in the
literature. Different types of features’ MAP scores with diverse hash bits for MFH-LSRSIR method on
the SAT-4 dataset are shown in Table 2.

Table 2. MAP scores of the SAT-4 dataset.

Method 8 Bits 16 Bits 32 Bits 64 Bits

MFH-LSRSIR
(UF1) 0.9801 0.9899 0.9900 0.9902

MFH-LSRSIR
(UF2) 0.9731 0.9874 0.9844 0.9856

MFH-LSRSIR
(UF3) 0.9656 0.9659 0.9681 0.9733

MFH-LSRSIR
(UF1 + UF2 + UF3) 0.9914 0.9952 0.9958 0.9952

As demonstrated in Table 2, generally, our MFH-LSRSIR with different unsupervised feature
based on various receptive fields achieve higher MAP scores. The best performance on each hash code
length is achieved by the multiple feature that combination of UF1, UF2, and UF3. It is reasonable that
different features can be the different characteristics of one given image, and the multiple feature plays
complementary roles of various features to improve the retrieval accuracy. The best result is obtained
by multiple feature on 64 bits while the worst MAP is 96.56% by UF3 on 8 bits. In addition, it can also
be observed that the hash code length also has effect on the MAP scores, longer length of hash code
achieves the higher retrieval accuracy in most case. Among these unsupervised features, UF1 that
extracted by two receptive fields can achieve the best performance than any single feature. This is
because, in the case of small image size (28 × 28 pixels), two receptive fields could better learn the
detailed features of the image.

The MAP score results of the SAT-6 dataset are depicted in Table 3. Similar to the result on the
SAT-4 dataset, the multiple feature also achieves the best performance on the SAT-6 dataset, the MAPs
are 98.66%, 98.37%, 98.78%, and 99.00% when the hash code length is 8, 16, 32, and 64 bits, respectively.
We can see that the improvement is most visible on the shorter hash code length.

Based on the intuitive results, the multiple features achieve the best remote sensing image
retrieval performance.

Table 3. MAP scores of the SAT-6 dataset.

Method 8 Bits 16 Bits 32 Bits 64 Bits

MFH-LSRSIR
(UF1) 0.9769 0.9744 0.9759 0.9752

MFH-LSRSIR
(UF2) 0.9410 0.9779 0.9793 0.9817

MFH-LSRSIR
(UF3) 0.9569 0.9832 0.9837 0.9850

MFH-LSRSIR
(UF1 + UF2 +UF3) 0.9866 0.9837 0.9878 0.9900
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3.4. Comparison with the State-of-the-Art Approaches

In order to validate the effectiveness of our presented method, the proposed method is compared
with recent unsupervised hashing approach partial randomness hashing (PRH) [33] and some
representative supervised hashing methods, including supervised hashing with kernels (KSH) [26],
supervised discrete hashing (SDH) [28], and column sampling-based discrete hashing (COSDISH) [29].
We implement the PRH method by ourselves and the other approaches are implemented by the public
source code provided by the corresponding authors. All of the other parameters are tuned to the best
performance. These methods all extract a 512-dimension Gist feature vector for each image. For KSH
and SDH, 1000 randomly selected anchor points are used. For KSH, we cannot use the entire training
set for training due to the high time complexity; thus, we randomly sample 5000 training data of KSH.

3.4.1. Comparison on the SAT-4 Dataset

Table 4 presents the performance comparison with other studies on the SAT-4 datasets. It shows
that our approach has surprisingly high-rate MAP score than the compared methods. For example,
the proposed method obtains MAP score of 99.14% with 8 bit hash codes, whereas the MAP of up
to 99.52% is achieved with hash code lengths of 64 bits, which always outperformed the second best
by about 30% MAP rates. It is clear that, on this large dataset, the proposed method significantly
outperforms all of the other approaches by even larger gaps.

This makes sense because of two main reasons. First, the description ability of the hand-crafted
features may become limited, or even impoverished, for remote sensing images with complex scenes.
By learning features from images instead of relying on manually designed features, we can obtain
more discriminative features that are better suited to the problem at hand. Moreover, the unsupervised
features can be extracted from multi-spectral imagery, including the near-infrared spectrum and
visible spectrum (R, G, B). This enables satisfactorily describing the remotely-sensed image. Second,
the hybrid feature is learned by our supervised hashing method, which has the capability to increase
discrimination among hash codes and to satisfy the semantic similarity between the images.

Table 4. Comparison MAP scores for different methods with varied hash bits in the SAT-4 dataset.

Method 8 Bits 16 Bits 32 Bits 64 Bits

KSH in [26] 0.5249 0.5379 0.5490 0.5522
SDH in [28] 0.6419 0.6411 0.6347 0.6217
PRH in [33] 0.3975 0.3877 0.4139 0.4188

COSDISH in [29] 0.6449 0.6733 0.6511 0.6809
Ours MFH-LSRSIR 0.9914 0.9952 0.9958 0.9952

The precision-recall curves, which reflect the overall image retrieval performance of different
hashing methods, are shown in Figure 6. As illustrated in Figure 6, the precision of the proposed
method always retained a high value of close to 1 even with the increase in recall rate. It is interesting
to note that the precision is improved, in particular, for larger recalls. This trend is particularly
pronounced with the longer bit lengths. This is reasonable since our proposed method is based on
the column sampling method, which can exploit all of the available data for training. When the recall
rate is high, the correct relevant results have been returned more in the retrieval results owing to the
powerful hybrid feature representations of image that are composed of multiple scales.
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3.4.2. Comparison to the SAT-6 Dataset

Table 5 compares the proposed approach with the published results of the SAT-6 dataset. It exhibits
that our approach achieves the best performance on each hash code length. Our method achieved
99.00% on MAP when the code length was 64 bits, while the second highest MAP was 78.53%. It can be
observed that the use of multiple features for hashing learning indeed have intensive characterization
of remote sensing image to increase the retrieval precision.

Figure 8 displays the precision-recall curves of the SAT-6 dataset. We can observe that our
MFH-LSRSIR method still consistently outperforms the alternatives. In fact, the MAP score is the area
under the precision-recall curve; thus, these results in Figure 8 are consistent with the trends that we
observe in the above experiments, which validate the superiority of our MFH-LSRSIR method.

Table 5. Comparison MAP scores for different methods with varied hash bits in the SAT-6 dataset.

Method 8 Bits 16 Bits 32 Bits 64 Bits

KSH in [26] 0.6020 0.6191 0.6411 0.6351
SDH in [28] 0.6310 0.6429 0.6449 0.6617
PRH in [33] 0.4796 0.5044 0.5041 0.5146

COSDISH in [29] 0.7438 0.7641 0.7600 0.7853
Ours MFH-LSRSIR 0.9866 0.9837 0.9878 0.9900

Figure 9 presents select retrieval results corresponding to different hashing methods on the SAT-6
dataset. When compared with existing alternative hashing methods, the proposed MFH-LSRSIR
method achieves the state-of-the-art performance under various evaluation criteria. Experimental
results show that our approach is well adapted to remote sensing images, and it has strong advantages
in dealing with large-scale remote sensing image retrieval problems.
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4. Conclusions

In this paper, we propose a general multiple feature hashing learning framework for large-scale
RS image retrieval, called MFH-LSRSIR. In order to achieve a comprehensive description of complex
remote sensing images, we extract multiple features with different receptive fields by unsupervised
multi-layer feature learning, which can fully mine the spectra and spatial context cues. On the hashing
learning stage, MFH-LSRSIR utilizes the column sampling to learn the hybrid feature hash functions by
iteration. Through comparing with the existing hashing method, the proposed approach can achieve a
mean average precision up to 99.52% on the SAT-4 dataset, and 99.00% on the SAT-6 dataset. Therefore,
our proposed MFH-LSRSIR is a competent method for large-scale remote sensing image retrieval.

The experiments performed on both the SAT-4 and SAT-6 datasets confirmed that the proposed
MFH-LSRSIR framework is a simple but effective framework. In this work, the adopted large-scale remote
sensing image datasets just have a small number of land cover categories. In order to fulfill the demand
of real remote sensing retrieval tasks, we will exploit supervised deep networks, such as supervised
deep hashing networks [37–40] to address the retrieval problem on more complex remote sensing image
datasets in our future work. In addition, we will explore more applications of the proposed MFH-LSRSIR,
such as hyperspectral remote sensing image classification [41], image matching [42–44], high-resolution
remote sensing image built-up area detection [45], high-resolution remote sensing image urban villages
detection [46], infrared target detection [47], and so forth.
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