
 International Journal of

Geo-Information

Article

Hierarchical Model for the Similarity Measurement of
a Complex Holed-Region Entity Scene

Zhanlong Chen ID , Rongrong Zhu, Zhong Xie and Liang Wu * ID

Department of Information Engineering, China University of Geosciences, Wuhan 430074, China;
chenzl@cug.edu.cn (Z.C.); zhurongrong2017@gmail.com (R.Z.); xiezhong@cug.edu.cn (Z.X.)
* Correspondence: wuliang@cug.edu.cn; Tel.: +86-133-1719-3026

Received: 13 October 2017; Accepted: 27 November 2017; Published: 29 November 2017

Abstract: Complex multi-holed-region entity scenes (i.e., sets of random region with holes) are
common in spatial database systems, spatial query languages, and the Geographic Information
System (GIS). A multi-holed-region (region with an arbitrary number of holes) is an abstraction of the
real world that primarily represents geographic objects that have more than one interior boundary,
such as areas that contain several lakes or lakes that contain islands. When the similarity of the
two complex holed-region entity scenes is measured, the number of regions in the scenes and the
number of holes in the regions are usually different between the two scenes, which complicates the
matching relationships of holed-regions and holes. The aim of this research is to develop several
holed-region similarity metrics and propose a hierarchical model to measure comprehensively the
similarity between two complex holed-region entity scenes. The procedure first divides a complex
entity scene into three layers: a complex scene, a micro-spatial-scene, and a simple entity (hole).
The relationships between the adjacent layers are considered to be sets of relationships, and each
level of similarity measurements is nested with the adjacent one. Next, entity matching is performed
from top to bottom, while the similarity results are calculated from local to global. In addition,
we utilize position graphs to describe the distribution of the holed-regions and subsequently describe
the directions between the holes using a feature matrix. A case study that uses the Great Lakes in
North America in 1986 and 2015 as experimental data illustrates the entire similarity measurement
process between two complex holed-region entity scenes. The experimental results show that
the hierarchical model accounts for the relationships of the different layers in the entire complex
holed-region entity scene. The model can effectively calculate the similarity of complex holed-region
entity scenes, even if the two scenes comprise different regions and have different holes in each region.

Keywords: holed-region entity; complex holed-region entity scene; hierarchical model; position
graph; multi-level chord-length function

1. Introduction

Although the collection and maintenance of spatial data is the most time-consuming activity in
GIS engineering in the real world, data for the same objects are often repeatedly collected by different
departments [1]. Several differences are present in the same objects on maps produced from different
sources that are due to mapping errors, different applications, and interpretations [2–4]. These identical
entities are usually inconsistent in positioning accuracy, shape, and attribute information. To reduce
the cost of GIS data collected by the GIS application departments and to evaluate the quality of the
existing map data, it is necessary to use standard map data as a reference to measure the similarity
of two map data. Similarity and matching are not only widely used to update data from different
sources [5] but also in data retrieval [6] and classification [7]. These topics have attracted a great deal
of research attention over the past decades [8,9].

ISPRS Int. J. Geo-Inf. 2017, 6, 388; doi:10.3390/ijgi6120388 www.mdpi.com/journal/ijgi

http://www.mdpi.com/journal/ijgi
http://www.mdpi.com
https://orcid.org/0000-0001-6373-3162
https://orcid.org/0000-0002-1304-6353
http://dx.doi.org/10.3390/ijgi6120388
http://www.mdpi.com/journal/ijgi


ISPRS Int. J. Geo-Inf. 2017, 6, 388 2 of 25

In a real-life situation, matching and similarity are used in spatial applications [10,11], not only
to match simple objects described as points [12], lines [13], and polygons [14,15] but also to match
complex geometric structures [16,17]. Many geographic phenomena have discontinuities in the
form of internal cavities [18]. A real-world geographic entity containing inner boundaries, such as
a region containing several lakes or an island lake, is abstracted as a holed-region. In the simple
feature specification for the Structured Query Language (SQL) of Open Geospatial Consortium
(OGC), the existence of a holed-region is implied when defining a region as a simple feature in
a geo-database, “a region is a planar surface, defined by one exterior boundary and zero or more
interior boundaries; interior boundary defines a hole in the region, ..., the exterior of a region with
one or more holes is not connected. Each hole defines a connected component of the exterior” [19].
Meanwhile, the scene containing several island lakes is abstracted as a complex holed-region entity
scene. The complex holed-region entity scene can be regarded as a collection of a random number of
regions that contain holes.

Numerous methods that measure the similarity of two holed-regions exist, and most of
them focus on topological relationships, such as the topological relationships between two
holed-regions [20], a hierarchical model based on the CBM to treat complex regions in topological
queries [21], the 23 topological relationships between a simple region and a region with a hole [22],
the 152 topological relationships between two single holed-regions [23], and the topological
similarity between a hole-free region and a multi-holed-region [18]. Compared to a simple
holed-region, a complex holed-region entity scene usually has a more complicated distribution pattern.
Such characteristics make a similar evaluation between two complex holed-region entity scenes
extremely difficult. To the best of our knowledge, similarity measurements between two complex
holed-region entity scenes have not been studied to date. Current holed-region similarity measurement
methods and models cannot be directly used for complex holed-region entity scenes because they lack
inherited relationships between different layers.

In this paper, we present a hierarchical model to measure the similarity of two complex
holed-region entity scenes. In our model, a complex holed-region entity scene is decomposed into
three layers—a complex scene, a micro-spatial-scene (i.e., a spatial scene comprising a collection of
holes and their spatial relationships), and a simple entity (i.e., a hole).

The relationships between the adjacent layers are considered as sets of relationships. Each level
of similarity measurements is nested with the adjacent one. Entity matching is performed from top
to bottom, while the similarity results are calculated from local to global. The hole distribution is
considered as a constraint satisfaction problem (CSP) [24] that comprises the shape descriptors and the
directional relationships of the holes. In addition, position graphs [25] describe the distribution of the
micro-spatial-scene, and a force diagram [26,27] is used to measure the similarity between the graphs.
The extended Hausdorff distance [28] represents the relationships between the holed-regions and
the scene center. Because of topological and semantic limitations of the entity matching process [29],
we introduced the Hungarian algorithm [6] to resolve matching problems between holed-regions
belonging to different complex entity scenes. The multilevel chord length [30] is adopted to construct
complex functions to describe the geometric shape from entity to part, and the shape descriptor is
based on the fast Fourier transform of the complex function [31]. This paper is an extension of our
precedent work [25]. The main idea of this model is not characterized merely by the iterative approach
of our previous work; the whole spatial distribution information of the holed-regions in the complex
holed-region entity scenes is represented in our model, which is ignored in many previous studies.

The rest of this paper is organized as follows. Section 2 introduces the hierarchical model
for a holed-region entity scene and proposes the similarity measurement of the position graphs.
We next introduce the matching of holed regions and holes and the similarity measurement of the
micro-spatial-scene in Section 3. In Section 4, we propose the similarity measurement between complex
holed-region entity scenes. Next, we apply the model to the Great Lakes by using data from different
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years and then discuss and analyze the results in Section 5. Finally, the study’s conclusions are
presented in Section 6.

2. Similarity Measurements of Two Complex Scenes

2.1. Hierarchical Method for a Complex Holed-Region Entity Scene

The Open Geospatial Consortium (OGC) Abstract Specification describes complex geometry
as “The complex space object is mainly composed of geometric combinations, such as merging and
difference generation for basic spatial objects or their topological parts.” A complex holed-region scene
S is a set of n (n ≥ 1) multi-holed-regions Ri, i.e., S = {R1∪R2∪ . . . ∪Rn}. Therefore, the similarity of a
complex scene can be regarded as an overall generalization of the similarity of Ri and the distribution
similarity of Ri.

The multi-holed-region R, which can be thought of as a micro-scene, is m (m ≥ 0) holes Hj merged,
i.e., R = {H1∪H2∪ . . . ∪Hn}. Likewise, the similarity of the micro-spatial-scene is considered to be a
generalization of the geometric similarity of the hole Hj and the similarity of the distribution of Hj in R.

To simplify the overall similarity measurement of the complex scene, we introduce the concept
of a hierarchy. The hole in the holed-region is the first level, designated as the “simple entity”
layer; the holed-region entity is the second level, designated as the “micro-spatial-scene” layer;
and the complex holed-region entity scene is the third level, designated as the “complex scene”
layer. A hierarchical calculation is done for the similarity of the complex holed-region entity scene.
The layered method is shown in Figure 1.
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Figure 1. Hierarchical decomposition of a complex scene.

In the first step, the complex scene S is decomposed into several regions Ri (I = 1, 2, . . . , n),
which contain the exterior boundary and the corresponding micro-spatial-scene R’i (I = 1, 2, . . . , n),
and the similarity of a complex scene layer is the aggregation of the similarity of all of the
micro-spatial-scenes, all exterior shapes, and the matching and distribution of all regions.

In the second step, we focus on the similarity of the micro-spatial-scene. The hole in the
micro-spatial-scene is regarded as a simple surface entity Hj (j = 1, 2, . . . , m), and the simple entity
Hj has a fixed position distribution in Ri. The micro-spatial-scene is a combination of simple entities;
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therefore, the similarity of the micro-scene is a generalization of the shape similarity, the direction
similarity, and the completeness of the matching of simple entities.

In the third step, the matching situation is not considered. The similarity of the simple entity layer
focuses on the shape similarities and direction similarities of holes.

2.2. Location Distribution and Similarity Measurement

2.2.1. Position Graphs

The hierarchical method of Section 2.1 implies that the similarity of a complex scene is closely
related to the similarity of the distribution of the holed-regions. In this paper, we refer to the method of
position graphs to describe the distribution of the holed entity in a complex scene. The boundary of a
complex scene S is determined by the MBR method and the centroid C of scene S found by the diagonal
of the rectangle. In the Position Graphs, the distance between the centroid of a holed entity and the
scene center is defined as the relative distance between the holed entity and the scene. As shown in
Figure 2, C1, C2, C3 are the centroids of the holed entities R1, R2, R3, respectively. The point O is the
scene center, and the points NT1, NT2, NT3 are, respectively, the nearest tangent points from O to the
outlines of R1, R2, R3. The center point position graph (CPPG) is formed by connecting the center
point holed entities. The nearest tangent point position (NTPPG) is formed by connecting the nearest
tangent points from scene centroid to the outlines of the holed-region.

ISPRS Int. J. Geo-Inf. 2017, 6, 388  4 of 25 

 

In the third step, the matching situation is not considered. The similarity of the simple entity 
layer focuses on the shape similarities and direction similarities of holes. 

2.2. Location Distribution and Similarity Measurement  

2.2.1. Position Graphs 

The hierarchical method of Section 2.1 implies that the similarity of a complex scene is closely 
related to the similarity of the distribution of the holed-regions. In this paper, we refer to the method 
of position graphs to describe the distribution of the holed entity in a complex scene. The boundary 
of a complex scene S is determined by the MBR method and the centroid C of scene S found by the 
diagonal of the rectangle. In the Position Graphs, the distance between the centroid of a holed entity 
and the scene center is defined as the relative distance between the holed entity and the scene. As 
shown in Figure 2, C1, C2, C3 are the centroids of the holed entities R1, R2, R3, respectively. The 
point O is the scene center, and the points NT1, NT2, NT3 are, respectively, the nearest tangent 
points from O to the outlines of R1, R2, R3. The center point position graph (CPPG) is formed by 
connecting the center point holed entities. The nearest tangent point position (NTPPG) is formed by 
connecting the nearest tangent points from scene centroid to the outlines of the holed-region. 

 
Figure 2. (a) Selection of the center point and nearest tangent points; (b) center point position graph 
(CPPG); (c) nearest tangent point position (NTPPG). 

As shown in Figure 3, N1, N2, N3 are, respectively, the nearest points from the centroid O to the 
outlines of R1, R2, R3, and F1, F2, F3, are, respectively, the farthest points from the centroid O to the 
exterior boundaries of R1, R2, R3, so the nearest points position graph(NPPG) and farthest points 
position graph (FPPG) is formed by connecting O to Ni and Fi respectively. 

 
Figure 3. (a) Selection of the nearest points and farthest points; (b) nearest points position graph 
(NPPG); (c) farthest points position graph (FPPG). 
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As shown in Figure 3, N1, N2, N3 are, respectively, the nearest points from the centroid O to the
outlines of R1, R2, R3, and F1, F2, F3, are, respectively, the farthest points from the centroid O to the
exterior boundaries of R1, R2, R3, so the nearest points position graph(NPPG) and farthest points
position graph (FPPG) is formed by connecting O to Ni and Fi respectively.
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2.2.2. Descriptive Measurement of the Position Graphs

Each edge of a shape is formed by two forces that have equal value but opposite direction [25].
As a result, a region can be described by a set of forces. A group of forces that form a region in a
coordinate system is drawn and these forces represent a force diagram. According to the parallelogram
law [32], the force can be decomposed along the x-axis and y-axis, and the sum in x-axis and y-axis
always meet:

N

∑
i=1

fix = 0,
N

∑
i=1

fiy = 0 (1)

The parameter fix is the decomposition part of force fi on the x-axis, fiy is the decomposition part
of force fi on the y-axis, and N is the force number. The positive or negative value of these forces will
change periodically with the direction of the force, with a period of 180◦.

Adding the absolute value of the forces in the positive and negative directions of the
x-axis provides:

Fx(α) =
N

∑
i−1
| fix(α)| (2)

Similarly, Fy(α) is available:

Fy(α) =
N

∑
i−1

∣∣ fiy(α)
∣∣ (3)

The projection interval function of the force diagram is defined as

F(α) = Fx(α)/Fy(α) (4)

where α is the rotation angle of the force diagram, and the F(α) is also a periodic function with a period
of 180◦ and its function image is a waveform.

2.2.3. Similarity Measurement of the Position Graph

Different position graphs can be described with different force diagrams, and different position
graphs have different projection interval functions; therefore, the similarity between the distributions
of the holed-regions can be measured by the degree of matching of the projection intervals. Because of
the characteristics of the waveform, the degree of matching between the two projections ratios is
calculated by the minimum mean error (MME) of the waveform.

When the sample points are distributed in a 180◦ range and the rotation angle α is replaced by
the discrete value i, the MME between the position graphs P1 and P2 is calculated as:

MP1P2(l) =
1
N

N−1

∑
i=0
|F1(i)− F2(i− l)| (5)

where F1(i) and F2(i − l) (0 ≤ l ≤ N − 1) are the projection ratio functions of the position graphs P1 and
P2, l is the deviation of the two functions, and N is the number of discrete sampling points. The MME
is more accurate when N is larger. Since F ∈ [0, 1], the similarity of the two position graphs can be
defined as:

S′p_g = 1−
min

{
MP1P2(l)

}
max{F1(i), F2(i)}

, 0 ≤ l, i ≤ N − 1 (6)

2.2.4. Geometric Transformation of the Position Graph

Climate change, ocean currents, crustal movements, natural disasters, artificial construction,
and other factors may drive diverse phenomena for lakes that contain islands (i.e., holed-regions in a
complex spatial scene), such as revolution, rotation, moving, and scaling. Obviously, it is necessary
to measure the similarity of revolution in which the CPPG rotate around the centroid of the complex
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scene, the rotation in which the CPPG rotates around its center point, and moving and scaling based
on position graphs.

Revolution Similarity

As shown in Figure 4, O is the centroid of a complex scene, and O1 is the center of the CPPG.
The vector from the point O to the nearest vertex of the MBR of the complex scene is u2, and u1 is
the vector from the point O to the point O1. The angle between u1 and u2 is β, which is defined
as the central angle. β is negative when u1 is on the left side of u2. The change value θ of β is the
revolution angle.

ISPRS Int. J. Geo-Inf. 2017, 6, 388  6 of 25 

 

2.2.4. Geometric Transformation of the Position Graph 

Climate change, ocean currents, crustal movements, natural disasters, artificial construction, 
and other factors may drive diverse phenomena for lakes that contain islands (i.e., holed-regions in a 
complex spatial scene), such as revolution, rotation, moving, and scaling. Obviously, it is necessary 
to measure the similarity of revolution in which the CPPG rotate around the centroid of the complex 
scene, the rotation in which the CPPG rotates around its center point, and moving and scaling based 
on position graphs. 

Revolution Similarity 

As shown in Figure 4, O is the centroid of a complex scene, and O1 is the center of the CPPG. 
The vector from the point O to the nearest vertex of the MBR of the complex scene is u2, and u1 is the 
vector from the point O to the point O1. The angle between u1 and u2 is β, which is defined as the central 
angle. β is negative when u1 is on the left side of u2. The change value θ of β is the revolution angle. 

 
Figure 4. Revolution of CPPG.  

The revolution similarity of two CPPGs can be defined as: 

1 2
1' 1

360
rS

β β−
= −

°
 (7) 

Rotation Similarity 

Draw the CPPG and the complex scene of the MBRs and move the MBR of the scene to vertex of 
the MBR of CPPG, where v1 is the direction vector of the scene and v2 is the direction vector of CPPG. 
The angle α between v1 and v2 is defined as the relative direction angle, and is negative when v1 is on 
the left side of v2. (Figure 5). 

 
Figure 5. Rotation of CPPG. 

The rotation similarity of the two CPPGs with rotation can be defined as: 

Figure 4. Revolution of CPPG.

The revolution similarity of two CPPGs can be defined as:

S′r1 = 1− |β1 − β2|
360◦

(7)

Rotation Similarity

Draw the CPPG and the complex scene of the MBRs and move the MBR of the scene to vertex of
the MBR of CPPG, where v1 is the direction vector of the scene and v2 is the direction vector of CPPG.
The angle α between v1 and v2 is defined as the relative direction angle, and is negative when v1 is on
the left side of v2. (Figure 5).
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The rotation similarity of the two CPPGs with rotation can be defined as:

S′r2 = 1− |∂1 − ∂2|
360◦

(8)
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Moving Similarity

The average radius of a complex scene is R, and the relative center distance (RCD) l is defined as:

l =

√
[x(o)− x(o1)]

2 + [y(o)− y(o1)]
2

R
(9)

The center coordinate of the complex scene is (X(O),Y(O)), and at the same time (X(O1),Y(O1)) is
the center coordinate of the CPPG. The moving translation similarity [33] can be defined as:

S′m = 1− |l1 − l2|
max(l1, l2)

(10)

Scaling Similarity

The Hausdorff distance [28] is introduced to describe the zoom of a complex scene with a
holed-region. The directional Hausdorff distance formula is:

h f 1(A, B) = min
{

εi : f1 = ϑ((B⊕S(εi))∩A)
ϑ(A)

}
h f 2(B, A) = min

{
ε j : f2 =

ϑ((A⊕S(ε j))∩B)
ϑ(B)

} (11)

The extended Hausdorff distance formula is:

H f 1 f 2(A, B) = max
{

min
{

εi : f1 = ϑ((B⊕S(εi))∩A)
ϑ(A)

}
, min

{
ε j : f2 =

ϑ((A⊕S(ε j))∩B)
ϑ(B)

}}
(12)

In Formula (12), ϑ(•) is the area or line length measure function of region. When A or B is a point,
the value of ϑ(•) is 0 (“•” is the empty set). ⊕ is the mathematical morphological expansion operator
that represents the Minkowski value, and S(ε) is a disc with a radius of ε [34]. The position graph
scaling can be derived from the ratio of the extended Hausdorff distance from the center of a scene
to its contour to the average radius of the scene. This ratio is defined as the relative expansion of the
Hausdorff distance:

Dis =
1

NR

N

∑
i=0

Hi (13)

where H is the extended Hausdorff distance of the center of a scene to a holed-region, N is number of a
holed-region, and R is the average radius of a region. The similarity of the CPPG of the holed-region
can be calculated by the following formula:

S′s = 1−
∣∣Disp − Disq

∣∣
max(Disp, Disq)

(14)

3. Similarity Measurement of Micro-Spatial-Scene

3.1. Pairwise Matching of a Holed-Region Entity

It is necessary to match pairs of holed-region entities to measure the similarity of a holed-region
in different complex scenes. Figures 6 and 7, respectively, show three and four holed-regions in the
complex scenes S1 and S2, which may produce different matching results: (R1, R1’), (R1, R2’), (R1, R3’),
(R1, R4’), (R2, R1’), (R2, R2’), (R2,R3’), (R2, R4’), (R3,R1’), (R3, R2’), (R3, R3’), (R3, R4’). Different
matching results will yield different similarity measurements.
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The scenes S1 and S2 are, respectively, the reference scene and the matching scene.
Any holed-region Ri in S1 will match with a corresponding set of holed-regions {Ri} in S2. To obtain the
matching set of the holed-region Ri in S1, we first determine the vertex P’, which is the closest point on

the MBR of the CPPG to the center of the CPPG; then, we obtain the vector
→

P′di by connecting di and

P’, whose length is d1_i, as shown in Figure 8a. The angle between the vector
→

P′di and the direction
vector of the MBR is δ. Next, a point Q is determined in S2. A circular buffer with the center of Q is
drawn and the average radius of the holed-region Ri is ri; furthermore, the regions in the buffer or that
intersect with the buffer are regarded as the matching region candidates of Ri. The angle between the

vector
→

PQ and the vector of the MBR direction vector is δ, as shown in Figure 8b. The length of
→

PQ is
defined as d2_i:

d2_i = d1_i ×
R2
R1

(15)

where R2 is the average radius of scene S2 and R1 is the average radius of scene S1.
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After obtaining the matching candidate set {Ri} of the reference entity Ri, our next step is to
determine the matching entity with the highest degree of matching in the matching candidate set.
For this case, the Hungarian algorithm [35] is introduced. It is supposed that the similarity between Ri

and the regions belonging to S2 but not included in {Ri} is 0, and the distance is infinite. A matrix D of
m rows and n columns is constructed, where m is the number of regions in scene S1, n is the number of
regions in S2, and the element dij in D is defined as dij = dis(Ri, R’j), which expresses the Euclidean
distance between centroid Ri and R’j.

dis(Ri, Rj
′) =

√(
x(Ri)− x

(
Rj
′)2
)
+
(

y(Ri)− y
(

Rj
′)2
)

(16)

where (x(Ri),y(Ri)) and (x(R’i),y(R’j)) are the centroids of Ri and R’j, respectively.
The decision variable xi,j ranges from

xx,j =

{
0, Ri in S1 not matching with Rj

′ in S2
1, Ri in S1 match with Rj

′ in S2
(17)

The decision variable matrix X is

D =


d11 d12 d1... d1n
d21 d22 d2... d2n
d...1 d...2 d... d...n

dm1 dm2 dm... dmn

 X =


x11 x12 x1... x1n
x21 x22 x2... x2n
x...1 x...2 x... x...n

xm1 xm2 xm... xmn

 (18)

So the matching results can be calculated by

minZ =
m

∑
i=1

n

∑
j=1

dijxij s.t.



m
∑

i=1
xij = 1, j = 1, 2, . . . , n

n
∑

j=1
xij = 1, i = 1, 2, . . . , n

xij = 1 or 0, i = 1, 2, . . . , m, j = 1, 2, . . . n

(19)

In this process, the value of xij that minimizes the sum of each column of Z for each row is vital,
and this calculation can be derived from the Hungarian algorithm. The decision variable matrix X
obtained can determine the result between the regions Ri in S1 and R’j in S2. Furthermore, the matching
similarity between S1 and S2 can be obtained by:

S′R_S =
1
n

n

∑
i=0

(1− di) (20)

where n is the number of matching regions, and di is the Euclidean distance mentioned above.

3.2. Pairwise Matching of Holes

In this part, we consider a holed-region entity as a micro-spatial-scene, and the “hole” in the
micro-spatial-scene is an independent simple surface entity. Therefore, in the measurement of the
similarity of a micro-spatial-scene, we not only must consider the scene of the internal and external
boundaries, but we also must consider the direction similarity of the holes. From a human perception
viewpoint, a scene comparison is a process of associating similar objects across a scene, and the
relationships between objects must correspond as well [36]. Therefore, the first task in the common
models of spatial scene similarity measurement is the identification of corresponding objects [37,38].
As in the similarity measurement process of the micro-spatial-scene, it is most important to find the
matching relationship of the hole. This matching problem is treated as a constraint satisfaction problem
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(CSP), in which the contour and direction relationships of holes in reference to the multi-holed-region
act as constraints.

The CSP has the following conditions: (1) the variables ebn and ebm represent the edges of the
region Rhn and Rhm; (2) the variable set H1, . . . , Hn represents the holes in Rhn; (3) for each Hi, sets of
possible matching variables H’I = {H’1, . . . , H’l} corresponding to holes in Rhm exist; (4) each variable
Hi has a unit variable Si that describes its shape; and (5) for each variable set (Hi, H’j), a binary variable
dij exists that describes the relationship between the variables.

In this study, the matching association graph is utilized to describe the constraints in Rhn, in which
the value of each node represents the shape of the contour constraints, and the values attaching to
edges indicate the directional constraint between the holes, as shown in Figure 9.
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Since the number of holes in Rhn and Rhm can be different, the hole-matching in this study does
not compare the entire graph, just the subgraphs. There are three matching solutions as follows
(Figure 10):

• Complete solution. A subgraph G’m of the graph Gm of Rhm matched with the graph Gn of Rhn,
in which all holes and directions of Rhn have a correspondence in Rhm.

• Incomplete solution. A subgraph G’m of Gm matches the subgraph G’n of Gn, in which a subset of
holes and directions of Rhn have a correspondence in Rhm.

• No solution.
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Figure 10. (a) Complete solution; (b) incomplete solution; (c) no solution.

The formation of the association graph for the holed-region entities Rhn and Rhm, for which Rhn

has the graph G with the node set (g1, g2, ..., gn) and Rhm has the graph G’(g’1, g’2, ..., g’n), contains
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two important steps. First, a node aij(gi, g’j) is created if g’j is in G’ that satisfies the univariates
(shape matching) of gi in G. Second, the nodes are connected with their edges by inserting an edge to
connect the node aij(gi, g’j) with alk(gl, g’k). The value attached to the node is the geometric similarity
between the two holes, and the value of the edge is the similarity of the direction relationship. As a
result, the associated graph with weight is formed.

3.3. Similarity Measurement of Holes

The hierarchical method of Section 2.1 shows that the geometric similarity of the inner and outer
contours of a holed-region entity belongs to different similarity measurement levels, and the geometric
similarity of the inner contours belongs to the measuring dimension of the micro-spatial-scene level,
while the geometric similarity of the outer contours is the measuring dimension of a complex scene
level. Therefore, we do not account for the outer contour of the holed-region entities when we compute
the similarity of Holes.

(1) Assuming that the holed-region entities Rhn and Rhm have t pairs of matching holes, SHi is
the shape similarity of the ith pair of holes and WHi is the weight of the ith pair of holes.
Next, the shape similarity between Rhn and Rhm is defined by S’shape for

S′ inshape =

t
∑

i=1
WHi•SHi

t
∑

i=1
WHi

(21)

(2) Supposing that the holed-region entities Rhn and Rhm have t pairs of matching holes with
t(t − 1)/2 pairs of matching directions, SDi is the similarity of the ith pair of direction relationships,
which have a weight WDi. Thus, the direction relationship similarity S’direction between Rhn and
Rhm can be defined as

S′direction =

t(t−1)/2
∑

i=1
WDi•SDi

t(t−1)/2
∑

i=1
WDi

(22)

(3) The weight of the shape similarity and the direction relationship similarity is set to Wshp and
Wdir, respectively; then, the similarity S’Rhn,Rhm between micro-spatial-scene Rhn and Rhm can
be calculated:

S′Rhn,Rhm =
(Wshp × S′ inshape) + (Wdir × S′direcition)

Wshp + Wdir
(23)

(4) Since Rhn and Rhm may not be able to match all holes successfully, the unmatched holes should
be considered as penalties in the similarity calculation of Rhn and Rhm. This situation is termed
matching completeness. Assuming that Rhn and Rhm, respectively, have n and m holes, t pairs
of matching holes, and the unmatched hole weights of Rhn and Rhm are α and β, the matching
completeness can be defined as:

S′Comp(Rhn,Rhm) =
t

t + α× (n− t) + β× (m− t)
(24)

Three adjustment schemes for the weights α and β in the completeness computation for spatial
scene similarity [39] can serve different retrieval purposes:

• If α = β = 1, two scenes in the matching hole are equally important (the desired outcome of
this experiment).
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• If α = β = 0, the similarity measurement process ignores unmatched holes.
• If α = 1, β = 0, only the unmatched holes in the reference micro-spatial-scene have an impact on

the matching completeness.

(5) Wcomp is set as the weight value of the matching completeness, and the similarity of the
micro-spatial-scene Rhn and Rhm can be calculated by:

SMSCi = SRhn,Rhm = S′Rhn,Rhm × (WComp × (S′Comp − 1) + 1) (25)

4. Similarity of a Complex Holed-Region Entity Scene

The above discussion indicates that the similarity between two complex scenes is the similarity
measurement of the complex layer. The Pseudocode for the Measurement of Complex Holed-region
Entity Scene’s Similarity is shown in Table 1.

Table 1. Pseudocode for the measurement of complex holed-region entity scene’s similarity.

1
Input: The two complex holed-regions entity scenes Scene A and Scene B

Output: The similarity of the two scenes
double ComputeSimofScene (Scene A, Scene B)

2 BuildPositionGraph (A); //CPPG_A, NTPPG_A, NPPG_A, FPPG_A

3 BuildPositionGraph (B); //CPPG_B, NTPPG_B, NPPG_B, FPPG_B

4 //the similarity of the two position graphs can be computed by Formula (6)

5 SimofDistribution (CPPG_A, CPPG_B); //S’_pg1 Similarity of CPPG

6 SimofDistribution (NTPPG_A, NTPPG_B); //S’_pg2 Similarity of NTPPG

7 SimofDistribution (NPPG_A, NPPG_B); //S’_pg3 Similarity of NPPG

8 SimofDistribution (FPPG_A, FPPG_B); //S’_pg4 Similarity of FPPG

9 SimofDis (S’_pg1, S’_pg2, S’_pg3, S’_pg4); //(S’_pg1+ S’_pg2,+S’_pg3,+S’_pg4)/4

10 //the revolution, rotation, moving and scaling similarities. Formulas (7), (8), (10) and (14)

11 SimofGeometricTrans (CPPG_A, CPPG_B)

12 PairwiseofMicroScene (A, B)

13 SimofShape (Ri, R’i); //by the method of multilevel length chord description

14 ComputeSimofMicroScene (Ri, R’i)

15 return SimofScene

16 end procedure

17 double ComputeSimofMicroScene (Ri, R’i)

18 SimofShape (Hi, H’i);

19 SimofDirction (Hi, Hj, H’i, H’j)

20 PairwiseofHole (Hi,H’i)

21 return SimofMicroScene

22 end procedure
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(1) Suppose that the complex scenes S1 and S2 have t pairs of matching micro-spatial-scenes, such that
SMSCi is the similarity of the tth pair of matching micro-spatial-scenes, and WRi is the weight of
the corresponding holed-region entity. Thus, the similarity of S and S’ can be defined as

S′MSC =

t
∑

i=1
WRi•SMSCi

t
∑

i=1
WRi

(26)

(2) Suppose that the complex scenes S1 and S2 have t pairs of matching micro-spatial-scenes, such that
SRi is the shape similarity of the outer contour of the ith matching holed-region entities, and WRi
is the weight of the corresponding holed entities. Thus, the outline similarity S'exshape between S1
and S2 can be defined as

S′exshape =

t
∑

i=1
WRi•SRi

t
∑

i=1
WRi

(27)

(3) Assume that the weight of the position graph similarity is Wp_g, the similarity weights of the
rotation, rotation, translation, and scaling of the position graph are respectively Wr1, Wr2, Wm,
Ws, the matching similarity of the holed-region entity is WR_S, the weight of the matching
micro-spatial-scene set is WMSC, and the similarity degree of the outer contour of the holed-region
entity is Wexshape. Thus, to calculate the similarity of the complex scene,

Sim = Wp_g × S′p_g + Wr1 × S′r1 + Wr2 × S′r2 + Wm × S′m + Ws × S′s
+WR_S × S′R_S + WR_S × S′R_S + Wexshape × S′exshape + WMSC × S′MSC

(28)

5. Experiments and Discussion

5.1. Experiment Data

We chose the Great Lakes in North America in 1986 and 2015 as the study area to calculate the
similarity of the five lakes during different periods to validate the hierarchical model for the similarity
measurement of the complex holed-region entity scene. The study area is composed of five large
freshwater lakes at the junction of Canada and the United States of America, which are Lake Superior,
Lake Huron, Lake Michigan, Lake Erie, and Lake Ontario, as shown in Figure 11. The outer contours
of the five Great Lakes and the area of the lakes have changed during different periods due to global
warming, human activity, and other factors.

The fundamental method for the comparison of the variation of the Great Lakes is to calculate the
similarity of Great Lakes in different years. We chose the Great Lakes’ data in 1986 and 2015 to validate
the hierarchical similarity model proposed in this paper. We treat the Great Lakes as regions that
contain holes, and the islands in the lakes are regarded as holes in regional entities. The collection of
the five lakes is a complex scene. The Great Lakes scene in 1986 and 2015 are, respectively, designated
as Scenario A and Scenario B, and the number of holes and entities included in Scenario A and Scenario
B are as shown in Table 2:
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Figure 11. Great lakes study area.

Table 2. The number of holes and entities in Scenario A and B.

Lake Superior Lake Huron Lake Michigan Lake Erie Lake Ontario Sum

1986 3 6 2 2 3 16
2015 4 6 2 2 2 16

During the similarity measurement process of the two complex holed-region entity scenes,
the similarities of the position graphs and geometric transformation similarities of CPPG should
be first taken into account. Then, the geometry of the multi-holed-region and the holes is described by
the multilevel chord length. The shape similarity is derived from the distance of the FFT description.
Next, the directional consistency of the holes in the two matching regions should also be measured.
To obtain the geometric similarity of the region and its holes, and the direction similarity between the
holes, the top-down stratification method is used to find the correspondence between the regions and
holes in this experiment. Finally, the weights of different dimensions are assigned to different levels,
and the quantitative similarity between Scene A and Scene B is calculated.

5.2. Experimental Results and Analysis

5.2.1. Building and Measuring the Position Graphs

To build the complete distribution of the Great Lakes using position graphs, we ignore the holes in
the multi-holed entities in Scene A and Scene B, considering them to be simple entities, and construct
the CPPG, NTPPG, NPPG, and FPPG based the relationships noted in Section 2.2.1 of the two scenes,
as shown in Figures 12 and 13.
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Section 2.2.2 indicates that each position graph can be described by a set of tension, and the
projection interval function F(α) is a periodic change function with a variation period of 180◦. In this
experiment, we selected 180 sample points in the range of 180◦. Each waveform corresponds to a
single projection interval function, and each projection interval function corresponds to a unique
position graph. The degree of matching of the two waveforms represents the similarity of the two
position graphs. Using Formula (5), we obtain the MME of the two waveforms, and the similarity of
the position graphs between Scenes A and B can be calculated by Formula (6). The CPPG, NTPPG,
NPPG, and FPPG of the two scenarios are calculated and the results are shown in Table 3.

Table 3. The similarity results for the position graphs.

CPPG NPPG FPPG NTPPG

MME 0.101415 0.039020 0.030832 0.041860
MaxV 2.962511 1.365702 1.364719 1.420649
Sim 0.965755 0.971428 0.977408 0.970535

The data in Table 3 can be used to calculate the similarity between Scene A and Scene B as:

S′p_g =
(
S′p_g1 + S′p_g2 + S′p_g3 + S′p_g4

)
/4

= (0.965755 + 0.971428 + 0.977408 + 0.970535)/4 = 0.9712815 = 97.12815%

5.2.2. Great Lakes’ Distribution Transformation Measurement

In reality, the surface entities of two scenes may shift position, or change in size. Thus, the similarity
measurement process must consider the geometric transformation similarity of the position graph.
We defined the center angle of the CPPG above and used it to expound the rotation of the position
graph. One side of the center angle is the connection between the centroid of the scene and the centroid
of the position graph, and the other side is the edge that connects the start point on the MBR of the
scene with the centroid of the scene.

Figures 14 and 15 show that in this case, vector OOA runs from the center of Scene A to the center
of the CPPG, vector OMA runs from the scene center to the start point of the MBR, and, in a similar
manner, the vector OOB runs from the center of Scene B to the center of the CPPG, and vector OMB
runs from the scene center to the start point of the MBR of Scene B.
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Figure 15. The center angle of Scene B.

The center angle βA of Scene A is calculated to be 72.379◦, the center angle βB of Scene B is 70.935◦,
and the rotation transformation similarity (Simr1 = 0.99599) between Scenes A and B can be obtained
by Formula (7).

The degree of change in the relative direction angle is expounded when measuring the rotation
similarity. As shown in Figure 16, the direction angles of the MBRs of Scene A and its CPPG are,
respectively, 43.677◦ & 45.098◦, and the direction angles of the MBRs of Scene B and its CPPG are,
respectively, 46.142◦ & 46.115◦.
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Therefore, the relative direction angles of Scenes A and B are, respectively, θA − λA = 1.421◦ and
θB − λB = −0.027◦. The rotation similarity (Simr2 = 0.99598) between Scenes A and B can be calculated
by Formula (8).

To determine the movement of the holed entities inside the scene, we measure the degree of the
relative change of the center distance. According to Formula (9), the relative center distance of Scenes A
and B can be computed as lA = 0.24599, lB = 0.22117. Using the results in Formula (10), the translation
similarity of the Scenes A and B is obtained (Simm = 0.8991).

Because the size of the entities in the scene may change, we must measure the scaling similarity of
the two scenes. After determining the scene center, it is easy to derive the extended Hausdorff distance
of Scenes A and B, respectively, from Formula (11)–(13). The scaling similarity of two scenes can be
obtained by taking the expansion Hausdorff distance into Formula (14) as Sims = 0.9944. The calculation
results are shown in Table 4.



ISPRS Int. J. Geo-Inf. 2017, 6, 388 18 of 25

Table 4. Hausdorff distance calculation results for Scenes A and B.

Hausdorff Dis R1/R’1 R2/R’2 R3/R’3 R4/R’4 R5/R’5

Hf 1 (OA, Ri)/
Hf 1 (OB, R’i)

1647.6142/
1679.754

1082.5446/
1063.1474

965.5698/
991.2311

1355.1922/
1346.6466

1852.9394/
1861.6845

Hf 2 (Ri, OA)/
Hf 2 (R’i, OB)

595.8135/
609.6859

235.1493/
201.5952

184.2397/
210.6782

737.9486/
741.5354

1099.1535/
1092.4108

Hf 1f 2 (OA, Ri)/
Hf 1f 2 (OB, R’i)

1647.6142/
1679.754

1082.5446/
1063.1474

965.5698/
991.2311

1355.1922/
1346.6466

1852.9394/
1861.6845

According to the above, transformation similarity results for the position graphs are shown in
Table 5.

Table 5. CPPG transformation similarities.

Sims Simm Simr1 Simr2

Transformation Similarity (%) 0.9944 0.8991 0.99599 0.99598

5.2.3. Pairwise Matching and Shape Similarity of the Great Lakes

In this experiment, Scene B is the reference scenario, and Scene A is the matching scenario.
The matching process of the holed-region entities comprises two steps: (1) filtering multi-holed-regions
by a buffer analysis; (2) using the decision matrix to calculate the minimum Euclidean distance to
determine the holed-region entity matching results.

The center and radius of the circular buffer must be determined in the first filtering step.
The average radius of Scenes A and B is calculated first (RA = 1382.3, RB = 1408.8). The scene center
di_B in Scene B is connected to the start point P’ of the MBR of the CPPG to obtain a set of distances dBi,

and the connection is vector
→

P′di, dAi = dBi*(RA/RB). Next, the angle between the direction vector of

the MBR of the CPPG and
→

P′di is computed as follows: {62.1471◦, 70.3416◦, 90◦, 86.3311◦, 70.3416◦}.
Eventually, the corresponding point Qi of the center point of each holed-region entity in Scene B can
be found in Scene A.

As shown in Figure 17, with Qi as the center, half of the maximum chord length of Hi is the radius
ri, and a circular buffer is built on scene A. The matching holed-region entities are those contained in
or that intersect �Qi.
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The matching results of the holed-region entities in Scene B are: the matching set of R’1 is {R1, R3},
the matching set of R’ is {R1, R2}, the matching set of R’3 is {R2, R3}, and the matching set of R’4 is
{R2, R4, R5}, R’5 is {R4, R5}.

Using the buffer filter, we obtain the matching set of each holed-region entity in Scene B.
Next, we perform the Fast Fourier Transform (FFT) [31] to obtain the contour shape similarity of
each pair of possible matching results. The results are shown in Table 6.

Table 6. The contour shape similarity of the matching holed-region entities after filtering.

Region R’1 R’2 R’3 R’4 R’5

R1 0.9007/0.9053 0.7223/0.7660 - - -
R2 - 0.8991/0.9201 0.8014/0.8392 0.7879/0.8185 -
R3 0.8009/0.8474 - 0.9528/0.9791 - -
R4 - - - 0.9042/0.9335 0.7505/0.7860
R5 - - - 0.7716/0.7964 0.9832/0.9855

Comment A/B: A is the results computed by the method in literature [25]; B is the results computed
by the method of multilevel chord description.

After filtering, we must obtain a definite set of matches so that each holed-region entity of the
matching set in Scene B has the only corresponding surface entities within scene A. From Formula (16),
we calculate the Euclidean distance between each holed-region entity of Scene B and the entities in its
matching set, and bring the result into Formula (17) to obtain the decision matrix D.

D =


0.0114 0.1708 0 0 0

0 0.0417 0.2049 0.0884 0
0.1690 0 0.0338 0 0

0 0 0 0.0219 0.0986
0 0 0 0.1479 0.0115

 X =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 (29)

According to Formula (19), the minimum value of Z is 0.1203. Combined with the contour shape
similarity measurement from Table 6, the final matching result can be determined by the Hungarian
algorithm: {(R’1, R1), (R’2, R2), (R’3, R3), (R’4, R4), (R’5, R5)}.

On the basis of Formula (20), the similarity degree between scene A and Scene B is calculated as
S’R_S = 0.9759.

Formula (27) is used to calculate the outer contour shape similarity of all pairwise holed-region
entities of scene A to scene B (S’exshape = 0.9447).

5.2.4. Inner Contour Similarity Measurement of the Matching Lakes

According to Section 2.1, a multi-holed-region can be treated as a micro-spatial-scene, and the
hole within the region can be regarded as an ordinary surface entity. To obtain a matching relationship
between two holes in corresponding micro-spatial-scenes, the association graphs Gn and Gm should
be created to describe the constraints of the two micro-spatial-scenes. The node value is the shape
similarity of two holes and the edge value is the directional similarity of two pairs of holes.

The shape similarity of holes in each pair of matching micro-spatial-scenes can be computed
by fast Fourier descriptor. In this experiment, R2 (Lake Huron) is used as an example to show the
matching analysis process, and the results are shown in Figure 18.
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Figure 18. Shape similarities of the inner contours of Lake Huron.

The association graph of the micro-spatial-scene R’2 can be arbitrarily constructed by a hole H’j,
and a corresponding hole of H’j should be found in R2. The association graph development of R’2
begins with H’5, and the subsequent order of priority is set as H’6, H’7, H’8, H’9. The construction
process is:

(1) According to the results in Figure 18, the shape similarity between H’5 and H4 is the highest.
So, H’5 is paired with H4 and (H’5, H4) is designated as a node in the association graph.

(2) Because H4 has been matched with H’5, H4 should be excluded from the matching analysis of H’6.
H5 has the highest similarity score with H’6 in the remaining holes, and consequently (H’6, H5) id
designated as an associated node.

(3) H’7, H’8, H’9, H’10 are matched with H6, H7, H9 and H8 according to the same rules in step 1 and
step 2, forming the nodes (H’7, H6), (H’8, H7), (H’9, H9), and (H’10, H8).

The’ matching result for the inner holes of the micro-spatial-scenes R’2 and R2 generated by the
above steps is {(H’5, H4) (H’6, H5) (H’7, H6) (H’8, H7) (H’9, H9) (H’10, H8)}. The weights of all holes are
set to the same value in this experiment. Given that different priority matching orders will lead to
different matching results, we must consider the entire matching order of holes in the test.

In addition to the shape similarity, the similarity measurement of the matching holes also must
consider the consistency of the direction relationship. When evaluating the consistency of the direction
relationship between two holes in the micro-spatial-scenes R2 and R’2, which are multi-hole regions,
we should give the characteristic matrix of any pairs of holes in the scenes. A conceptual space of
the F-Matrix is represented by the 4-D lattice [25]. The distance between two F-Matrixes on the 4-D
lattice stands for the dissimilarity of the directions. After eliminating the redundancy, we obtain the
association graphs in Figure 19.
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Using Formulas (21) and (22), we can obtain the shape similarity and direction relationship
similarity of each matching solution. The results are shown in Table 7.

Table 7. Shape similarity and direction relationship similarity of each matching solution.

Solution 1 2

Shape 0.9093 0.9303
Direction 0.8583 0.9083

It is easily to see that the shape similarity and direction relationship similarity of solution 1 are all
higher than those in solution 2 from Table 7. We can compute the matching completeness of the two
solutions with Formula (24) and then substitute the results of matching completeness, shape similarity,
and direction similarity into Formulas (23) and (25) to obtain the similarities of the two solutions,
as shown in Table 8.

Table 8. Integral similarities of the two matching solutions.

Solution 1 2

Similarity 0.8838 0.9193

In this experiment, the importance of the holes inside the Great Lakes are treated equally. It follows

that all holes have the same weight, that is,
n
∑

i=1
WHi = 1 and

n(n−1)
∑

i=1
WDi = 1. We assume that the

same weight is attached to the shape similarity, the direction relationship similarity, and the matching
completeness; that is, Wshp + Wdir + Wcomp = 1. Repeating the above processes yields all of the integral
similarities of matching lakes, and the results are shown in Table 9.

Table 9. The similarities of all matching micro-spatial-scenes in Scenes A and B.

Region (R1, R’1) (R2, R’2) (R3, R’3) (R4, R’4) (R5, R’5)

S’shape 0.9884 0.9608 0.9783 0.9936 0.9595
S’direction 0.9861 0.7833 1 0.875 0.9375
S’Comp 3/4 1 1 1 2/3

Similarity 0.9050 0.8721 0.9892 0.9343 0.8431

5.2.5. Similarity of the Great Lakes Scene

Based on the hierarchical model in Section 2.1, the similarity of the two complex scenes is the
generalization of the similarity of its component micro-spatial-scenes Ri and the distribution similarity
of Ri. The micro-spatial-scene similarity is considered to be an overall generalization of the geometric
similarity of the hole Hj and the similarity of the distribution of Hj in R. Consequently, the similarity of
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two complex holed-region entity scenes is regarded as the unity of the micro-spatial-scene similarities,
the outer contour shape similarities, and distribution similarities of the holed-region entities, along with
the transformation similarities of the CPPG.

In Section 5.2.3, we calculated the similarities of the outer contour shape of the multi-holed-regions
as simple entities. In this experiment, we consider each holed-region equally important, that is,

each holed-region has the same weight. Additionally,
n
∑

i=1
WRi = 1. The overall similarity of all

matching micro-spatial scenes can be obtained by Formula (26) (SimMSC = 0.9087). At the end
of experiment, according to the Analytic Hierarchy Process (AHP), the first-order weights of the
similarity measurement is WMSC = 0.3822, Wexshape = 0.1387, Wp_g = 0.1991, Wr1 = 0.0471, Wr2 = 0.0471,
Wm = 0.0471, Ws = 0.0471, and WR_S = 0.0916. As a result, the total similarity between Scenes A and B is

Sim = Wp_g × S′p_g + Wr1 × S′r1 + Wr2 × S′r2 + Wm × S′m + Ws × S′s
+WR_S × S′R_S + Wexshape × S′exshape + WMSC × S′MSC

= 0.9713× 19.91% + 0.9960× 4.71% + 0.9960× 4.71% + 0.8991× 4.71% + 0.9944× 4.71%
+0.9759× 9.16% + 0.9447× 13.87% + 0.9087× 38.22%

= 93.48%

5.3. Experimental Results and Analysis

The experiment measuring the similarity of the two Great Lakes scenes in North America
between 1986 and 2015 does not involve other scenarios that might match the map of the Great
Lakes; therefore, we do not need to consider that little difference exists in the index that may exist in
the similarity calculation process of the multiple matching scenarios. Only when the comparison of
degree of importance between two similarity metrics can be determined, can the Analytic Hierarchy
Process be used to obtain the index weights of a complex scene with a multi-holed entity similarity
measurement system.

It is known that the similarity measurement of a complex holed-region entity scene has eight
first-order indexes: the similarity of the matching micro-spatial-scene collection S’MSC, the outer
contour shape similarity of the matching holed-region entities S’exshape, the similarity of the position
graphs S’p_g, the transformation similarity of the CPPG (revolution similarity S’r1, rotation similarity
S’r2, moving similarity S’m, scaling similarity S’s), and the matching similarity of the holed-regions
S’R_S. In accordance with the AHP, an 8th order matrix A with respect to the relative weight of the
similarity index is obtained, as shown in Table 10.

Table 10. Similarity index of the relative weight of the 8-order matrix.

W(A) WMSC Wexshape Wp_g Wr1 Wr2 Wm Ws WR_S

WMSC 1 3 2 8 8 8 8 4
Wexshape 1/3 1 1/2 3 3 3 3 2

Wp_g 1/2 2 1 4 4 4 4 2
Wr1 1/8 1/3 1/4 1 1 1 1 1/2
Wr2 1/8 1/3 1/4 1 1 1 1 1/2
Wm 1/8 1/3 1/4 1 1 1 1 1/2
Ws 1/8 1/3 1/4 1 1 1 1 1/2

WR_S 1/4 1/2 1/2 2 2 2 2 1
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The 8-order matrix of similarity index relative weight is normalized where the normalization
formula is bij =

aij
m
∑

i=1
aij

. The normalized matrix B of the similarity index is:

B =



0.3871 0.3830 0.4000 0.3810 0.3810 0.3810 0.3810 0.3636
0.1290 0.1277 0.1000 0.1429 0.1429 0.1429 0.1429 0.1818
0.1935 0.2553 0.2000 0.1905 0.1905 0.1905 0.1905 0.1818
0.0484 0.0426 0.0500 0.0476 0.0476 0.0476 0.0476 0.0455
0.0484 0.0426 0.0500 0.0476 0.0476 0.0476 0.0476 0.0455
0.0484 0.0426 0.0500 0.0476 0.0476 0.0476 0.0476 0.0455
0.0484 0.0426 0.0500 0.0476 0.0476 0.0476 0.0476 0.0455
0.0968 0.0638 0.1000 0.0952 0.0952 0.0952 0.0952 0.0909


Bj is obtained by summing each row of matrix B and is the eigenvector λ of matrix A.

λ−1 =
[

3.0575 1.1099 1.5926 0.3769 0.3769 0.3769 0.3769 0.7325
]

(30)

According to the AHP, the weights of the eight first-level indicators of the similarity measurement
of the complex holed-region entity scene must satisfy:

Wi =
λi

n
∑

i=1
λi

(31)

The weights of the eight similarity index are computed as WMSC = 0.3822, Wexshape = 0.1387,
Wp_g = 0.1991, Wr1 = 0.0471, Wr2 = 0.0471, Wm = 0.0471, Ws = 0.0471, and WR_S = 0.0916.

To test the consistency of the contrast matrix A, the maximum eigenvalue λmax = 8.028 of the
matrix is calculated, and the consistency index is CI = 0.004. The average random randomness index RI
is 1.41, CR = CI/RI = 0.004/1.41 = 0.0028 < 0.1, meaning that the contrast matrix A remains consistent.

6. Conclusions

To solve the matching problem of multiple lakes with multiple islands, several land areas with
lakes, complex holed buildings, and other geographic entities with inner boundaries in GIS, we propose
a new hierarchy similarity measurement method in this paper. We believe that the hierarchy similarity
measurement method presented in this paper may be useful and is readily applicable to actual scenes
for performing complicated spatial scene matching and querying by various users. During the process
of similarity measurement, we dismantle the relationship between layers, and degrade a holed-region
entity to a simple entity, initially. Afterwards, the similarity indexes of the complex scene’s similarity
measurement are analyzed. The holed-region entity is subsequently regarded as a non-boundary
micro-spatial-scene, and the similarity of the micro-spatial-scene is taken into a complex scene to
present the similarity measurement results of the complex holed-region entity scene.

At the complex scene level, we take the holed-region as a micro-spatial-scene, and a position
graph method is proposed to generate the distribution similarity of the holed-regions. The relationship
between the shape and the direction of the micro-spatial-scene is described by the association
graph. Additionally, the similarity of the two micro-scenes is also calculated by the matching
association graphs.

Although the eight first-order index weights of a complex holed-region entity scene are discussed
in Section 5.3, further improvement is still needed. In this paper, we did not study the weight
ratio of each measurement index, and we treated all holes and all regions that contain holes equally.
Whereas, in reality, the areas, the hole positions, multi-holed-regions, and their associated factors all
will impact the weight. In addition, the matching of multiple complex holed-region entity scenes has
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not been studied yet. The matching efficiency of a complex scene similarity measurement and the
improvement of the weight adjustment scheme should be studied in future research.
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