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Abstract: The Delaunay triangulation is the standard choice for building triangulated irregular
networks (TINs) to represent terrain surfaces. However, the Delaunay triangulation is based only
on the 2D coordinates of the data points, ignoring their elevation. This can affect the quality of the
approximating surface. In fact, it has long been recognized that sometimes it may be beneficial to use
other, non-Delaunay, criteria that take elevation into account to build TINs. Data-dependent triangulations
were introduced decades ago to address this exact issue. However, data-dependent trianguations are
rarely used in practice, mostly because the optimization of data-dependent criteria often results in
triangulations with many slivers (i.e., thin and elongated triangles), which can cause several types of
problems. More recently, in the field of computational geometry, higher order Delaunay triangulations
(HODTs) were introduced, trying to tackle both issues at the same time—data-dependent criteria and
good triangle shape—by combining data-dependent criteria with a relaxation of the Delaunay criterion.
In this paper, we present the first extensive experimental study on the practical use of HODTs, as a tool
to build data-dependent TINs. We present experiments with two USGS 30m digital elevation models
that show that the use of HODTs can give significant improvements over the Delaunay triangulation for
the criteria previously identified as most important for data-dependent triangulations, often with only
a minor increase in running times. The triangulations produced have measure values comparable to
those obtained with pure data-dependent approaches, without compromising the shape of the triangles,
and can be computed much faster.

Keywords: data-dependent triangulation; Delaunay triangulation; higher order Delaunay triangulation;
triangulated irregular network; digital terrain model

1. Introduction

Triangulated irregular networks (TINs) provide one of the basic ways to represent surfaces in
GIS. A TIN is constructed from a set of sample points, by triangulating the points in 2D. The resulting
triangulation gives a continuous interpolating surface that is piecewise linear, in which each face
is a triangle. The elevations of the vertices of the triangles are known, since they correspond to
sample points, while the elevation for any other point can be computed by linear (or higher degree)
interpolation based on the triangle containing it. It is well-known that a set of two dimensional points
can be triangulated in many different ways. For surface modeling, the choice of the triangulation can
make a big difference: different triangulations can result in entirely different interpolating surfaces.
However, in practice, the question of what triangulation to use rarely arises while constructing TINs
with GIS: most GIS will simply use the Delaunay triangulation.
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The Delaunay triangulation (DT) is defined using the so-called Delaunay criterion: a triangle is
Delaunay if the circle defined by its three vertices does not contain any sample point. A triangulation
is Delaunay if all its triangles are Delaunay. In general, unless there are four or more points lying on
exactly the same circle, the DT is uniquely defined by the point set. There are many good reasons for
the DT to be the standard choice for TINs. The main one is that the DT is considered to have well-shaped
triangles: triangles that are close to equilateral. This is because, among all possible triangulations of
the same set of points, the DT maximizes the minimum angle of all triangles, avoiding slivers (long and
skinny triangles) as much as possible. Slivers are a major concern in triangulations for terrain modeling,
since they usually result in high interpolation error, can create visual artifacts, and operations with
them are prone to roundoff errors, among other problems. Another important advantage of the DT is
that it can be computed efficiently, and with relatively simple algorithms.

However, the DT in 2D suffers from one major limitation: it only considers the 2D coordinates of
the sample points, i.e., it ignores all elevation data. This means, for instance, that two sets of sample
points with the same 2D distribution will end up with exactly the same triangulation, no matter how
different the original surfaces were. This can result in an interpolating surface that does not adapt to
the real topography, producing a poor approximation.

Realizing that an accurate surface approximation should take into account all data available,
Dyn et al. [1] introduced the concept of data-dependent triangulations, defined as triangulations that are
optimal with respect to criteria that involve all three coordinates of the data. For example, for surfaces
that are rather smooth, Dyn et al. [1] concluded that the criterion of minimizing the angle between
the normal vectors of adjacent triangles gives better results than the DT. Later studies [1–5] about
data-dependent triangulations arrived at similar conclusions, and proposed other data-dependent
criteria to improve over the DT. Despite this, in most GIS software today, the DT is still the only choice
to triangulate points. The main reason for this is that, even though data-dependent criteria can improve
some aspects of the approximation, they often produce too many slivers [4,6]. Thus, the advantages
obtained by data-dependent criteria are outweighed by the negative effects of ill-shaped triangles.
It follows that an ideal triangulation method should be able to combine both approaches: aim at
optimizing relevant data-dependent criteria, while at the same time trying to avoid slivers [4,6].

The problem of combining good triangle shape with data-dependent criteria was also studied
in the field of computational geometry. Gudmundsson et al. [7] proposed higher order Delaunay
triangulations (HODTs): a generalization of the Delaunay triangulation that offers well-shaped triangles,
but, at the same time, flexibility to optimize extra criteria. HODTs are defined by allowing up to k
points inside the circles defined by the triangles, for k a parameter called the order of the triangulation
(see Figure 1). Formally, a triangle4uvw in a point set S is order-k Delaunay if the circle defined by u, v
and w contains at most k points of S. A triangulation of S is order-k Delaunay if every triangle of the
triangulation is order-k.

Figure 1. Three higher order Delaunay triangulations of the same set of points, with three different
orders: k = 0 (left), k = 1 (center), and k = 2 (right). Order-1 edges shown in orange, order-1 triangles
shown in light green, order-2 triangles shown in dark green.

For k = 0, any set of points (in which no four points are cocircular) has only one higher order
Delaunay triangulation, equal to the DT. As k is increased, more points inside the circles imply
a potential reduction of the triangle shape quality, but also an increase in the number of triangulations
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that are considered. This last aspect is what makes the optimization of extra criteria possible: for each
order k ≥ 1, there is potentially a whole family of different triangulations with well-shaped triangles,
among which one can choose the one that is best according to some other, data-dependent, criterion.

Some theoretical studies about HODTs have studied the number of HODTs that one can expect,
as a function of the number of points n and the order k. However, most of that work has focused
mainly on determining, which criteria can be optimized efficiently (i.e., in polynomial time) and
which of them are intractable (i.e., NP-hard), either for general values of k, or for the simpler case
of k = 1. Positive results in this direction can have important practical implications if they come
with easy-to-implement methods to optimize the criteria. As already mentioned, for points drawn
uniformly at random, the expected number of different triangulations is exponential already for
k = 1, roughly larger than 2n/2 [8]. This is encouraging from a practical point of view because it
implies that there should be many triangulations to choose from to optimize data-dependent criteria.
However, having a large number of triangulations available does not guarantee that some of them
will be significantly better than the DT with respect to data-dependent criteria. Also of theoretical
interest, there has been some preliminary studies about how to enumerate all order-k triangulations,
although results so far are limited to very small orders (k ≤ 2) [9].

The more practical aspects of HODTs have not been studied much. The few papers that have
studied and implemented optimization algorithms for some concrete criteria for real terrains [10–12]
have focused on very specific criteria. Namely, the minimization of pits, avoiding interrupted valley
lines, and slope fidelity. In all cases, heuristics were presented, and a few experiments with real
terrains were shown. However, one important conclusion that can be drawn from these studies is
that even though the exact optimization of these criteria is algorithmically difficult, local optimization
heuristics can give important improvements for very low orders of k. For instance, experiments for
orders k = 0 . . . 8 with real terrain data by [12] found that, for minimizing the total number of pits,
the reductions obtained can be of 15–20% for k = 1, and of up to 50% for k = 4.

Being a generalization of the DT, in terms of optimizing a data-dependent criterion, the use
of HODTs will always give better, or at least not worse, triangulations than the DT—always from
a data-dependent point of view. This can be explained by the fact that, by definition, the set of
order-k Delaunay triangulations includes all those of order less than k (thus including the Delaunay
triangulation, which is a 0-OD triangulation). To this point, it is important to note that this does not
imply that there will be always a k-OD triangulation with order greater than zero that is better than the
DT but, since there are more options, there may be the possibility of this happening. Therefore, the key
question with HODTs could be stated as whether HODTs are worth the effort. Firstly, optimization
software for HODTs is not readily available, thus using HODTs instead of the DT implies, at least,
a certain implementation overhead. Secondly, optimizing over all HODTs of a certain order, even k = 1,
will necessarily imply a longer running time than simply computing the DT.

Hence, several important practical questions arise: (i) How much improvement does it give over
the Delaunay triangulation? (ii) Do higher order Delaunay triangulations actually preserve the good
shape of the triangles, as expected in theory? (iii) How complicated is it to implement some type of
optimization over HODTs? In this paper, we try to answer these questions.

There is very little previous work devoted to the more practical aspects of HODTs. Only a few
papers have studied the optimization of concrete data-dependent criteria for real terrains [10–12].
They focused on very specific criteria related to the minimization of pits, avoiding broken valley lines,
and slope fidelity. Ad hoc heuristics were presented for each of them, and a few experiments with
real terrains are shown. The results suggest that simple heuristics for optimizing those criteria for low
orders (k =1.8) can give a significant improvement over the Delaunay triangulation.

Contributions. We present an extensive study on the practical use of HODTs, as a way to
build data-dependent triangulations. Our main goal is to evaluate whether the improvements
in the data-dependent criteria that can be obtained by using HODTs, compared to the Delaunay
triangulation, are significant enough as to justify implementing a more complex triangulation algorithm.
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Our secondary goal is to describe some of the implementation aspects of HODTs, never considered
until now.

We selected three data-dependent criteria that have been claimed in the literature to give the
most important improvements over the DT (angle between normals, jump normals derivatives, refined angle
between normals). We implemented and tested two variants of an optimization algorithm based on
the well-known Lawson’s Optimization method (LOP) [13]. This method was chosen due its simplicity
and generality: it is easy to implement, and can be used to optimize any criterion. In addition,
we also implemented and tested the exact algorithm by Van Kreveld et al. [14] for first order Delaunay
triangulations. In fact, we implemented two variants of this method as well: the algorithm as proposed
in [14], and a simple variant that improves the shape of the resulting triangulation even further,
by prioritizing Delaunay triangles. This is the first time that the algorithm by Van Kreveld et al. [14] is
implemented and evaluated experimentally.

We present experiments with real terrains for each criterion, measuring the improvements
obtained by optimizing over HODTs. Data used was obtained from the two USGS terrains used in [4],
the most extensive previous study on data-dependent triangulations on real terrains. Our experiments
cover different values of Delaunay order k, different optimization algorithms, and evaluate the value
obtained for each criterion, together with several other parameters of interest. The decision to use
natural terrains, as opposed to synthetic terrains, as done in early related work [1,3,15], is motivated by
the fact that it has been questioned whether synthetic terrains are suitable to evaluate data-dependent
triangulations [4,6]. Thus, it becomes particularly interesting to evaluate whether improvements
observed for synthetic terrains for data-dependent triangulations also show up with real terrains
using HODTs.

Our experiments shed some new light on the efficacy of three data-dependent criteria that, despite
having been proposed a long time ago, had only been tested on real terrains a few times. Our results
also show that a simple optimization heuristic for HODTs, similar to LOP, can give substantial
improvements over the data-dependent criteria studied, already for very low orders (thus with
triangles close to Delaunay). Therefore, we conclude that HODTs can be considered a practical tool to
implement data-dependent triangulations, and that the benefits obtained are worth the extra overhead
of implementing them, if improving on the data-dependent criterion is important.

2. Related Work

In this section, we review the relevant related work in more detail. We first review some of
the most important data-dependent criteria proposed for surface interpolation, and later discuss the
existing experimental studies on them.

2.1. Main Data-Dependent Criteria

Many criteria consist of a cost function µ associated with each edge e of the triangulation.
Very often, µ is a function of the neighborhood of the edge (for instance, that is the case for the three
measures studied in this paper). The neighborhood of an edge in a triangulation is composed of the
two triangles sharing e (except for convex hull edges, which only belong to one) and the four vertices
involved (see Figure 2). The value of µ for the whole triangulation is defined as the minimum of the
values over all edges in the triangulation. Each of the data-dependent criteria below varies on how
exactly the value of an edge is defined. The criteria that have been shown to yield better results in the
literature on data-dependent triangulations are mostly those related to minimizing elevation changes
between adjacent triangles [1–6]. For that reason, many of the criteria discussed below are related to
smoothness. They are designed to prefer triangulations with coplanar triangles (smooth surfaces),
and they attain their minimum when the triangles of the quadrilateral are coplanar, and increase as
they become less coplanar. The difference between them is the way to measure to what extent two
triangles are coplanar. It is worth noting that the use of criteria that favor certain surface characteristics,
for instance, smoothness or roughness, may result in a specific error biases, such as being prone to
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surfaces that are under- or over-fitted. The list that follows is not exhaustive, but contains the criteria
most relevant for this work.

Angle Between Normals (ABN) [1]. µABN is given by the angle between the normal vectors
of the two planes spanned by the triangles adjacent to an edge e. This function measures the local
smoothness of e in T , thus minimizing µABN should lead to a surface exhibiting little changes when
passing through the edges of the triangulation. One could also maximize µABN or any of the other
measures in this section, if the goal was to produce a rugged surface. However, minimization is the
setting for which best results have been reported.

Jump Normals Derivatives (JND) [1]. µJND is given by the difference of the derivatives of the
two planes around e measured in a direction orthogonal to e’s projection (see vector n in Figure 2).

With the same goal of producing smooth surfaces, Dyn et al. [1] also proposed criteria
Deviations from Linear Polynomials (DLP) and Distances From Planes (DFP), which measure the distance
between the plane associated with a triangle and the other point of the quadrilateral.

Refined Angle Between Normals (WABN) [5]. A variation of ABN that takes into account the
length of the edge e, given by µWABN = ||e||µABN . Its goal is to penalize longer edges, in order to
reduce the number of slivers.

Most data-dependent criteria proposed are functions of an edge, or equivalently, a pair of adjacent
triangles. However, this does not need to be the case. The following is an example of a data-dependent
criterion based on the triangles incident to a vertex.

Piecewise Linear analog of Curvature (PLC) [3]. It is a generalization of ABN to vertices instead
of edges, given by the sum of the angles between normals of neighboring triangles around a given
vertex u.

Finally, we present a global data-dependent criterion that is not based on the the local
neighborhood of edges.

Error-based criteria (ERR). Given that often the goal of using a data-dependent criterion is
reducing the approximation error between the TIN and the original surface, it is reasonable to try to
use the error itself to guide the triangulation process. Error-based criteria have been considered several
times [1,4], essentially by defining the measure of the current triangulation as the total error between
the current triangulation and a set of fixed ground truth points.

θ

Q1(x, y)
Q2(x, y)

eiei

p2
p2

n

n2
n1

t1
t2

x

y

z

Figure 2. The geometric information of the neighborhood of ei that is often used to define the cost
functions. The edge ei is the diagonal of the convex quadrilateral defined by two triangles t1 and t2.
Q1(x, y) and Q2(x, y) are the planes defined by t1 and t2, with normal vectors n1 and n2. The vector n
is a 2D unit vector orthogonal to the projection of ei in the plane (x, y). Based on a figure from [16].

2.2. Comparisons of Data-Dependent Criteria

Despite the relatively large number of data-dependent criteria proposed, there have been few
studies comparing them to each other. The seminal paper by Dyn et al. [1] supported the proposed
data-dependent criteria with a set of experiments for sets of 100 data points distributed uniformly at
random in a unit square, and a second set with 33 data points with uneven distribution. The elevations
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used came from nine different mathematical functions that intended to produce surfaces that resembled
terrains. Data-dependent criteria were optimized with Lawson’s Optimization method (LOP, explained
in Section 3.2), and compared against the Delaunay triangulation, using the approximation error
as comparison measure. Their results showed that, while some of the functions (i.e., terrains)
did not benefit significantly from data-dependent triangulations, some of them showed important
improvements, especially in the case of surfaces with a clear preferred direction. The data-dependent
criteria yielding the best results were those aiming at smoothness, with ABN and JND being best most
of the times. The success of data-dependent triangulations for surfaces with a preferred direction was
also confirmed by Rippa [15]. He concluded that the interpolation functions (i.e., the triangulation)
must be related to the (elevation) data, and that triangles should be long in directions where the
magnitude of the second directional derivative of the surface is small, and thin in directions where
this magnitude is large. A later study by Brown [3], based also on mathematically-generated surfaces,
confirmed that ABN and PLC yielded significantly better results than Delaunay for surfaces with
a preferred direction. Years later, Weisz et al. [5], when proposing WABN, repeated part of the
experiments in [1], comparing WABN with ABN and Delaunay, and concluded that, in all but one case,
the data-dependent criteria produced better approximations.

None of the previously mentioned studies used real terrain data. In the context of terrain
approximation algorithms, Garland and Heckbert [6] evaluated several data-dependent criteria on
one real terrain, from which they concluded that “it seems that the surfaces for which data-dependent
triangulation excels are statistically uncommon among natural terrains”. Furthermore, they conjectured
that, on natural terrains, data-dependent triangulation should give results that are only marginally
better than the Delaunay triangulation. One of the problems identified was that data-dependent
criteria could result in the creation of very thin slivers.

The most complete study up to date was the one carried out in [4]. Since the structure of our
experiments follows closely that of those of Wang et al., a more detailed description is in order.
Wang et al. [4] presented a comparison of several triangulation methods, including Delaunay and
data-dependent criteria, using two USGS digital elevation models and LOP as optimization algorithm.
However, the setting was slightly different to ours, since Wang et al. mostly considered methods
that integrate the point selection (i.e., choosing which points from the original raster DEM will be
triangulated) with the triangulation itself.

In this paper, we assume that the points to be triangulated are given, hence we are interested
only in the triangulation phase. Thus, results obtained by Wang et al. (in the same way of our results)
cannot be directly extrapolated to methods that only triangulate, but it is still worth discussing some
of their findings.

The triangulation criteria considered by Wang et al. that are most relevant in our context are:
(i) Delaunay after point selection, (ii) Delaunay combined with point selection, (iii) minimizing ABN
starting from the result of (ii), (iv) maximizing ABN starting from the result of (ii), (v) min ERR,
(vi) hybrid. The hybrid method was proposed by Wang et al., motivated by observing that “the major
drawback of the data-dependent triangulation is that it contains too many slivers”. The method
intended to combine the DT with data-dependent triangulations by alternating the data-dependent
optimization criterion from (v) with the Delaunay criterion, depending on the aspect ratio of
the triangles.

The experiments in [4] tested each method for two terrains (and three different sample sizes).
The accuracy of the approximation was measured using a ground truth set of 900 points taken
from the DEM. Wang et al. also studied the steepness and aspect ratio of the triangles produced.
The main conclusion from the experiments was that method (ii), which combines the point selection
with the Delaunay criterion, outperforms all others, followed closely by method (iii), min ABN.
However, Wang et al. point out that, since the input to min ABN is the output from (ii), the ABN
criterion is actually making the surface approximation worse. However, the error increase is relatively
small. This is in clear contrast to (iv), which also starts from the output of (ii), but ranks as one of the
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worst methods. The standard Delaunay method, (i), ranks 3rd or 4th in all experiments, but at a much
larger distance from the second best method. Finally, method (v) that directly aimed at minimizing
the approximation error, produced very poor results, mostly due to the presence of many slivers and
steep triangles. The authors concluded that pure data-dependent triangulations do not perform well
on terrain surfaces, mainly due to the sliver problem. Their hybrid method produced better result than
pure data-dependent criteria, but worse than (ii).

In summary, previous work on real terrains suggests that the appearance of slivers outweighs
the possible positive results that can be obtained by data-dependent triangulations. For this reason,
it seems particularly interesting to determine whether HODTs can provide a practical way to control
slivers, while, at the same time, leaving enough room to optimize data-dependent criteria.

3. Methodology

In this section, we describe in more detail the data, experimental setup, and optimization
methods used.

3.1. Data

In contrast to most previous experimental work with data-dependent triangulations, which used
elevation data generated by mathematical functions, we use real terrain data. Our experiments are
based on the two USGS 30 m DEMs considered by Wang et al. [4] (see Figure 3). The decision to
reuse these terrains was twofold. Firstly, it facilitates the comparison with the work of Wang et al. [4],
which albeit different in spirit, is the closest previous work to this research. Secondly, the two terrains
are also very appropriate in our setting because they present two rather contrasting topographies:
one rather rough, and the other one rather flat:

• Kinzel Springs, Tennessee (KS): this area has a very rough topography. It has been strongly
influenced by tectonic movement and fluvial processes with rivers cutting deeply into valleys.
Mountains mostly extend from the southwest corner to the northeast corner. Vertical relief of
about 850 m. The DEM has dimensions 390 × 473.

• Moorehead South East (SE), Iowa (MH): this area is flatter and smoother than the previous one
because it is a region that was shaped by erosion caused by melting glaciers. Vertical relief of
about 100 m. The DEM has dimensions 361 × 474.

In a preliminary version of this work [17], we also considered two additional terrains with
topographic characteristics in-between those of KS and MH, but the differences in the results
obtained did not justify the inclusion in this paper.

• Point selection method. For each DEM, we generated two sets of sample points to be the input
to the triangulation algorithms. It is well known that the choice of the sample points has a strong
influence on the TIN approximation quality. We used the VIP (very important point) method as
implemented in ArcGIS 10 raster to multipoint tool. VIP is a well-known method to generate
sample points from a raster terrain that intends to sample the most relevant topographic features
(mainly local peaks and pits). In addition, following [4], we generated for each terrain a set of
900 random points to be used as ground truth set, in order to evaluate the approximation error of
the generated TINs.

• Compensation of boundary effect. The Delaunay triangles that are close to the boundary of the
point sample are often long and skinny. The reason why these slivers can also be Delaunay is
that their Delaunay circles face the exterior face of the triangulation, thus are empty of sample
points. However, this creates a possible problem for HODT optimization because removing such
triangles by flips while keeping the Delaunay order low is sometimes not possible, since all the
flips necessary produce high-order intermediate triangles. In a preliminary round of experiments,
we noticed that often the maximum values of the criteria were achieved in such boundary slivers.
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This forced the optimization to end very quickly and with poor results. Since this is due to an
artifact caused by the terrain boundary, for the purposes of order computation, data-dependent,
and quality measures, we ignored a buffer around the terrain boundary containing 5% of the
sample points.

(a) (b)

Figure 3. Terrains used in the experiments. (a) Kinzel Springs, Tennessee: 35.75 N, 35.625 S, −83.875 W,
−83.75 E; (b) Moorehead SE, Iowa: 41.875 N, 41.75 S, −95.875 W, −95.75 E.

Other Aspects Measured

In addition to the value of the specific criterion (ABN, JND, WABN) measured at each run,
we also analyzed the following aspects: running time, total number of flips done, approximation
error, and aspect ratio.

The approximation error of each TIN was defined based on the ground truth points as the root
mean square error (RMSE) between the TIN and the original DEM, as in [4]. More precisely, it is defined

as
√

∑m
i=1(hi−h(xi ,yi))2

m , where (xi, yi, hi) are the coordinates of the ith ground truth point, h(xi, yi) is the
elevation of the TIN at coordinate (xi, yi), and m is the number of ground truth points. Following [4],
in our tests we also computed the error using the mean absolute error (MAE), L1 and L2 metrics,
but given that no significant differences were observed, we only report on the RMSE values here.

The average aspect ratio of the resulting TIN triangles was computed as a way to measure the
amount of slivers in a triangulation, similarly to [4]. The aspect ratio of a triangle4 was defined as
β
δ −

2√
3

, where β is the length of the longest edge e of4 and δ is its height (the perpendicular distance
from e to the opposite vertex).

3.2. Implementation Considerations

The implementation was done in C++ with the help of the Computational Geometry Algorithms
Library (CGAL). CGAL is an open-source library that provides efficient and robust geometric algorithms
for dozens of application areas. In our case, we made use of CGAL’s implementation of Delaunay
triangulations, which was extended to be able to handle HODTs. The extensions needed to allow for
higher order triangulations and to implement LOP for data-dependent criteria were straightforward.

Next, we described the optimization methods used.

Lawson’s optimization method. Data-dependent triangulations require optimizing a criterion
over the space of all possible triangulations of a point set. Since finding global optima is in general
an intractable problem, in practice, local optimization is used. The most widely used method to (locally)

http://www.cgal.org
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optimize triangulations is Lawson’s optimization procedure (LOP) [13]. The main advantage of LOP
is its simplicity: it only requires a few lines of code, assuming the triangulations are stored in a data
structure providing basic topological information. The method works by identifying edges whose
flip (i.e., removing the edge and inserting the other diagonal of the quadrilateral formed) improves
the triangulation, and flipping them, until no such edge remains. Next, we present the method more
formally. Let e be an edge of a triangulation T of a point set P . We denote the cost of e (i.e., according to
some data-dependent criterion) in T by µ(T , e), and the cost of T by C(T ). For all criteria considered
in this paper, C(T ) = maxe µ(T , e). If e is an interior edge of T , it is the diagonal of a quadrilateral
formed by the two triangles that share e. If such a quadrilateral is convex, then e can be exchanged by
the other diagonal e′ of the quadrilateral. This operation is called a flip, and we say that e is flippable.
Let T ′ be the triangulation obtained after flipping e in T .

An edge e of T is called locally optimal if: (i) e is not flippable, or (ii) e is flippable and
flipping e does not improve the triangulation, i.e., C(T ) ≤ C(T ′). Analogously, a triangulation
T is locally optimal if all its edges are locally optimal. The successive application of the edge-flip
method to a triangulation converges, in a finite number of steps, to a locally optimal triangulation.
See Algorithm 1.

Note that the result of LOP is a locally optimal triangulation, which can be arbitrarily far from
a global optimum. There have been only a few attempts to produce data-dependent triangulations
using other optimization methods, which usually try to get closer to a global optimum. Most of them
used simulated annealing (e.g., [18,19]) in the context of image reconstruction, but other meta-heuristics
like genetic algorithms have been used as well (see, e.g., [20]).

Algorithm 1: Lawson’s optimization method (LOP)
Input: Set of n points S
Output: Locally optimal triangulation T
T ← T 0 . T 0 is an arbitrary triangulation of S
while T is not locally optimal do

Let e ∈ T be an edge that is not locally optimal.
Let e′ be the other diagonal of the quadrilateral of e.
T ← T ′ . Flip e and e′

end
return T

Order-k Delaunay LOP (k-OD LOP). The modifications needed for LOP to handle HODTs are
simple. Following the terminology in Algorithm 1, we can define a locally k-OD optimal triangulation as
follows. We say that an edge e of T is locally k-OD optimal if: (i) e is not flippable, or (ii) e is flippable
and flipping e does not improve the triangulation, i.e., C(T ) ≤ C(T ′), or produces a triangle with
order larger than k. Analogously, we say that the triangulation T is locally k-OD optimal if all of its
edges are locally k-OD optimal. See Algorithm 2.

In practice, only two modifications are important. The first one is making sure that when an edge
is considered to be flipped, the two new triangles that would be produced have order k. This extra
check results in a time overhead over the standard LOP. In our implementation, the priority was ease
of code, thus the order of a triangle was computed by simply checking each point for containment in
the corresponding circle. Note, however, that the linear-time overhead incurred can be substantially
reduced if more advanced techniques [7] are used.
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Algorithm 2: Lawson’s optimization method for HODTs (k-OD LOP)
Input: Set of n points S , maximum order k
Output: Locally optimal triangulation T of order k
T ← T 0 . Start from an arbitrary order-k Delaunay triangulation of S
while T is not locally k-OD optimal do

Let e ∈ T be an edge that is not locally optimal.
Let e′ be the other diagonal of the quadrilateral of e.
T ← T ′ . Flip e and e′

end
return T

The second modification is how to choose the starting triangulation T 0 . A first natural option
is to always start from the Delaunay triangulations, which is order-k for any k. In our experiments,
since we test many consecutive values for k, we also considered a second alternative: starting from the
result of the previous iteration. This gives rise to two variants of the k-OD LOP method:

• Standard k-OD LOP (LOP-0): T 0 is the Delaunay triangulation.
• Incremental k-OD LOP (LOP-INC): T 0 is the result of the previous run for maximum order k− 1

(or the largest available maximum order if k = inf ).

Exact algorithm for k = 1. This work also includes an implementation of the exact algorithm
presented in [14] for first order Delaunay Triangulations. The method works for MinMax criteria
that are functions of pairs of adjacent triangles (such as the three measures studied in this paper).
The algorithm is based on identifying all Delaunay edges that must be present in all order-1 Delaunay
triangulations. These form a subdivision of the convex hull of the set of points into triangles and
quadrilaterals, such that any order-1 Delaunay triangulation can be produced by choosing one of
the two diagonals for each quadrilateral. In [14], it was shown that exact solutions for measures like
ABN, JND, and WABN (that are local to pairs of adjacent triangles) can be found by solving a series
of instances of the boolean satisfiability problem (2-SAT), which can be solved in time proportional to
the number of quadrilaterals. In our implementation, we used the MiniSat library to solve the 2-SAT
instances.

As previously mentioned, we present two implementations of the exact algorithm:

• Exact algorithm from [14] (1-exact-KLS): Implementation of the exact algorithm for first order
Delaunay Triangulations as presented in [14].

• Exact algorithm prioritizing DT edges (1-exact-DT): Implementation of the exact algorithm for
first order Delaunay Triangulations from [14] modified to prioritize Delaunay edges. In particular,
the algorithm proceeds as in 1-exact-KLS until obtaining the final solution given by the last 2-SAT
instance solved. After that, we find all flipped edges with respect to the Delaunay triangulation
and revert all the flips that do not worsen the max value of the optimal triangulation. In this
way, all flips that are not necessary to optimize the value are avoided, keeping as many Delaunay
edges as possible.

3.3. Research Design

The implemented algorithms were tested over two point samples of each terrain, with 1% and 3%
of the original data points. The full set of variants considered is the following:

• Point set size n. For each DEM, we produced two sample points using ArcGIS 10 raster to
multipoint tool, containing 1% and 3% of the original data points, respectively (with roughly 1700
and 5100 points, resp.; these sizes are comparable to two of the ones used in [4]).

http://minisat.se/
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• Maximum order k. A total of 23 different values for the maximum order k were tested, in three
groups. (i) Fixed k: the order the triangulation is at most a fixed value k, for k = 0, 1, 2, ..., 20.
The optimization method consisted on two variants of k-OD LOP (presented in Section 3.2).
(ii) k = in f : the order of the triangulation is not constrained. The optimization method is LOP.
That is, a flip is performed every time the measure improves, until the triangulation does not
change anymore. This comes down to the pure data-dependent triangulation method originally
proposed by Dyn et al. [1]. (iii) k = 1, exact algorithm: implementation of two variants of the
exact algorithm in [14], described in Section 3.2.

• Criteria analysis and selection. Based on the study of previous literature on different criteria
(see Section 2.1), we selected three data-dependent criteria to be tested: ABN, JND, and WABN.
The first two are the most mentioned data-dependent criteria in the context of terrain interpolation
(e.g., see [1–6]), while WABN is a simple variation of ABN that addresses explicitly the presence
of slivers, thus it seemed appropriate to include it in this comparison.

In summary, the experiments tested two terrains, each with two sets of points, for 23 different
values of maximum order k (including the two variants of the exact algorithm), three data-dependent
criteria , and the two variants of the LOP method. In total, this generated (2× 2× 23× 3× 2) = 552
different TINs.

4. Results

The amount of data generated makes it hard to present all results in tabular form. Nevertheless,
as a sample, we present in Table 1 the results obtained for ABN and the larger terrain sizes. It will be
more convenient to analyze the results through the graphs presented in Figures 4–10. In the following,
we discuss briefly the results obtained for the different aspects evaluated. In general, we do not observe
a clear difference in behavior between the smaller and larger terrain sizes (i.e., 1% and 3%).

4.1. Maximum Value

Figure 4 presents the maximum value obtained for each measure, for the different orders k,
both terrain sizes, both LOP variants, and both exact implementations.

It can be observed that, in general, increasing the maximum order allows for improving all three
measures significantly. For both LOP variants, the reductions obtained with respect to the Delaunay
triangulation for orders 1...20 were between 5.35% and 39.50%, with an average of 12.12% for Kinzel
Springs and 30.27% for Moorehead SE.

Another important observation from Figure 4 is that, in the majority of cases, significant
improvements were obtained for very low orders. Even more, in many cases, the result obtained for
low orders is as good as the one for infinite order, and, when this is not the case, often the difference
was small.
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Table 1. Minimization of maximum ABN value for Kinzel Springs and Moorehead SE, over 3% sample
point set using LOP—0, 1-exact—KLS and 1-exact-DT.

Max k

Kinzel Springs Moorehead SE

Final
k RMSE ABN Time

mm:ss

avg
Aspect
Ratio

# Flips Final
k RMSE ABN Time

mm:ss

avg
Aspect
Ratio

# Flips

0 0 24.5919 94.9051 00:00 2.71765 0 0 12.3059 63.56 00:00 3.54948 0

1 1 24.5919 87.9388 00:26 2.71731 1 1 12.3059 52.7564 00:28 3.54976 1
1-exact-KLS 1 24.6173 87.9388 00:09 2.82878 1388 1 12.3138 52.7564 00:07 3.7289 1009
1-exact-DT 1 24.5919 87.9388 00:15 2.71731 1 1 12.3059 52.7564 00:11 3.54976 1

2 1 24.5919 87.9388 00:43 2.71731 1 2 12.3059 44.2164 01:31 3.55185 6
3 3 24.592 78.1171 01:42 2.71753 4 3 12.3059 43.1123 02:46 3.55287 9
4 3 24.592 78.1171 01:54 2.71753 4 3 12.3059 43.1123 03:06 3.55267 9
5 3 24.592 78.1171 02:02 2.71753 4 5 12.3059 41.7053 03:53 3.55332 11
6 3 24.592 78.1171 02:09 2.71753 4 5 12.3059 41.7053 03:35 3.55332 11
7 3 24.592 78.1171 02:14 2.71753 4 5 12.3059 41.7053 04:26 3.55332 11
8 3 24.592 78.1171 02:19 2.71753 4 5 12.3059 41.7053 03:49 3.55332 11
9 3 24.592 78.1171 02:21 2.71753 4 5 12.3059 41.7053 04:39 3.55332 11
10 10 24.5752 75.1486 02:59 2.71815 9 10 12.3059 41.7053 03:53 3.55492 11
11 10 24.5752 75.1486 03:02 2.71815 9 10 12.3059 41.7053 03:56 3.55492 11
12 10 24.5752 75.1486 03:05 2.71815 9 10 12.3059 41.7053 04:04 3.55512 11
13 10 24.5752 75.1486 03:06 2.71815 9 10 12.3059 41.7053 04:03 3.55492 11
14 10 24.5752 75.1486 03:08 2.71815 9 10 12.3059 41.7053 04:07 3.55492 11
15 10 24.5752 75.1486 03:10 2.71815 9 10 12.3059 41.7053 04:08 3.55492 11
16 10 24.5752 75.1486 03:11 2.71815 9 10 12.3059 41.7053 04:12 3.55492 11
17 10 24.5752 75.1486 03:13 2.71815 9 10 12.3059 41.7053 04:13 3.55492 11
18 10 24.5752 75.1486 03:14 2.71815 9 10 12.3059 41.7053 04:14 3.55492 11
19 10 24.5752 75.1486 03:22 2.71815 9 10 12.3059 41.7053 04:12 3.55492 11
20 10 24.5752 75.1486 03:19 2.71815 9 10 12.3059 41.7053 04:17 3.55492 11

in f 118 24.6368 69.0082 06:21 2.72617 17 38 12.3062 39.3558 08:23 3.55937 16
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Figure 4. Minimization of maximum value for Kinzel Springs (left) and Moorehead SE (right) as
the maximum order k increases. In each column, from top to bottom: ABN, WABN and JND.
Numbers indicate the final order. * Maximum value for 1-exact-KLS, 1-exact-DT, LOP-0 k = 1 and
LOP-INC k = 1 coincide. Therefore, and w.l.o.g., such value is referred as k = 1.
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Figure 5. RMSE evaluation for Kinzel Springs (left) and Moorehead SE (right) over 1% sample point
set as the maximum order k increases. In each column, from top to bottom: ABN, WABN and JND.
Numbers indicate the final order.

For the LOP-0 implementation, it can be observed that, in most cases, increasing the maximum
order k results in a measure value as good or better than for the previous order. However, we observed
in two settings (KS-ABN and KS-JND) that the max value became slightly worse after increasing
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k. Since this may appear counterintuitive, it is worth explaining the phenomenon. This is basically
due to the fact that executions of LOP-0 for consecutive values of k are totally independent. That is,
they always start from the Delaunay triangulation. This means that the flip decisions taken during
the execution for order k need not be a subset nor related to those taken for k− 1, explaining that the
end result can be worse than the previous one. In fact, for the same reason it can also occur that the
final order of the resulting HODTs for order k is lower than that for order k− 1 (always respecting the
maximum order). This behavior is in contrast to that of LOP-INC where, by construction, the value
decreases monotonically with k. However, it must be noted that this fact does not necessarily imply
that LOP-INC performs always better than LOP-0 in terms of minimization of the maximum value
(see, for instance, the case of WABN for Kinzel Springs over 3% sample with k = in f in Figure 4).
What may happen for LOP-INC with respect to LOP-0 is that a flip used to produce the starting
triangulation for order k prohibits a better flip in the construction of the k-ODT, resulting in a maximum
value higher than the one obtained by performing such restricted flip. Thus, the resulting k-ODT will
always have a measure value less or equal than the one in k− 1-ODT but not necessarily better than
the one measured in the k-ODT obtained by LOP-0.

 24.55

 24.56

 24.57

 24.58

 24.59

 24.6

 24.61

 24.62

 24.63

 24.64

i
n
f

 
0

 
1

 
2

 
3

 
4

 
5

 
6

 
7

 
8

 
9

 
1
0

 
1
1

 
1
2

 
1
3

 
1
4

 
1
5

 
1
6

 
1
7

 
1
8

 
1
9

 
2
0

R
M
S
E

Max K

RMSE vs Max K

[ABN - KS - 3%]

0 1 1 3 3 3 3 3 3 3

10 10 10 10 10 10 10 10 10 10 10

118

[ABN - INC - KS - 3%]

0 1 1

3 3 3 3 3 3 3

10 10 10 10 10 10 10 10 10 10 10

43

[ABN - 1-exact-KLS - KS - 3%]1
[ABN - 1-exact-DT - KS - 3%]

1

 12.305

 12.306

 12.307

 12.308

 12.309

 12.31

 12.311

 12.312

 12.313

 12.314

i
n
f

 
0

 
1

 
2

 
3

 
4

 
5

 
6

 
7

 
8

 
9

 
1
0

 
1
1

 
1
2

 
1
3

 
1
4

 
1
5

 
1
6

 
1
7

 
1
8

 
1
9

 
2
0

R
M
S
E

Max K

RMSE vs Max K

[ABN - MH - 3%]

0 1 2 3 3 5 5 5 5 5 10 10 10 10 10 10 10 10 10 10 10
38

[ABN - INC - MH - 3%]

0 1 2 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
38

[ABN - 1-exact-KLS - MH - 3%]

1

[ABN - 1-exact-DT - MH - 3%]

1

 24.6

 24.65

 24.7

 24.75

 24.8

 24.85

i
n
f

 
0

 
1

 
2

 
3

 
4

 
5

 
6

 
7

 
8

 
9

 
1
0

 
1
1

 
1
2

 
1
3

 
1
4

 
1
5

 
1
6

 
1
7

 
1
8

 
1
9

 
2
0

R
M
S
E

Max K

RMSE vs Max K

[WABN - KS - 3%]

0 0 0 0 0 0 0 0

8 8 8 8 8 8 8 8 8 8 8 8 8

240

[WABN - INC - KS - 3%]

0 0 0 0 0 0 0 0

8 8 8 8 8 8 8 8 8 8 8 8 8 225

[WABN - 1-exact-KLS - KS - 3%]

1

[WABN - 1-exact-DT - KS - 3%]

0

 12.3

 12.302

 12.304

 12.306

 12.308

 12.31

 12.312

 12.314

 12.316

 12.318

 12.32

i
n
f

 
0

 
1

 
2

 
3

 
4

 
5

 
6

 
7

 
8

 
9

 
1
0

 
1
1

 
1
2

 
1
3

 
1
4

 
1
5

 
1
6

 
1
7

 
1
8

 
1
9

 
2
0

R
M
S
E

Max K

RMSE vs Max K

[WABN - MH - 3%]

0 0 0 0 0 0 0

7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

[WABN - INC - MH - 3%]

0 0 0 0 0 0 0

7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

[WABN - 1-exact-KLS - MH - 3%]

1

[WABN - 1-exact-DT - MH - 3%]

0

 24.55

 24.56

 24.57

 24.58

 24.59

 24.6

 24.61

 24.62

 24.63

 24.64

i
n
f

 
0

 
1

 
2

 
3

 
4

 
5

 
6

 
7

 
8

 
9

 
1
0

 
1
1

 
1
2

 
1
3

 
1
4

 
1
5

 
1
6

 
1
7

 
1
8

 
1
9

 
2
0

R
M
S
E

Max K

RMSE vs Max K

[JND - KS - 3%]

0 1 1 3 3 3 3 3 3 3

10 10 10 10 10 10 10 10 10 10 10

144

[JND - KS - INC - 3%]

0 1 1

3 3 3 3 3 3 3

10 10 10 10 10 10 10 10 10 10 10 10

[JND - 1-exact-KLS - KS - 3%]

1

[JND - 1-exact-DT - KS - 3%]

1

 12.305

 12.306

 12.307

 12.308

 12.309

 12.31

 12.311

 12.312

 12.313

 12.314

i
n
f

 
0

 
1

 
2

 
3

 
4

 
5

 
6

 
7

 
8

 
9

 
1
0

 
1
1

 
1
2

 
1
3

 
1
4

 
1
5

 
1
6

 
1
7

 
1
8

 
1
9

 
2
0

R
M
S
E

Max K

RMSE vs Max K

[JND - MH - 3%]

0 1 2 3 3 5 5 5 5 5 10 5 5 10 5 5 5 10 5 10 10
38

[JND - INC - MH - 3%]

0 1 2 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
38

[JND - 1-exact-KLS - MH - 3%]

1

[JND - 1-exact-DT - MH - 3%]

1

Figure 6. RMSE evaluation for Kinzel Springs (left) and Moorehead SE (right) over 3% sample point
set as the maximum order k increases. In each column, from top to bottom: ABN, WABN and JND.
Numbers indicate the final order.
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4.2. Quality of Approximation

Despite the clear improvement in the measure values shown in the previous section, the trend in
the quality of approximation of the TINs, as measured by the RMSE based on the ground truth points,
is less clear. This is rather relevant because this is arguably the most important metric motivating the
use of data-dependent triangulations.

Analyzing the results for LOP-0 (a total of 12 evaluations, shown in Figures 5 and 6), for low
orders (k ≤ 20), and ignoring the particular case of k = 1-exact (discussed in Section 4.4), we can see
that the RMSE stays roughly constant or decreases in nine cases (four and five, respectively), while it
worsens in the other three cases. In all cases, the variation is rather small, something understandable
given that the changes in the triangulations for k ≤ 20 affect relatively few triangles, and thus have
a limited impact on the overall RMSE. The fact that in some cases the RMSE gets worse is interesting,
given that, in early work on data-dependent triangulations, it was argued that one of the reasons
to optimize angle-related measures like ABN was to improve the approximation quality. It is also
interesting to note that the results do not vary much for k = in f ; on the contrary, they are slightly
worse (RMSE stays equal, decreases or increases in three, four, and five cases, respectively).

Overall, we can conclude that the approximation error in most cases does not get worse or even
improves slightly, but not always, and that constraining the order of the triangulations has a positive
effect, in comparison with the pure data-dependent approach (i.e., the case k = in f ).

The conclusions with respect to the overall behavior of RMSE for LOP-INC are the same as that
for LOP-0. The differences in the final RMSE values observed between both algorithms are inherent to
the fact that both methods are heuristic. It is important to note that even though the final order of the
triangulation may be the same, this does not necessarily imply that the flips performed are the same
(in other words, they do not produce necessarily the same triangulations). For that reason, there are
cases where we observe different RMSE values for the same value of k. In some cases, the error is
better for LOP-INC (for instance, in KS-ABN 3%), while, in some other runs, LOP-0 produced smaller
error (for instance, in MH-ABN 1%).
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Figure 8. Running times for Kinzel Springs (left) and Moorehead SE (right) for 1% sample set size
as the maximum order k increases, for ABN, WABN and JND. * Analysis for the exact algorithms is
presented in Section 4.4; thus, results for those algorithms are not exhibited here.

4.3. Presence of Slivers in HODTs

To evaluate if the increase in order resulted in an important increase in the presence of slivers,
we measured the average aspect ratio of the triangles in each final triangulation, as previously done in [4].
From the results, it can be observed that, except for the exact algorithm from [14] (1-exact-KLS) analyzed
in Section 4.4, the values remain more or less low (i.e., similar to the ones measured in the original
Delaunay triangulation) and lower for lower k order (maximum and final) values. This indicates
that HODTs do not change significantly the shape of the triangles, with respect to the Delaunay
triangulation. Most tests for k = in f (except for one, Kinzel Springs JND) also resulted in only a mild
increase in aspect ratios. This behavior, which is likely to be rather terrain-dependent, is probably
explained in this case by the fact that the average aspect ratio is hard to change significantly by only
a few flips.

4.4. Comparison between Heuristic and Exact Algorithm for k = 1

Regarding the performance of the exact algorithm for k = 1 from [14], there are two aspects
worth mentioning.

Firstly, the maximum values obtained by both variants of the exact algorithm for k = 1 were in all
cases equal to the ones obtained by k-OD LOP (see Figure 4). In other words, for k = 1, our modified
LOP procedures obtained the optimal value in all cases. This is particularly interesting given that all
but one case already presented improvements for k = 1.

Secondly, it can be observed that, for the 1-exact-DT, the average aspect ratio remains equals to
the one measured in the heuristic. This is explained by the fact that by prioritizing Delaunay edges
(only performing a flip when it actually improves the target value) only a few changes are done to
the original DT in order to obtain the best 1-ODT. In Table 2, it can be observed the differences
between the amount of flips performed by 1-exact implementation from [14] (1-exact-KLS) and
the variant (1-exact-DT). Note that the number of flips performed by 1-exact-KLS lead to a higher
average aspect ratio than the one observed for 1-exact-DT.
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Table 2. Number of flips performed for Kinzel Springs and Moorehead SE, over 1% and 3% sample
point sets 1-exact-KLS and 1-exact-DT.

Terrain-Criteria Sample Size

1-Exact-KLS 1-Exact-DT

# Flips
Avg

Aspect
Ratio

# Flips
Avg

Aspect
Ratio

KS-ABN 1% 621 3.36967 2 3.02639
KS-ABN 3% 1388 2.82878 1 2.71731
KS-JND 1% 622 3.37215 1 3.02639
KS-JND 3% 1388 2.92940 1 2.71731

KS-WABN 1% 96 3.08753 0 3.02668
KS-WABN 3% 1088 2.88394 0 2.71765

MH-ABN 1% 376 4.64922 2 4.37547
MH-ABN 3% 1009 3.72890 1 3.54976
MH-JND 1% 449 4.69868 3 4.37550
MH-JND 3% 1010 3.73022 1 3.54976

MH-WABN 1% 585 4.83850 0 4.37653
MH-WABN 3% 136 3.58085 0 3.54948

Thus, the average aspect ratios were significantly worse for the exact algorithm from [14]
(1-exact-KLS), and something similar holds for the RMSE metric in several cases (see Figures 5 and 6).
As we mentioned before, this is due to the fact that the exact algorithm 1-exact-KLS makes no attempt
to preserve the original Delaunay edges, since its only concern is minimizing the maximum value.
On the contrary, in k-OD LOP, the starting triangulation is Delaunay, thus most edges in the final
triangulation are Delaunay as well. This results in better overall triangular shape, even though the
worst triangles are the same. On the other hand, the variant 1-exact-DT, did not affect the maximum
measure value and exhibited low average aspect ratios (see Table 2). It is worth noting that, in every
case, the 1-ODT obtained by 1-exact-DT is the same that the one obtained by the heuristic for k = 1.

On the positive side, as shown in Figure 7, the running times of the exact algorithms were in
every case lower than that of 1-OD LOP being that difference more significant for the larger data sets.
It’s worth noting that, by construction, running time measurements for LOP-INC and LOP-0 for k = 1
coincide thus, only the data for LOP-0 is presented in Figure 7. Regarding the comparison of running
times between both 1-exact variants, it can be observed that for 1-exact-DT time measurements are
always worse or equal than those observed for 1-exact-KLS. This is explained by the overhead that
exists in the 1-exact-DT implementation when verifying whether or not it is worth doing the flip
suggested by the result of the 2-SAT solver.
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Figure 9. Running times for Kinzel Springs (left) and Moorehead SE (right) for 3% sample set size
as the maximum order k increases, for ABN, WABN and JND. * Analysis for the exact algorithms is
presented in Section 4.4; thus, results for those algorithms are not exhibited here.

4.5. Running Time for k > 1

In this section, we analyze the running time as the order k increases. As mentioned before,
our implementation was not optimized, thus it is not the actual time values but the overall behavior
that is interesting to observe.

Figures 8 and 9 show an important growing trend of runtime as a function of k. Even though the
growing trend is very clear, the absence of monotonicity in the plot of LOP-0 is explained, again, by the
fact that different orders behave independently and can result in very different flips. It is clear from
these experiments that, as k increases, the search space of order-k Delaunay triangulations increases
considerably, involving higher running times.

Likewise, it is interesting to note that in all cases, order-k (for k < in f ) optimization was faster
than k = in f . This shows that restricting the order gives always faster methods in comparison with the
unconstrained LOP method (for both variants), as proposed in the original data-dependent literature.

It can also be observed a clear difference in behavior between the two LOP variants;
while, for LOP-0, a growing trend of time is seen as order k increases, LOP-INC exhibits generally
much lower values except for some peaks where the flips changing the final order of triangulation
are performed. Thus, as expected, the running times registered by the executions of LOP-INC are
considerably lower for LOP-0. Indeed, LOP-INC was faster in almost every run, with speed-ups of
a factor between 2 and 9 for k ≥ 10. This is explained by the fact that, for LOP-INC, the starting point
of the k-ODT construction is the k− 1-ODT, resulting in less flips per execution and consequently less
running time.



ISPRS Int. J. Geo-Inf. 2017, 6, 390 19 of 21

Figure 10. Average aspect ratio comparison between all criteria for Kinzel Springs (left) and Moorehead
SE (right) as the maximum order k increases (excluding exact algorithms). In each column, from top to
bottom: 1% and 3%.

4.6. Comparison between ABN, WABN and JND

Although it is not the aim of this paper to determine which data-dependent measure is most
suitable, a couple of remarks about them are in order. (In the following analysis, we only refer to
the results obtained with of k-OD LOP-0.) Perhaps the most interesting aspect to evaluate, as a way
to compare the quality of the approximations obtained by each criterion, is the behavior between
ABN, WABN and JND with respect to the error metrics. Here, we observe that in every case the
behavior of WABN was different, presenting in general higher RMSE values. Regarding JND and ABN,
their behavior was similar for Kinzel Springs and different for Moorehead SE. Another aspect one can
observe is the average aspect ratio of the resulting triangles. In this respect, when comparing ABN and
WABN, Figure 10 shows that in the majority of cases WABN produced a lower average aspect ratio
than ABN, as expected.

This behaviour was observed in both variants of the LOP method.

5. Conclusions

This work studied the practical use of higher order Delaunay triangulations as a tool to implement
data-dependent triangulations. We consider that the results obtained answer, to a large extent,
the questions posed at the introduction, suggesting that HODTs are indeed suitable for data-dependent
triangulations.

The most important question was whether HODTs allowed for obtaining a significant improvement
in the value of data-dependent criteria. In our experiments, it was shown that, even for low orders,
improvements can be significant, even when restricted to very small orders like k ≤ 3. In addition,
restricting to such small orders has the advantage that the running time overhead, in comparison
with using the Delaunay triangulation, is kept under control. In relation to the standard LOP
(i.e., k = in f )—the most standard way to implement data-dependent triangulations—our experiments
suggest that LOP does not give any important benefit over k-OD LOP for low orders. On the contrary,
LOP takes longer to run (at least 50% longer for the 1% data set and 35% longer for the 3% data set,
in comparison with k-OD LOP for k = 3), and may produce more slivers and higher approximation error.
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The average aspect ratio does not seem to get significantly worse for the orders tested. In fact,
for very small orders (e.g., k ≤ 3), there is no discernible difference. This is in contrast with the
case k = in f , for which, as expected, the average aspect ratio got worse in most cases (although the
difference in the average was, in general, rather small).

The implementation of the exact method for k = 1 revealed several interesting aspects.
Especially noteworthy is the fact that k-OD LOP always matched the optimal solution. This is
encouraging, and shows that even though the theory can suggest that optimizing over k > 1 may be
intractable, in practice simple methods like k-OD LOP may give very acceptable solutions. On the
other hand, 1-exact-KLS and 1-exact-DT ran in the majority of cases faster, although for practical use
it seems better to use 1-exact-DT, which gives priority to Delaunay edges, due to the notably better
RMSE values obtained.

Of the two variants of LOP implemented, LOP-INC showed in general advantages over LOP-0:

• a lower final order of triangulations,
• fewer flips,
• monotonically decreasing values,
• and—probably the most important difference—considerably faster.

Thus, from a practical point of view, it seems that, for an exploratory use of HODTs where many
values of k want to be tested, LOP-INC is highly preferable.

Regarding the practicality of implementing HODTs, the k-OD LOP method resulted almost as
simple as LOP-0, requiring only minimal additions to be able to compute the order of a triangle.
The k = 1 exact algorithm implementation was a bit more complex and required the use of an external
library for SAT solving, but still can be considered a practical method, especially given its speed and
that for k = 1 almost all tests resulted in improvements.

Finally, in [1–6], it was argued that the improvement of methods based on minimization of
curvature often gave improvements in the RMSE. However, in our experiments, this is not entirely clear.
The RMSE results obtained for the three data-dependent measures show only a mild improvement
in approximation error. Our experiments achieve significant improvements in the maximum ABN,
but not always accompanied by improvements in the RMSE. Even though it was never the goal of
this work to question the different data-dependent criteria, it does raise the question of whether these
data-dependent criteria can improve significantly the approximation error for real terrains, or whether
other criteria should be explored further. In any case, it seems that HODTs will be a useful tool to
optimize data-dependent criteria in general.

We consider that the main pending issues for future work are: (1) exploring further whether some
data-dependent measures, in combination with HODTs, can significantly improve the approximation
error in relation to that of the Delaunay triangulation, and (2) making HODTs widely available to users
(at least from a practical standpoint). In relation to (1), it is worth noting that the experiments presented
in this paper are based on two real terrains, but as such they have the limitation of not covering
many other types of terrains for which results may be different. It is therefore another interesting
line of future research to extend these experiments to a wider family of terrains, preferably natural,
that provide a more comprehensive sample of relevant terrain topographies. At this point, the use
of synthetic terrains is also a valid option, as long as the selection and their design is justified in
terms of geographic criteria (as opposed to the synthetic terrains used in previous work mentioned in
Section 2). As for (2), this work showed that a general optimization module based on local optimization
is relatively easy to program; a good next step would be to make it available off-the-shelf in some
of the major GIS, with the option of customizing the optimization criteria. Then, the users could
decide by themselves whether HODTs and data-dependent triangulations can offer a better alternative
to Delaunay.
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