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Abstract

:

Invasive alien species are among the most important, least controlled, and least reversible of human impacts on the world’s ecosystems, with negative consequences affecting biodiversity and socioeconomic systems. Species distribution models have become a fundamental tool in assessing the potential spread of invasive species in face of their native counterparts. In this study we compared two different modeling techniques: (i) fixed effects models accounting for the effect of ecogeographical variables (EGVs); and (ii) mixed effects models including also a Gaussian random field (GRF) to model spatial correlation (Matérn covariance function). To estimate the potential distribution of Pittosporum undulatum and Morella faya (respectively, invasive and native trees), we used geo-referenced data of their distribution in Pico and São Miguel islands (Azores) and topographic, climatic and land use EGVs. Fixed effects models run with maximum likelihood or the INLA (Integrated Nested Laplace Approximation) approach provided very similar results, even when reducing the size of the presences data set. The addition of the GRF increased model adjustment (lower Deviance Information Criterion), particularly for the less abundant tree, M. faya. However, the random field parameters were clearly affected by sample size and species distribution pattern. A high degree of spatial autocorrelation was found and should be taken into account when modeling species distribution.
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1. Introduction


Invasive species are among the most important, least controlled, and least reversible of human impacts on the world’s ecosystems, with negative consequences, affecting their sustainability, biodiversity, biogeochemistry and social/economic systems [1,2,3,4]. This invasive presence is known to influence the structure and function of invaded ecological communities and is recognized as a major component of global environmental change, constraining sustainable management and/or conservation goals [1,5,6,7]. Moreover, biological invasions represent 40% of the economic losses in agricultural, grassland and forest ecosystems [8,9,10].



A main challenge in ecology is identifying and classifying determinants of invasiveness that provide suitable species habitats, such as, environmental variables and biotic interactions [11,12,13].



Oceanic islands have long been considered to be particularly vulnerable to biotic invasions, and much research has focused on invasive plants [14]. The vulnerability can be explained for two main reasons. Firstly, these islands are isolated and vary broadly in size, geology and ecology [14,15,16,17]. The second explanation is linked to the socioeconomic variables. The high level of islands invasions depends on several driven traits, such as, human demography, agriculture, forestry, trade, industry and tourism [18,19].



In the Azores Islands, the land use changes were extensive following human colonization in the 15th century when native vegetation became gradually extinct or highly modified [20]. The increase in pastureland and spread of invasive plants can produce dramatic changes in the ecosystems, causing serious problems not only for biodiversity, but also in forestry farming and hydrologic cycles [21,22,23,24]. Azorean native vegetation is threatened by several aggressive invaders (e.g., Pittosporum undulatum) which compete with indigenous species (e.g., Morella faya).



A variety of predictive models is currently in use to support management decisions and test key hypotheses regarding the patterns of spread of invasive plants [25,26,27,28]. Species distribution models (SDMs) have become a fundamental tool in ecology and biodiversity, and have broad applications in assessing the relationships between species occurrence, the environment and the impact of ecological change [29,30,31,32].



The strength of a SDM, in a certain way, is determined by the correlation of species distribution (presence or presence–absence) at multiple locations with relevant environmental covariates to estimate habitat preferences or predict distributions [32]. Linear regression is known to be one of the most widely used techniques to investigate how environmental variables influence species distribution patterns and occurrence, mainly due to its easy use and straightforward interpretation [33]. However, ecological data are often complex, unbalanced and contain missing values [34,35]. Therefore, conventional modeling techniques might originate non-significant predictions, leaving high amounts of unexplained variation [33,36,37] leading to under fit models, having insufficient suppleness to describe observed occurrence–environment relationships, and originating a misinterpretation of the factors shaping species distributions [38].



There are numerous methods for developing SDMs, which allowed improving the capability to predict complex systems, namely through their performance to detect and represent nonlinear and highly interactive relationships [39]. These techniques can provide new insights regarding the drivers of complex patterns, eventually increasing modeling accuracy [35,38,40,41,42].



Several statistical techniques have been applied to invasive plant distribution including logistic regression, generalized linear/additive models, tree-based models, fuzzy envelope models, genetic algorithms and maximum entropy [43,44,45,46,47]. These models differ in the underlying assumptions and algorithms, and must be chosen according with the type of the relationships between the environment, the occurrence, and species distribution, also considering the particular situation and goal [48,49,50].



One of the most pressing challenges in improving SDM performance is to consider spatial and temporal correlations and how this could affect spatial inference [51]. With the increasing availability of geocoded scientific data, hierarchical spatial models (e.g., Bayesian implementation) have received attention from ecologists [52,53].



Recently, the use of Gaussian random fields has acquired an important role, since it is ideally suited for fitting complex models to many of the rich spatial data sets [54,55]. The Integrated Nested Laplace Approximation (INLA; [56]) is designed for latent Gaussian models, a very wide and flexible class of models, including generalized linear mixed models (spatial and spatio-temporal models), and can be used in a wide variety of applications [54,57,58]. INLA makes use of deterministic nested Laplace approximations, as an algorithm tailored to the class of latent Gaussian models (LGMs) [51,56,59]. In fitting these models, INLA calculates accurate, deterministic approximations to posterior marginal distributions in place of long Markov Chain Monte Carlo (MCMC) simulations, gaining in time [52].



Moreover, INLA can integrate the Stochastic Partial Differential Equation (SPDE) approach proposed by Lindgren et al. [60] for the implementation of spatial and spatio-temporal models for point-reference data [55]. INLA handles Bayesian Markov random field models [56,61] with the additional advantage of integrating modeling approaches (such as Generalized Linear Models, GLM, and Generalized Additive Models, GAM) and uncertainty analyses into a more general hierarchical framework. As INLA is valid for generalized Gaussian Markov Random Field (GMRF) models, it can be used in situations where a latent Gaussian model (i.e., a linear regression type model) represents the basic process of interest and is observed via one of several possible sampling or measurement distributions (e.g., Gaussian, binomial, Poisson; [62]). In these conditions, the hierarchical model can be reparametrized, since the latent Gaussian process and regression coefficients from a GMRF and the remaining model parameters (termed “hyperparameters”) are scarce. For these specifications, the INLA procedure can be used to find approximate marginal posterior distributions with considerably less computational effort than stochastic methods [56,62]. All required computations are performed by a program called “inla” written in the language “C” which is bundled within a “R” library (R Development Core Team [63]) improving usability as a standard tool ([56,64]; www.r-inla.org).



A binomial Generalized Linear Model uses presence–absence records to model the distribution of the species based on a relationship (i.e., link function) between the mean of the response variable and the linear combination of the explanatory variables [65,66]. In INLA this can be complemented with SPDE. This consists in representing a continuous spatial process (e.g., Gaussian Field; GF) with the Matérn covariance function, as a discretely indexed spatial random process (e.g., GMRF; [52,60]).



Comparative studies of different applications of SDMs to forest species in the Azores are scarce and only a few studies evaluate which modeling method produce the most accurate spatial predictions [23,24,67,68,69].



The present study focuses on testing a methodology for producing more robust distribution models by selecting the main topographical and environmental characteristics in the study area, in order to predict the potential distribution of invasive and native shrubs in a woodland environment. We compared the application of two different modeling techniques: (i) a fixed effects model calculated both using maximum likelihood methods and INLA; and (ii) a mixed effects model including the spatial structure of the data as a random element.



The main goal of this research was to investigate if the addition of a GMRF, which accounts for spatial autocorrelation, will improve the modeling performance of SDMs. We started the modeling process following a maximum likelihood approach with a fixed effects model, we compared this approach with similar calculations in a Bayesian context (INLA), and finally we used the SPDE approach available in INLA to add the effect of a random field. Our hypothesis was that the use of mixed GLMs, including as stochastic element the GMRF, would show a better performance in terms of predictions, than the fixed effects GLMs. To test this hypothesis we used distribution data from invasive (Pittosporum undulatum) and native tree species (Morella faya) collected in two Azores islands, Pico and São Miguel, which are very distinct in terms of land use and geomorphology.




2. Materials and Methods


2.1. Study Area


The Azores is an archipelago in the Atlantic Ocean composed of nine volcanic islands. The islands are dispersed along a general WNW–ESE trend crossing the Mid-Atlantic Ridge in the area where Eurasian, African and North American lithospheric plates meet [70]. The islands are located in the North Atlantic Ocean about west of Portugal mainland, between latitudes 36°55′43′′ North and 39°43′23′′ North and longitudes 24°46′15′′ West and 31°16′24′′ West; with a land surface of 2333 km2 and about 780 km of coastline [71,72]. The climate is temperate oceanic with a mean annual temperature of 17 °C at sea level; Relative humidity is high and rainfall ranges from 1500 to more than 3000 mm/m2 per year, increasing with altitude and from east to west [73,74]. Maximum altitude of the islands ranges from 402 m to 2351 m, with several islands reaching more than 1000 m [75].



All the Azorean islands were uninhabited by humans until the late 15th century, although recent paleoecological studies suggest an earlier settlement [76]. Since then, the vegetation cover of the islands suffered pronounced changes with the onset of human settlements [77]. Clearing of native forests, that was intense shortly after colonization, land use changes, and the introduction of invasive plants caused major vegetation changes [78,79,80].



Pico Island is the youngest island of the Azores archipelago, with a land surface of 449 km2 and less than 300,000 years, originated by subaerial volcanic activity and is located between the coordinates 38°30′ North and 28°20′ West [81,82]. It is noted for its eponymous volcano, Ponta do Pico, which is the highest mountain in Portugal with 2351 m [83].



São Miguel Island is the largest (747 km2) and the most populous of the Azores, located at 37°50′ North and 25°30′ West [84]. The island is characterized by a large variety of volcanic structures, including three active trachytic composite volcanoes with caldera (i.e., Sete Cidades, Fogo and Furnas; [85]). The highest elevation of the island (Pico da Vara, 1103 m) is localized between Povoação and Nordeste.




2.2. Study Species


We selected Pittosporum undulatum Ventenat (Pittosporaceae), the most common invasive tree, and Morella faya (Aiton) Wilbur (Myricaceae) one of the most common native trees [67].



Sweet pittosporum [86] is a long lived evergreen tree native to forests in southeastern Australia that grows up to 15 m [87,88,89]. It is invasive outside its native range in Australia, in the Portuguese mainland, in the Azores, North America, Southern Africa and in many oceanic islands [88,89,90,91,92]. For more information see the reviews by Hortal et al. [67] and Lourenço et al. [92].



Morella faya is an evergreen shrub or small tree, found on all the Azores islands, and considered as a frequent member of the coastal and middle altitude natural forests [79,93,94,95,96]. Nevertheless, it can also be found at up to 600 m of altitude and even as high as 1000 m in Pico Island whereas in the Canary Islands and Madeira it is found up to 1300 m [94,95]. It was originally introduced to the Hawaiian Islands in the late 1800s and was used in forestry plantations in the late 1920s becoming invasive [97,98]. For more information see Silva and Tavares [99] and Elias et al. [96], and references therein.




2.3. Species Distribution Data


2.3.1. Presence Data


Data were taken from the Forest Inventory of the Azores Government ([100], (see [92], for further details). The data, provided in vectorial format (shapefile), were converted to raster (RST) and comma-separated values (CSV) formats for further analysis. All biological data was geocoded to a grid of 100 × 100 m in order to match the EGVs used. We used the training set (100%) and then proceeded to a random and progressive reduction in three steps (Table 1). A completely random selection of samples was conducted in software QGIS Valmiera 2.2, using an appropriate vector function.




2.3.2. Pseudo-Absences


As absences were not available in the original data set, pseudo-absences were generated by a random selection. This method involves taking pseudo-absence points from the background data, randomly, across the whole study area. We used 10,000 pseudo-absences/absences, as recommended in previous research [101,102,103,104], and followed the general guidelines provided in the literature [105,106,107,108,109].





2.4. Ecogeographical Variables


In this study all data layers (ecogeographical variables) were stored in a geographical information system (GIS) and used to describe 100 × 100 m cells covering the entire study area (Table 2).



2.4.1. Topographical Variables


Topographical variables were derived based on a digital elevation model (DEM) available in “Clima Insular à Escala Local” (CIELO) model ([22,23,69,73,74,110]; see http://www.climaat.angra.uac.pt). The variables used were digital elevation model, aspect, slope, curvature, flow accumulation, summer hill shade and winter hill shade. Curvature is the second derivative of the surface, which highlights the local geomorphology, specifically the flatness, convexity and concavity of the surface. Flow accumulation is a simulation of the superficial flow by considering that all raster cells flow into each downslope cell in the DEM. Hill shade is a simulation of the lighting conditions on the surface dictated by the topography and the position of the Sun (the Summer and Winter solstices were considered). For further details see Costa et al. [22,23] and Dutra Silva et al. [69].




2.4.2. Climatic Variables


Climatic variables were derived from CIELO model developed by Azevedo [110]. This model simulates the climatic variables in an island reproducing the thermodynamic transformations experienced by an air mass crossing the orography, and simulates the evolution of the air parcel’s properties starting from the sea level [73]. The model consists of two main sub-models. One, relative to the advective component simulation, assumes the Foehn effect to reproduce the dynamic and thermodynamic processes. The second concerns the radiative component and energy balance as affected by the orographic clouds and by topography. The climatic variables selected, were air temperature, precipitation, relative humidity with maximum and minimum extremes, seasonal variation, annual and monthly averages and a summary obtained by Principal Component Analysis (PCA) (see [23,24,69]).




2.4.3. Land Use Variables


Land use variables included one variable expressing the distance to six types of land use (forest; natural vegetation; pastureland; agriculture; barren/bare areas; and urban/industrial areas) [23,24,69]).





2.5. Modeling Approach


Based on R, a language and environment for statistical computing, we used the glm() function and the INLA package [56] to fit GLMs following three approaches: (i) a binomial fixed effects GLM with a maximum likelihood calculation; (ii) a binomial fixed effects GLM with calculations in a Bayesian context (INLA); and (iii) a binomial mixed effects GLM including a random spatial effect.



The modeling procedures followed a sequential approach:




	(i)

	
We started by an intensive evaluation of fixed effects models using both glm() function and INLA, by testing 400 models including different combinations of EGVs.




	(ii)

	
After this preliminary evaluation, we tested the bests models including topographic, climatic and land use data, and compared results obtained using glm() and INLA.




	(iii)

	
The best models were further selected and we used INLA to derive mixed effects models, including spatial correlation as the random element.









The response variable is binary, representing the presence (1) or absence (0) of the species in each location sampled,     Z i     representing the occurrence. Consequently, the conditional distribution of the data is:


    Z i  ~ B e r  (   π i   )    



(1)




assuming that observations are conditionally independent given     π i    , which is the probability of occurrence at location    i    (  i = 1 ,   … ,   n  )    .



Therefore, the fixed effects model would be:


   l o g i t  (   π i   )  = β  x i    



(2)




where    β     represents the vector of the regression coefficients,   x   is the matrix of covariates and the logit transformation is defined as    l o g i t  (   π i   )  = log  (   π i  /  (  1 −  π i   )   )    .



And the mixed effects model would be:


   l o g i t  (   π i   )  = β  x i  +  W i    



(3)




where     W i     represents the spatially structured random effect.



The spatially structured random effect was modelled by using the SPDE approach that models GRFs relatively fast, including datasets with complex spatial structure [60,111]. This is often the case of forest data, since the target species often show clustered spatial patterns with regions without any values [112].



    W i     is assumed to be Gaussian with a given covariance matrix     σ W 2  H  ( ϕ )    , depending on the distance between locations and with hyperparameters     σ W 2     and   ϕ   representing, respectively the variance and the range of spatial effect [60]:


   W ~ N  (  0 ,  σ W 2   )  H  ( ϕ )    



(4)







When using the SPDE approach the correlation function is not modeled directly. The Markov property makes the covariance matrix (Q) sparse, enabling the use of efficient and faster numerical algorithms and the use of the Matérn covariance function [60,112].



Under this perspective, Equation (4) can be stated as follows:


   W ~ N  (  0 , Q ( k , τ  )  )   



(5)







The Gaussian field,    W ,    depends on two different parameters,    k     and    τ   , which determine the range of the effect and the total variance, respectively. The aim is to estimate the parameters and specify the prior distributions for each parameter involved in the model (    β 0  ,   β ,   k , τ )   . We used the default priors and hyperparameters currently implemented in R-INLA. In particular, for the parameters involved in the fixed effects, we used the Gaussian distribution    β ~ N  (  0 ,   1000  )     to specify the parameter portion of the model and the regression coefficients. The precision parameter for the random effects was given a LogGamma    ( 1 ,   0.00005   ) prior. To model the spatial correlation, we assumed a spatial Matérn covariance using the SPDE approach, with parameters     θ 1  = l o g    ( k )     and     θ 2  = l o g  ( τ )    , where     θ 1     and     θ 2     are assigned a joint normal prior distribution [60,64,113].




2.6. Model Selection


Best candidate models were selected based on Akaike Information Criterion (AIC; [114,115,116,117,118]). AIC forms the basis of information-theoretic approaches to modeling and can be associated with identifying variables for inclusion or exclusion in models. These decisions are based on the principle of parsimony and the AIC is actually equivalent to twice the log-likelihood of the model fitted plus two times the number of parameters estimates in its information.



To assess the robustness and predictive ability of the models, the method proposed by Boyce et al. [119] and improved by Hirzel et al. [120] was used. The validation criteria considered was based on the analysis of continuous Boyce indexes and curve shape: (i) the standard deviation around the curves should be narrow; (ii) the curves should be linear and ascending; and (iii) the O (Observed)/E (Expected) ratio should be high [23,120]. Ideally, a good habitat suitability (HS) model produces a monotonically increasing curve and its goodness of fit is measured by the Spearman rank correlation coefficient [23,120].



Model accuracy was evaluated in terms of the Area Under the Curve (AUC) [42,121,122,123,124]. AUC values were calculated based on a 10-k fold cross validation [125] of the respective data set. This means that AUC calculations were repeated 10 times for each model, using 75% of the data for training and 25% for testing. A good model is defined by a curve that maximizes sensitivity for low values of the false positive fraction [126]. The significance of the curve is quantified by AUC and the values range from 0.5 to 1. Values close to 0.5 indicate a fit no better than expected by random, while a value of 1 indicates a perfect model [127,128].



In the case of the implementation of the INLA/SPDE approach [56], marginal posterior distributions were summarized by 95% Bayesian Credible Intervals (BCI; the 0.025 and 0.975 quantiles of the posterior distribution), while Deviance Information Criterion (DIC; [129]) and Watanable-Akaike Information Criterion (WAIC; [130]) were used for model comparison. DIC is a hierarchical modeling generalization of the AIC and the Bayesian Information Criterion (BIC). It is a criterion for comparing complex hierarchical models introduced by Spiegelhalter et al. [129] and defined as


   D I C =  D ¯  +  p D    



(6)




where    D ¯    is the posterior mean of deviance of the model and     p D      is the effective number of parameters in the model (see [129]). Details on how to compute the quantities in Equation (6) using the INLA approach are described in Rue et al. [56]. DIC has gained popularity in part through its implementation in the graphical modeling package BUGS [129] but it is known to have some problems, arising in part from not being fully Bayesian in that it is based on a point estimate. According to Vehtari et al. [131] for DIC, there is a similar variance-based computation of the number of parameters that is notoriously unreliable, but the WAIC version is more stable because it computes the variance separately for each data point and then sums; the summing yields stability. WAIC is a more fully Bayesian approach for estimating the out-of-sample expectation based on the log pointwise posterior predictive density [130,131]. It is based on the series expansion of leave-one-out cross-validation (LOO), and asymptotically they are equal [130]. Another factor that measured the quality of the models was the mean Brier Score [132]. We used the mean Brier Score and “leave-one-out” cross validation to assess the predictive power of each model, based on the Conditional Predictive Ordinate statistic (CPO; [133,134]). The Brier Score is an appropriate score function that measures the accuracy of probabilistic predictions. As indicated by Roos and Held [135], we computed the mean logarithm CPO (LCPO). CPO is a predictive measure that can be used to validate and to compare models; and as a device to detect possible outliers or surprising observations [135]. Lower values for DIC, WAIC and LCPO represent the best compromise between fit and parsimony.




2.7. Calculation of the Posterior Distribution and of the Random Field


Once the inference has been carried out, the next step is to predict the occurrence of the target species. The SPDE module allows the construction of a Delaunay triangulation around the sampled points in the region of interest [136]. As opposed to a regular grid, triangulation is a partition of the region into triangles, satisfying constraints on their size and shape in order to ensure smooth transitions between large and small triangles [112,137]. Firstly, observations are treated as initial vertices for the triangulation and extra vertices are added heuristically to minimize the number of triangles needed to cover the region subject to the triangulation constraints [137]. These extra vertices are used as prediction locations.



The function inla.mesh.2d() creates the Constrained Refined Delaunay Triangulation (CRDT), called mesh, on which the Gaussian Random Field is to be built. This is straightforward in R-INLA, but still requires some tuning of the cutoff and max.edge parameters. Several values were tested following the guidelines of the INLA authors [56,57,60]. We opted for a value of cutoff = 100 and max.edge = c(500, 1000). The cutoff parameter was used to avoid building many small triangles around clustered input locations while max.edge parameter specified the maximum allowed triangle edge lengths in the inner domain and in the outer extension [60] (it should be noted that our geographical information system was set up in a UTM projection, therefore in meters). These parameters allowed obtaining a regular and even covering of the studied area, and a clear transition to the “no data” region outside of the study area (i.e., the ocean).



After the prediction is performed in the selected location, there are additional functions that linearly interpolate the results within each triangle into a finer regular grid. As a result of the process, we obtain a predictive posterior distribution of P. undulatum and M. faya occurrence for the study area. The prediction in INLA was performed with model calculation, considering the prediction locations as points where the response was missing [137].





3. Results


3.1. Preliminary Selection of Models


A preliminary screening/analysis was performed to investigate which variables would be more suitable for modeling the presence–absence of both species by testing 400 models with different combinations of EGVs, including topographic, climatic and land use data. According to the AIC, the continuous Boyce Index and to the AUC, the models with best fit were obtained by using the EGV sets described in Table 3.




3.2. Fixed Effects Models


Table 4 includes results for different scenarios (EGV sets) and different locations. Consistent results were found among all EGV sets both for P. undulatum and M. faya. In particular, we found no systematic difference in the statistical performance of glm() and INLA.



Regarding P. undulatum in Pico Island, the two information criteria gave identical results regardless of the EGV set. Small differences in AUC and Boyce Index were observed between the five EGV sets. The AUC values generally increased with the addition of environmental variables (EGV set 1 to 5). For M. faya, the values of AIC and DIC were similar. The models fitted the data well, with the mean AUC of 0.883 and a high value for Boyce Index (Table 4). This suggested that the models for Pico Island were robust and could accurately predict the occurrence of both species within the range of predictor variables used.



Concerning São Miguel Island scenarios for P. undulatum, we found a considerable agreement between methods glm() and INLA. However, AUC scores and Boyce Index were generally lower, compared to the results for Pico Island. The mean of AUC varied from 0.796 (EGV set 1) to 0.877 (EGV set 5). We detected clear differences between models at the Boyce Index (ranged between −0.480 to 0.991). With regard to the results for M. faya in São Miguel Island, the values of AIC and DIC were similar. The same variation in the Boyce Index was also found.



Based on our results, in general, the EGV set 5 was the best predictive model for both species and islands with the minimum values of AIC and DIC, and highest values for AUC and the Boyce Index.




3.3. Mixed Effects Models


Table 4 shows the most relevant models regarding different combinations of variables (EGV set 5) for P. undulatum and M. faya. Models including a spatial random field performed better (lower DIC) than the respective fixed effects models.



Regarding M. faya in São Miguel Island, the model with a spatial effect did not allowed the calculation of the DIC. A possible explanation is the difference in the orographic conditions of the study area, as well as the peculiar distribution of M. faya. The type distribution of M. faya in São Miguel seems to be highly dependent on land use. In the past this species was very abundant in São Miguel Island. Due to forest clearing, it remained only in refuges, such as volcanic crater ridges. With a distribution that could be largely dependent on land use, model adjustment could be affected in a relevant manner. However, we were able to calculate WAIC (Table 4).



The values of the mean Brier Score ranged between 0.002 and 0.120, which represent a good degree of adjustment (Table 4, Table 5 and Table 6). As can be seen in Table 5 and Table 6 the values of DIC and LCPO have decreased according to the sample size. All methods (fixed and mixed effects models) provided the same trend when using sampling reduction, as expected. All model choice criteria were in agreement, indicating a reasonable predictive quality. In particular, model comparison indicated that sample size plays a determining role in P. undulatum and M. faya distribution modeling, namely when a spatial random effect is also included.



3.3.1. Pico Island


There was a positive effect of slope, annual relative humidity range, and annual precipitation range, and a negative effect of annual mean precipitation and distance to forest in the probability of P. undulatum occurrence (Table 7).



There was a positive effect of slope, and a negative effect of elevation, annual temperature range, annual mean precipitation, distance to forest and distance to agricultural areas in the probability of M. faya occurrence (Table 7).




3.3.2. São Miguel Island


There was a positive effect of slope, flow accumulation, and winter hill shade, and a negative effect of annual mean temperature, annual mean temperature range, annual mean relative humidity, annual mean precipitation, distance to forest and distance to natural vegetation in the probability of P. undulatum occurrence (Table 7).



There was a negative effect of summer hill shade, annual mean temperature range, annual relative humidity range, annual mean precipitation range, distance to forest and distance to barren areas in the probability of M. faya occurrence (Table 7).





3.4. Prediction of the Random Field


Table 8 shows the hyperparameters for the best models selected where     θ 1     is the hyperparameter related with   k  , the spatial scale parameter, and     θ 2     is the hyperparameter that controls the variance of the random field.



The parameters of the random field are log (  k  ) =     θ 1     and log (   τ   ) =     θ 2    , where   τ   is the local variance parameter. We calculated the posterior marginal distribution of log (  k  ) and also of 1/  k   which corresponds to the range parameter, expressed in meters. Posterior marginal distributions of the nominal variance of the random field and of the practical range were also obtained. Results for all species and islands are shown in Table 9. The variance of the random field     (   σ W 2   )     decreased with the sample reduction and elimination of EGVs with non-significant effect. For both islands, the variance of the random field was relatively higher for M. faya than for P. undulatum.



3.4.1. Pico Island


For P. undulatum the random field (Figure 1) showed high values in the coastal zone of the island where most presences were located, and low values in the central area of the island. With regard to M. faya (Figure 2), high values appear in western part of Pico Island, where presences were more common. A reduction in the the number of presences apparently leads to an increase in the values of the practical range. Also, the structure of the spatial random field starts to collapse from 500 to 50 presences for P. undulatum and between 300 and 30 presences for M. faya.




3.4.2. São Miguel Island


The mean and standard deviation of the spatial random field are shown in Figure 3 and Figure 4. Regarding P. undulatum, results indicate a strong effect with high values in specific zones of the island: southeastern, northeastern and caldera ridge located on the western portion of the island (Figure 3).



As can be seen in Figure 4, M. faya presents a peculiar spatial structure derived from the low number of presences. The random field shows high values in the caldera ridge located on the western portion of the island. The trend resulting from the reduction of sample size is again observed, affecting the spatial scale parameter. Also, the structure of the spatial random field starts to collapse from 300 to 30 presences for P. undulatum and from 300 to 30 presences for M. faya. Standard deviation patterns for the spatial random field are driven by the amount of information. The variation on standard deviation is due to the density of presences over the study area.





3.5. Prediction of the Response Grid


We predicted the response jointly with the estimation process by computation of the posterior distributions, also called posterior mean of linear predictor. We see at the Figure 5, Figure 6, Figure 7 and Figure 8 a clear pattern on the average probability of occurrence. The posterior mean of the linear predictor confirms that orographic conditions play a key role in the distribution of P. undulatum and M. faya.



3.5.1. Pico Island


For P. undulatum, the probability of occurrence in Pico Island was greatest at the lowest elevation belt (Figure 5). Along, and somewhat above the coastal zone, mean values of the linear predictor showed high values, where the concentration of presences was higher and, as we move inland, the mean probability of occurrence decreased sharply. The predictions including the random field seem to be more sharp and precise, with a lower variation than the predictions obtained with the fixed effects model. Similar results were found for M. faya (Figure 6). Clearly, the predictive resolution of the mixed effects models seems to be higher when compared with that of fixed effects models. This is in agreement with the model comparison presented above, and where mixed effects models showed better adjustment than fixed effects models.




3.5.2. São Miguel Island


Figure 7 shows the mean posterior probability of ocurrence for P. undulatum. Areas with high probability of occurrence include southeast, northeast and the caldera ridges located on the western and eastern portions of the island, as well as several areas along the water lines. Again, the predictions including the random field seemed to be more sharp and precise, with a lower variation than the predictions produced without the random field. M. faya (Figure 8) showed a high probability of occurrence in the caldera ridge located on the western portion of the island, as well as along the coast in the eastern part of the island (see Section 3.4.2). Again, the predictions seem to be much sharper when including the random field, as compared with the results of the fixed effects model.






4. Discussion


Species distibutions models are an important tool in ecology and can be applied to different research purposes. It is extremely important to understand the relationship between species and their habitats. Understanding the spatial distribution and identifying environmental variables that drive species abundance are key factors to produce a set of rules that predict the suitability of a site for the species, and to be able to implement management strategies.



In this study, we presented a retrospective analysis of the distribution of both invasive and native woody plants species to develop and compare statistical models. Our goal is to assess spatial transferability of the EGVs of woody plants, using different approaches. We compared two different modeling techniques: (i) fixed effects models accounting for the effect EGVs, calculated both using a maximum likelihood or a Bayesian approach; and (ii) mixed effects models including also a GRF to model spatial correlation (Matérn covariance function). Azorean forests include some widespread invaders. To evaluate the different modeling approaches, we used geo-referenced data for P.undulatum and M. faya (respectively, invasive and native trees), decribing their distribution in Pico and São Miguel islands, as well as topographic, climatic and land use EGVs.



From an inspection of our GLMs, we could find evidence that EGV set 5 showed the best fit. Model selection is important, as under-fitting a model may not capture the true nature of variability in the outcome variable, while an over-fitted model loses generality [138]. Our aim was then to select the model that best balanced these drawbacks [138,139]. Therefore, model adjustment was checked using different parameters (e.g., AIC, Boyce Index, AUC), to avoid a selection based on a unique potentially biased criterion. A model is only as good as the data which have generated it, and model selection will depend on the set of candidate models specified before the analyses are conducted [140,141,142]. We should point to the fact that, in general, the different criteria pointed out in the same direction.



It should also be noted that EGV set 5 included data of three different categories (i.e., topographic, climatic, land use), showing the importance of considering explanatory variables that can potentially provide complementary information [23,47,49,102,105,143]. Moreover, this also shows that land use data, while directly associated with the human action on the landscape, can have a decisive effect on the distribution patterns of native and invasive species [23,24,67,144,145,146]. Also, modeling projects based on climate variables only might not always be effective [145,147].



Fixed effects models run with maximum likelihood or a Bayesian approach (INLA) provided very similar results, even after reducing the size of the presence data set. In fact, maximum likelihood methods and Bayesian methods based on non-informative priors originate the same results [56,60,148,149].



Generally, consistent subset selection and optimized prediction performance cannot be achieved at the same time [150,151]. However, our results suggested the selection of the same combination of EGVs when using different sample sizes. Meanwhile, in some cases the effect of particular EGVs became non-significant for very small samples. This should be taken into account when dealing with species represented by a relatively low number of presences [24,69].



It should also be noted that our fixed effects models originated predictions that are globally similar to those previously obtained using other modeling approaches such as maximum entropy and ecological niche factor analysis (e.g., [23,24,67,69]).



Another approach was the use of mixed effects models including also a GRF to model spatial correlation (Matérn covariance function). Several remarks regarding mixed effects models can be drawn from our study. First, the results that were obtained with the addition of the random field were more sharp and precise than model outcomes originated with fixed effects only, since the spatial structure accounted for a considerable amount of the global deviance. The addition of the random field increased model adjustment (lower DIC, WAIC), particularly for the less abundant tree, M. faya. This was evident, not only through the analysis of the different parameters used to evaluate model fit and to estimate the variation on the probability of species occurrence, but also when comparing the graphical output obtained for the two approaches.



Regarding M. faya in São Miguel Island, the model with spatial effect did not allowed the calculation of the DIC. A possible explanation is the difference in the orographic conditions of the study area, as well as the peculiar distribution of M. faya. The type distribution of M. faya in São Miguel seems to be highly dependent on land use. In the past this species was very abundant in São Miguel Island but due to forest clearing, it remained only in refuges, such as volcanic crater ridges [23,67]. With a distribution that could be largely dependent on land use, model adjustment could be affected in a relevant manner. However, we are able to calculate WAIC. According to Vehtari et al. [131] for DIC, there is a similar variance-based computation of the number of parameters that could be unreliable, while the WAIC version is more stable because it computes the variance separately for each data point and then sums up the partial results, yielding computational stability.



It was clear that the size of the data set affected the estimation of the spatial structure, showing that a sharp reduction in sample size might lead to the collapse or dissipation of the underlying spatial structure. This could have a considerable importance when modeling species that are not at equilibrium with the environment, such as invasive species, that might still extend their range, or native species that underwent a sharp reduction of a previously wider distribution range [23]. This was evident in the differences obtained between islands, and between species. In fact, the GRF values were consistently different for M. faya, most likely due to its somewhat restricted present distribution, since it might have declined from a previously common native species to a relict species that was replaced due to land use changes and the expansion by P. undulatum [23,96]. Also, both species showed a more irregular distribution in São Miguel Island which clearly affected the GRF parameters. It was apparent from our results that both species were mostly limited by elevation on Pico Island, while land use might have been more important in São Miguel Island, where both species occurred in particular refuges such as the ridges of volcanic craters or along water stream margins, since most of the forest was cleared outside those areas and replaced by pastureland.



Undoubtedly, a high degree of spatial autocorrelation is present and should be taken into account when modeling Azorean forest species. This confirms previous comparative results obtained for a wide range of Gaussian latent models [56]. Furthermore, while the average value of the GRF provides insights about the spatial structure of the data, its variance discriminates between areas of data accumulation or data deficiency [60,112]. Moreover, the processing time for fitting hierarchical spatial models is considered to be faster than MCMC simulations [57,113,134,152] and the use of INLA with R interface greatly facilitates implementation of Bayesian hierarchical spatial models. However, according to our experience, the approach including a random field is very demanding in terms of computation time, particularly when calculating the posterior probabilities on a grid.



Nevertheless, our results clearly show that the inclusion of a GRF in a mixed model approach provides new insights into the role of spatial correlation on forest species distribution patterns. A random field is a stochastic process, taking values in a Euclidean space, and defined over a parameter space with at least one dimension [64]. Since multivariate Gaussian distributions are determined by means and covariances, it is immediate that GRFs are determined by their mean and covariance functions, defined by hyperparameters [64,153]. The random field allows analyzing the heterogeneity of species distribution across the landscape and it is an important first step to obtain a spatial analysis of ecological data, by identifying the distribution and magnitude of species density. In fact, the variation on the mean of the random field expresses the variation remaining after the consideration of the effects of the covariates (i.e., EGVs) on the models. On the other hand, the variation on the standard deviation of the random field is due to changes in species density over the target region. Moreover, taking spatial dependence into account can lead to better inference, superior predictions, and more accurate estimates of the variability of model parameters, and a potential advantage of GMRF models for binary data is that they can aggregate pieces of binary information from neighboring regions to better estimate spatial dependence [154].



These methods have now been applied in ecology [55,62,112,137,155,156,157], climate research [158] and health sciences [159,160,161] and have very promising application in invasion and forest sciences. Moreover, the use of this approach in constructing species distribution maps might help the design of integrated management programs. Probability maps can be easily obtained from the posterior distribution and results are more intuitive and interpretable (i.e., the probability is explicit) for non-statisticians than p values [111,162].



The framework developed here can be expanded to support Azorean forestry management, and could be replicated in other island systems and forest regions, not only in projects addressing the ecology of particular forest species, but also when handling research questions related with the prediction of plant invader success and expansion (e.g., monitoring and risk assessment; [89,163,164]), the detection of areas potentially suited for restoration projects (e.g., potential distribution of rare species; [165]), modeling based on remote sense data [166,167], and modeling of the potential effect of climate change [168].
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Figure 1. Summary of the spatial random effect (Gaussian random field) for the best mixed effects models and their reduction for P. undulatum in Pico Island. Mean (a); Standard deviation (b). PR: Practical range. 
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Figure 2. Summary of the spatial random effect (Gaussian random field) for the best mixed effects models and their reduction for M. faya in Pico Island. Mean (a); Standard deviation (b). PR: Practical range. 
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Figure 3. Summary of the spatial random effect (Gaussian random field) for the best mixed effects models and their reduction for P. undulatum in São Miguel Island. Mean (a); Standard deviation (b). PR: Practical range. 
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Figure 4. Summary of the spatial random effect (Gaussian random field) for the best mixed effects models and their reduction for M. faya in São Miguel Island. Mean (a); Standard deviation (b). PR: Practical range. 
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Figure 5. Prediction of P. undulatum occurrence in Pico Island by posterior mean (a) and standard deviation (b) of the linear predictor. Top: Mixed effects model including a random field; Bottom: Fixed effects model (without a random field). All models calculated using INLA. 
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Figure 6. Prediction of M. faya occurrence in Pico Island by posterior mean (a) and standard deviation (b) of the linear predictor. Top: Mixed effects model including a random field; Bottom: Fixed effects model (without a random field). All models calculated using INLA. 
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Figure 7. Prediction of P. undulatum occurrence in São Miguel Island by posterior mean (a) and standard deviation (b) of the linear predictor. Top: Mixed effects model including a random field; Bottom: Fixed effects model (without a random field). All models calculated using INLA. 
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Figure 8. Prediction of M. faya occurrence in São Miguel Island by posterior mean (a) and standard deviation (b) of the linear predictor. Top: Mixed effects model including a random field; Bottom: Fixed effects model (without a random field). All models calculated using INLA. 
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Table 1. Number of species records used in modeling, per island and species. PU: Pittosporum undulatum; MF: Morella faya.
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Pico

	
São Miguel




	
PU

	
MF

	
PU

	
MF






	
Training sample (100%)

	
7269

	
3769

	
3188

	
375




	
Sample reduction

	




	
1st step

	
5000

	
3000

	
3000

	
300




	
2nd step

	
500

	
300

	
300

	
30




	
3th step

	
50

	
30

	
30

	
---
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Table 2. List of the 27 ecogeographical variables (EGVs) used to model indigenous and non-indigenous woody species.
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Variable Category

	
Variables

	
Code

	
Unit






	
Topographical

	
Digital elevation model

	
DEM

	
m




	
Aspect

	
ASP

	
°




	
Slope

	
SLP

	
%




	
Curvature

	
CRV

	




	
Flow accumulation

	
FLA

	




	
Summer hill shade

	
SHS

	




	
Winter hill shade

	
WHS

	




	
Climatic

	
Annual minimum temperature

	
TMIN

	
°C




	
Annual mean temperature

	
TM




	
Annual maximum temperature

	
TMAX




	
Annual temperature range

	
TRA




	
Annual mean temperature range

	
TMRA




	
Annual minimum relative humidity

	
RHMIN

	
%




	
Annual mean relative humidity

	
RHM




	
Annual maximum relative humidity

	
RHMAX




	
Annual relative humidity range

	
RHRA




	
Annual minimum precipitation

	
PMIN

	
mm




	
Annual mean precipitation

	
PM




	
Annual maximum precipitation

	
PMAX




	
Annual precipitation range

	
PRA




	
Annual mean precipitation range

	
PMRA




	
Land use

	
Distance to forest

	
DL 1

	
m




	
Distance to natural vegetation

	
DL 2

	
m




	
Distance to pastureland

	
DL 3

	
m




	
Distance to agriculture

	
DL 4

	
m




	
Distance to barren/bare areas

	
DL 5

	
m




	
Distance to urban/industrial areas

	
DL 6

	
m
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Table 3. Sets of EGV (1–5) that produced models with highest fit in Pico and São Miguel islands using fixed effects GLMs.






Table 3. Sets of EGV (1–5) that produced models with highest fit in Pico and São Miguel islands using fixed effects GLMs.





	
Variables

	
Code

	
Pico

	
São Miguel




	
P. undulatum

	
M. faya

	
P. undulatum

	
M. faya




	
EGV Set

	
EGV Set

	
EGV Set

	
EGV Set




	
1

	
2

	
3

	
4

	
5

	
1

	
2

	
3

	
4

	
5

	
1

	
2

	
3

	
4

	
5

	
1

	
2

	
3

	
4

	
5






	
Topographic

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	




	
Digital elevation model

	
DEM

	
+

	

	

	
+

	
+

	
+

	

	

	
+

	
+

	
+

	

	

	
+

	

	
+

	

	

	

	




	
Aspect

	
ASP

	
+

	

	

	

	

	

	

	

	

	

	
+

	

	

	

	

	
+

	

	

	

	




	
Slope

	
SLP

	
+

	

	

	
+

	
+

	
+

	

	

	
+

	
+

	
+

	

	

	
+

	
+

	
+

	

	

	

	




	
Curvature

	
CRV

	
+

	

	

	

	

	
+

	

	

	

	

	
+

	

	

	

	

	
+

	

	

	

	




	
Flow accumulation

	
FLA

	
+

	

	

	
+

	

	

	

	

	

	

	
+

	

	

	
+

	
+

	

	

	

	

	




	
Summer hill shade

	
SHS

	
+

	

	

	

	

	
+

	

	

	

	

	

	

	

	

	

	
+

	

	

	
+

	
+




	
Winter hill shade

	
WHS

	
+

	

	

	

	

	
+

	

	

	
+

	
+

	
+

	

	

	
+

	
+

	
+

	

	

	

	




	
Climatic

	




	
Temperature

	




	
Annual mean temperature

	
TM

	

	
+

	

	
+

	
+

	

	
+

	

	
+

	
+

	

	
+

	

	
+

	
+

	

	
+

	

	

	




	
Annual temperature range

	
TRA

	

	
+

	

	
+

	
+

	

	
+

	

	
+

	
+

	

	

	

	

	

	

	
+

	

	

	




	
Annual mean temperature range

	
TMRA

	

	

	

	

	

	

	

	

	

	

	

	
+

	

	
+

	
+

	

	
+

	

	
+

	
+




	
Humidity

	




	
Annual mean relative humidity

	
RHM

	

	

	

	

	

	

	

	

	

	

	

	
+

	

	
+

	
+

	

	

	

	

	




	
Annual relative humidity range

	
RHRA

	

	
+

	

	
+

	
+

	

	
+

	

	

	

	

	

	

	

	

	

	
+

	

	
+

	
+




	
Precipitation

	




	
Annual mean precipitation

	
PM

	

	
+

	

	
+

	
+

	

	
+

	

	
+

	
+

	

	
+

	

	
+

	
+

	

	

	

	

	




	
Annual precipitation range

	
PRA

	

	

	

	

	

	

	
+

	

	
+

	

	

	

	

	

	

	

	

	

	

	




	
Annual mean precipitation range

	
PMRA

	

	
+

	

	
+

	
+

	

	

	

	

	

	

	
+

	

	

	

	

	
+

	

	
+

	
+




	
Land use

	




	
Distance to forest

	
DL 1

	

	

	
+

	

	
+

	

	

	
+

	

	
+

	

	

	
+

	

	
+

	

	

	
+

	

	
+




	
Distance to natural vegetation

	
DL 2

	

	

	

	

	

	

	

	

	

	

	

	

	
+

	

	
+

	

	

	

	

	




	
Distance to pastureland

	
DL 3

	

	

	
+

	

	

	

	

	
+

	

	

	

	

	

	

	

	

	

	

	

	




	
Distance to agriculture

	
DL 4

	

	

	
+

	

	
+

	

	

	
+

	

	
+

	

	

	

	

	

	

	

	
+

	

	




	
Distance to barren/bare areas

	
DL 5

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	
+

	

	
+
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Table 4. Results of fixed and mixed effects models regarding different combinations of variables for P. undulatum and M. faya in Pico and São Miguel islands. BI: Boyce Index; sd: standard deviation; BS: Brier Score.






Table 4. Results of fixed and mixed effects models regarding different combinations of variables for P. undulatum and M. faya in Pico and São Miguel islands. BI: Boyce Index; sd: standard deviation; BS: Brier Score.





	

	
Fixed Effects Models

	
Mixed Effects Models




	
GLM

	
INLA

	
SPDE




	
AIC

	
BI

	
sd (BI)

	
AUC

	
10 k-Fold (AUC)

	
DIC

	
DIC

	
WAIC

	
Mean BS

	
Sum LCPO

	
Mean LCPO




	
Model

	
Study Species

	
Study Area

	
Mean

	
sd

	






	
EGV1

	
P. undulatum

	
Pico Island

	
18,629

	
0.988

	
0.002

	
0.740

	
0.752

	
0.007

	
18,629

	

	

	

	

	




	
EGV2

	
17,876

	
0.988

	
0.003

	
0.811

	
0.786

	
0.013

	
17,876

	

	

	

	

	




	
EGV3

	
16,687

	
1.000

	
0.000

	
0.809

	
0.824

	
0.012

	
16,687

	

	

	

	

	




	
EGV4

	
17,456

	
0.992

	
0.001

	
0.807

	
0.791

	
0.013

	
17,456

	

	

	

	

	




	
EGV5

	
15,917

	
1.000

	
0.000

	
0.849

	
0.838

	
0.008

	
15,917

	
12,858

	
12,821

	
0.106

	
6415

	
0.371




	
EGV1

	
M. faya

	
11,242

	
0.994

	
0.002

	
0.875

	
0.845

	
0.007

	
11,242

	

	

	

	

	




	
EGV2

	
11,146

	
1.000

	
0.000

	
0.852

	
0.849

	
0.004

	
11,147

	

	

	

	

	




	
EGV3

	
11,226

	
0.999

	
0.001

	
0.878

	
0.848

	
0.011

	
11,226

	

	

	

	

	




	
EGV4

	
10,812

	
1.000

	
0.000

	
0.855

	
0.858

	
0.009

	
10,812

	

	

	

	

	




	
EGV5

	
10,088

	
1.000

	
0.000

	
0.887

	
0.883

	
0.008

	
10,088

	
6685

	
6648

	
0.067

	
3328

	
0.242




	
EGV1

	
P. undulatum

	
São Miguel Island

	
11,871

	
−0.480

	
0.036

	
0.819

	
0.796

	
0.009

	
11,871

	

	

	

	

	




	
EGV2

	
13,676

	
0.750

	
0.009

	
0.623

	
0.675

	
0.016

	
13,676

	

	

	

	

	




	
EGV3

	
11,612

	
0.998

	
0.003

	
0.874

	
0.815

	
0.015

	
11,612

	

	

	

	

	




	
EGV4

	
11,640

	
0.425

	
0.017

	
0.820

	
0.802

	
0.018

	
11,640

	

	

	

	

	




	
EGV5

	
9734

	
0.991

	
0.002

	
0.880

	
0.877

	
0.014

	
9734

	
7779

	
7675

	
0.069

	
3862

	
0.293




	
EGV1

	
M. faya

	
2314

	
−0.503

	
0.039

	
0.806

	
0.871

	
0.036

	
2314

	

	

	

	

	




	
EGV2

	
3012

	
0.974

	
0.005

	
0.690

	
0.713

	
0.039

	
3012

	

	

	

	

	




	
EGV3

	
2766

	
0.996

	
0.003

	
0.871

	
0.803

	
0.031

	
2766

	

	

	

	

	




	
EGV4

	
2780

	
0.562

	
0.020

	
0.756

	
0.769

	
0.031

	
2780

	

	

	

	

	




	
EGV5

	
2515

	
0.646

	
0.022

	
0.732

	
0.853

	
0.028

	
2515

	
INF

	
927

	
0.008

	
1211

	
0.117
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Table 5. Results of sampling reduction on fixed and mixed effects models regarding EGV set 5 for P. undulatum and M. faya in Pico Island. BI: Boyce Index; sd: standard deviation; BS: Brier Score; PU: P. undulatum; MF: M. faya; P: Pico. Variables with non-significant values were excluded from the model (code: D) (Supplementary Materials).






Table 5. Results of sampling reduction on fixed and mixed effects models regarding EGV set 5 for P. undulatum and M. faya in Pico Island. BI: Boyce Index; sd: standard deviation; BS: Brier Score; PU: P. undulatum; MF: M. faya; P: Pico. Variables with non-significant values were excluded from the model (code: D) (Supplementary Materials).





	

	
Fixed Effects Models

	
Mixed Effects Models




	
GLM

	
INLA

	
SPDE




	
AIC

	
BI

	
sd (BI)

	
AUC

	
10 k-fold (AUC)

	
DIC

	
DIC

	
WAIC

	
Mean BS

	
Sum Log CPO

	
Mean Log CPO




	
Model

	

	

	

	

	
Mean

	
sd

	

	

	

	

	

	






	
P. undulatum—Pico




	
EGV5_PU_P Full

	
15,917

	
1.000

	
0.000

	
0.849

	
0.838

	
0.008

	
15,917

	
12,858

	
12,821

	
0.106

	
6415

	
0.371




	
EGV5_PU_P 5000

	
13,836

	
1.000

	
0.000

	
0.816

	
0.818

	
0.015

	
13,836

	
11,917

	
11,892

	
0.120

	
5949

	
0.397




	
EGV5_PU_P 500

	
3445

	
1.000

	
0.000

	
0.887

	
0.791

	
0.017

	
3445

	
3419

	
3418

	
0.042

	
1709

	
0.163




	
EGV5_PU_P_D 500

	
3443

	
1.000

	
0.000

	
0.790

	
0.789

	
0.020

	
3443

	
3416

	
3416

	
0.042

	
1708

	
0.163




	
EGV5_PU_P 50

	
585

	
0.998

	
0.001

	
0.803

	
0.796

	
0.085

	
585

	
579

	
578

	
0.005

	
290

	
0.029




	
EGV5_PU_P_D 50

	
587

	
0.999

	
0.000

	
0.777

	
0.786

	
0.075

	
585

	
578

	
576

	
0.005

	
289

	
0.029




	
EGV5_PU_P_D_D 50

	
582

	
1.000

	
0.000

	
0.644

	
0.777

	
0.061

	
582

	
580

	
578

	
0.005

	
290

	
0.029




	
EGV5_PU_P_D_D_D 50

	
582

	
1.000

	
0.000

	
0.793

	
0.777

	
0.056

	
582

	
578

	
577

	
0.005

	
289

	
0.029




	
EGV5_PU_P_D_D_D_D 50

	
581

	
1.000

	
0.000

	
0.754

	
0.769

	
0.066

	
581

	
579

	
577

	
0.005

	
289

	
0.029




	
Morella faya—Pico




	
EGV5_MF_P Full

	
10,088

	
1.000

	
0.000

	
0.887

	
0.883

	
0.008

	
10,088

	
6685

	
6648

	
0.067

	
3328

	
0.242




	
EGV5_MF_P 3000

	
9098

	
1.000

	
0.000

	
0.873

	
0.878

	
0.013

	
9098

	
6481

	
6456

	
0.072

	
3231

	
0.249




	
EGV5_MF_P 300

	
2125

	
1.000

	
0.000

	
0.944

	
0.873

	
0.021

	
2125

	
1982

	
1980

	
0.025

	
990

	
0.096




	
EGV5_MF_P 30

	
364

	
0.997

	
0.001

	
0.843

	
0.884

	
0.047

	
363

	
363

	
363

	
0.003

	
182

	
0.018




	
EGV5_MF_P_D 30

	
358

	
0.989

	
0.002

	
0.855

	
0.872

	
0.052

	
358

	
358

	
357

	
0.003

	
179

	
0.018
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Table 6. Results of sampling reduction for fixed and mixed effects models regarding EGV set 5 for P. undulatum and M. faya in São Miguel Island. BI: Boyce Index; sd: standard deviation; BS: Brier Score; PU: P. undulatum; MF: M. faya; SM: São Miguel. Variables with non-significant values were excluded from the model (code: D) (Supplementary Materials).






Table 6. Results of sampling reduction for fixed and mixed effects models regarding EGV set 5 for P. undulatum and M. faya in São Miguel Island. BI: Boyce Index; sd: standard deviation; BS: Brier Score; PU: P. undulatum; MF: M. faya; SM: São Miguel. Variables with non-significant values were excluded from the model (code: D) (Supplementary Materials).





	

	
Fixed Effects Models

	
Mixed Effects Models




	
GLM

	
INLA

	
SPDE




	
AIC

	
BI

	
sd (BI)

	
AUC

	
10 k-fold (AUC)

	
DIC

	
DIC

	
WAIC

	
Mean BS

	
Sum Log CPO

	
Mean Log CPO






	
Model

	

	

	

	

	
Mean

	
sd

	

	

	

	

	

	




	
Pittosporum undulatum—São Miguel

	




	
EGV5_PU_SM Full

	
9734

	
0.991

	
0.002

	
0.880

	
0.877

	
0.014

	
9734

	
7779

	
7675

	
0.069

	
3862

	
0.293




	
EGV5_ PU_SM 3000

	
9864

	
0.993

	
0.002

	
0.880

	
0.864

	
0.009

	
8849

	
7591

	
7503

	
0.069

	
3773

	
0.290




	
EGV5_ PU_SM 300

	
2169

	
0.996

	
0.004

	
0.887

	
0.866

	
0.020

	
2168

	
2098

	
2103

	
0.024

	
1052

	
0.102




	
EGV5_ PU_SM _D 300

	
2169

	
0.997

	
0.002

	
0.849

	
0.865

	
0.016

	
2168

	
2099

	
2103

	
0.024

	
1052

	
0.102




	
EGV5_ PU_SM 30

	
379

	
0.999

	
0.001

	
0.592

	
0.851

	
0.087

	
378

	
378

	
378

	
0.003

	
189

	
0.019




	
EGV5_ PU_SM _D 30

	
375

	
0.999

	
0.002

	
0.964

	
0.807

	
0.139

	
375

	
375

	
374

	
0.003

	
187

	
0.019




	
Morella faya—São Miguel

	




	
EGV5_ MF_SM Full

	
2515

	
0.646

	
0.022

	
0.732

	
0.853

	
0.028

	
2515

	
INF

	
927

	
0.008

	
1211

	
0.117




	
EGV5_ MF_SM 300

	
2150

	
0.717

	
0.022

	
0.841

	
0.765

	
0.030

	
2149

	
919

	
895

	
0.009

	
462

	
0.045




	
EGV5_ MF_SM 30

	
359

	
0.325

	
0.031

	
0.988

	
0.827

	
0.203

	
359

	
INF

	
243

	
0.002

	
124

	
0.012




	
EGV5_ MF_SM _D 30

	
360

	
0.003

	
0.049

	
0.753

	
0.884

	
0.115

	
359

	
273

	
293

	
0.002

	
145

	
0.014
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Table 7. Numerical summary of the posterior distributions of the parameters for the best mixed effects model for the two species studied and islands. This summary contains the mean, the standard deviation (sd), and 95% credibility interval. SM: São Miguel.






Table 7. Numerical summary of the posterior distributions of the parameters for the best mixed effects model for the two species studied and islands. This summary contains the mean, the standard deviation (sd), and 95% credibility interval. SM: São Miguel.





	
Island

	
Species

	
Predictor

	
Mean

	
sd

	
Q0.025

	
Q0.975






	
Pico

	
P. undulatum

	
Intercept (A0)

	
1.2717

	
2.4951

	
−3.6659

	
6.1333




	
Digital elevation model

	
−0.0021

	
0.0013

	
−0.0047

	
0.0005




	
Slope

	
0.0519

	
0.0091

	
0.0340

	
0.0699




	
Annual mean temperature

	
−0.1498

	
0.0830

	
−0.3126

	
0.0131




	
Annual temperature range

	
−0.0145

	
0.1458

	
−0.2998

	
0.2725




	
Annual relative humidity range

	
0.0988

	
0.0458

	
0.0094

	
0.1892




	
Annual mean precipitation

	
−0.0013

	
0.0003

	
−0.0019

	
−0.0007




	
Annual mean precipitation range

	
26.9892

	
6.2672

	
14.5772

	
39.2030




	
Distance to forest

	
−0.0053

	
0.0004

	
−0.0060

	
−0.0046




	
Distance to agriculture

	
−0.0004

	
0.0002

	
−0.0008

	
0.0001




	
M. faya

	
Intercept (A0)

	
10.8081

	
3.8892

	
3.1496

	
18.4210




	
Digital elevation model

	
−0.0067

	
0.0024

	
−0.0113

	
−0.0020




	
Slope

	
0.0486

	
0.0144

	
0.0204

	
0.0770




	
Winter hill shade

	
0.0009

	
0.0037

	
−0.0063

	
0.0081




	
Annual mean temperature

	
−0.1502

	
0.1294

	
−0.4043

	
0.1038




	
Annual temperature range

	
−0.5037

	
0.2117

	
−0.9201

	
−0.0889




	
Annual mean precipitation

	
−0.0022

	
0.0007

	
−0.0036

	
−0.0009




	
Distance to forest

	
−0.0047

	
0.0005

	
−0.0057

	
−0.0037




	
Distance to agriculture

	
−0.0009

	
0.0004

	
−0.0016

	
−0.0001




	
SM

	
P. undulatum

	
Intercept (A0)

	
29.7124

	
6.3398

	
17.2904

	
42.1730




	
Slope

	
0.0638

	
0.0055

	
0.0530

	
0.0746




	
Flow accumulation

	
0.0086

	
0.0012

	
0.0063

	
0.0109




	
Winter hill shade

	
0.0022

	
0.0010

	
0.0003

	
0.0042




	
Annual mean temperature

	
−0.4494

	
0.1673

	
−0.7784

	
−0.1217




	
Annual mean temperature range

	
−9.3326

	
2.2925

	
−13.8510

	
−4.8493




	
Annual mean relative humidity

	
−0.1601

	
0.0374

	
−0.2337

	
−0.0870




	
Annual mean precipitation

	
−0.0010

	
0.0003

	
−0.0015

	
−0.0005




	
Distance to forest

	
−0.0072

	
0.0004

	
−0.0080

	
−0.0064




	
Distance to natural vegetation

	
−0.0007

	
0.0001

	
−0.0009

	
−0.0004




	
M. faya

	
Intercept (A0)

	
12.8597

	
4.8016

	
3.3689

	
22.2520




	
Summer hill shade

	
−0.0228

	
0.0049

	
−0.0328

	
−0.0133




	
Annual mean temperature range

	
−12.0140

	
4.1734

	
−20.3010

	
−3.8892




	
Annual relative humidity range

	
−0.4172

	
0.1079

	
−0.6343

	
−0.2101




	
Annual mean precipitation range

	
0.4804

	
22.0600

	
−42.7840

	
43.8530




	
Distance to forest

	
−0.0082

	
0.0015

	
−0.0114

	
−0.0054




	
Distance to barren/bare areas

	
−0.0049

	
0.0010

	
−0.0070

	
−0.0033
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Table 8. Random field hyperparameters for the best model selected (EGV set 5).






Table 8. Random field hyperparameters for the best model selected (EGV set 5).





	
Study Species

	
Study Area

	
Hyperparameters

	
Mean

	
sd

	
Q0.025

	
Q0.05

	
Q0.975






	
P. undulatum

	
Pico Island

	
    θ 1    

	
4.499

	
0.062

	
4.370

	
4.503

	
4.611




	
    θ 2    

	
−6.508

	
0.097

	
−6.681

	
−6.514

	
−6.303




	
M. faya

	
    θ 1    

	
4.385

	
0.097

	
4.171

	
4.396

	
4.544




	
    θ 2    

	
−6.750

	
0.293

	
−7.180

	
−6.797

	
−6.077




	
P. undulatum

	
São Miguel Island

	
    θ 1    

	
3.789

	
0.100

	
3.622

	
3.779

	
4.010




	
    θ 2    

	
−5.889

	
0.099

	
−6.112

	
−5.877

	
−5.731




	
M. faya

	
    θ 1    

	
3.348

	
0.176

	
2.963

	
3.365

	
3.647




	
    θ 2    

	
−6.434

	
0.157

	
−6.716

	
−6.444

	
−6.103
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Table 9. Numerical summary of the posterior distributions of the best mixed effects models and their reduction for the two species studied in Pico and São Miguel islands. This summary contains the DIC, the posterior marginal distribution of log (  k  ) and 1/  k  , the posterior marginal distribution of nominal variance of random field     (  σ W 2    ) and posterior marginal distribution of the practical range (meters). PU: P. undulatum; MF: M. faya; P: Pico; SM: São Miguel. Variables with non-significant values were excluded from the model (code: D) (Supplementary Materials).
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Model

	
DIC

	
Log(   k   )

	
1/   k   

	
     (   σ W 2   )     

	
Practical Range






	
Pittosporum undulatum—Pico

	




	
EGV5_PU_P Full

	
12,858

	
−6.504

	
667.838

	
4.472

	
1904




	
EGV5_PU_P 5000

	
11,917

	
−6.486

	
655.872

	
2.665

	
1864




	
EGV5_PU_P 500

	
3419

	
−6.743

	
848.099

	
0.282

	
2718




	
EGV5_PU_P_D 500

	
3416

	
−6.683

	
798.443

	
0.267

	
2536




	
EGV5_PU_P 50

	
579

	
−8.067

	
3187.146

	
1.131

	
11,936




	
EGV5_PU_P_D 50

	
578

	
−8.382

	
4373.173

	
1.290

	
19,805




	
EGV5_PU_P_D_D 50

	
580

	
−7.982

	
2928.797

	
0.671

	
17,047




	
EGV5_PU_P_D_D_D 50

	
578

	
−7.871

	
2620.682

	
0.641

	
12,842




	
EGV5_PU_P_D_D_D_D 50

	
579

	
−7.286

	
1459.476

	
0.535

	
7370




	
Morella faya—Pico

	




	
EGV5_MF_P Full

	
6685

	
−6.725

	
833.101

	
124.597

	
2511




	
EGV5_MF_P 3000

	
6481

	
−7.104

	
1217.079

	
11.668

	
3531




	
EGV5_MF_P 300

	
1982

	
−7.944

	
2818.350

	
3.522

	
8626




	
EGV5_MF_P 30

	
363

	
−6.328

	
559.804

	
0.051

	
6522




	
EGV5_MF_P_D 30

	
358

	
−6.730

	
920.246

	
0.060

	
13,930




	
Pittosporum undulatum—São Miguel

	




	
EGV5_PU_SM Full

	
7779

	
−5.867

	
353.313

	
5.339

	
1026




	
EGV5_ PU_SM 3000

	
7591

	
−5.993

	
400.794

	
5.688

	
1141




	
EGV5_ PU_SM 300

	
2098

	
−6.379

	
589.498

	
0.795

	
1767




	
EGV5_ PU_SM _D 300

	
2099

	
−6.395

	
599.029

	
0.793

	
1791




	
EGV5_ PU_SM 30

	
378

	
−6.988

	
1083.141

	
0.123

	
6546




	
EGV5_ PU_SM _D 30

	
375

	
−9.422

	
12,351.790

	
1.437

	
11,2128




	
Morella faya—São Miguel

	




	
EGV5_ MF_SM Full

	
INF

	
−6.428

	
618.996

	
43.046

	
1780




	
EGV5_ MF_SM 300

	
919

	
−6.714

	
823.773

	
31.754

	
2333




	
EGV5_ MF_SM 30

	
INF

	
−6.339

	
566.232

	
8.557

	
1972




	
EGV5_ MF_SM _D 30

	
273

	
−6.762

	
864.418

	
5.053

	
3126












© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).






media/file13.jpg
Morella faya

375 presences 300 presences
PR=1780m PR=2333m
(a) Mean

(b) Standard deviation

30 presences
PR=1872m






media/file4.png
500 presences 50 presences

PR=2718 m PR=11936 m
g - oo
= - 0.6
®
[~ 92
oo ‘
< T 02
| £ ‘ e
)
(a) Mean
- 0.55 - 1.90
- 0.50 - 1.85
0.45 ~ 1.80
l 0.40 1.75

(b) Standard deviation





media/file26.jpg
(b) Standard deviation

10
09
08
07
06





media/file27.png
Prediction with random field

- 1.0
- 0.8

—- 0.6

[} 0.35
— 0.30
~ 0.25
- 0.20
- 0.15
0.10
0.05
0.00

(b) Standard deviation

Prediction without random field

~ ..
- 0.8

—- 0.6

(a) Mean





media/file21.jpg
Prediction with random field

(0 Mean.

®) Standard deviation

Prediction without random field

(o) ean





media/file31.png
Prediction with random field

1.0
—- 0.8

- 0.6

(a) Mean

- 0.40
- 0.35
- 0.30
- 0.25
- 0.20
- 0.15
0.10
0.05
0.00

(b) Standard deviation

Prediction without random field

~- 1.0
- 0.8

~- 0.6

(a) Mean





media/file18.jpg
(b) Standard deviation

064
062
0.60
058
056
054
0.52
0.50





media/file14.jpg
(b) Standard deviation

55
50
45
40
35
30





media/file28.png
~- 1.0

=S

- 0.8

(b) Standard deviation





media/file23.png
Prediction with random field

- 1.0

— 0.8

~ 0.6

- 04

0.2

0.0

(a) Mean

- 0.20

- 0.10

0.00

(b) Standard deviation

Prediction without random field

— 1.0

— 0.8

~ 0.6

(a) Mean





media/file15.png
Morella faya

375 presences 300 presences
PR=1780 m PR=2333 m

N W R O~

(b) Standard deviation

30 presences
PR=1972 m

o N B OO @

(a) Mean





media/file32.png
— 0.85
— 0.80
— 0.75
— 0.70
— 0.65
0.60
0.55
0.50

(b) Standard deviation





media/file19.png
Prediction with random field

(b) Standard deviation

Prediction without random field

—- 1.0

- 0.8

- 0.6

- 04

0.2

0.0

(a) Mean





media/file2.jpg
500 presences
PR=2718m

f"

) ~9 Y.

50 presences
PR=11036 m

«

~— . BT

(b) Standard deviation






nav.xhtml


  ijgi-06-00391


  
    		
      ijgi-06-00391
    


  




  





media/file11.png
Pittosporum undulatum

3188 presences
PR=1026 m

3000 presences
PR=1141m

LON & O 0o
ISR S

s © 4. 0 -
AN "~ Lt - -

(a) Mean

(b) Standard deviation





media/file6.jpg
300 presences. 30 presences.
PR=8626m PR=6522m

(b) Standard deviation





media/file16.png
(b) Standard deviation

55
5.0
45
40
% E
3.0





media/file20.png
- 0.64
- 0.62
— 0.60
- 0.58
- 0.56
0.54
0.52
0.50

(b) Standard deviation





media/file10.jpg
.....................

nnnnnnnnnnnnnnnn






media/file5.jpg
Morella faya

3769 presences 3000 presences
PR=2511m PR=3531m

(b) Standard deviation





media/file7.png
Morella faya

3769 presences 3000 presences
PR=2511m PR=3531m

12

-
o

A ©N &0 o

-6

(a) Mean

Hh AL ON &~ O @

(b) Standard deviation





media/file24.png
(b) Standard deviation

- 0.65

- 0.60






media/file29.jpg
Prediction with random field

@) Mean

b) Standard deviation

ion without random field

(@) Mean





media/file1.jpg
Pittosporum undulatum

7269 presences 5000 presences
PR=1904m PR=1864m

(b) Standard deviation





media/file25.jpg
Prediction with random field

o

Prediction without random field

(o) ean

o

|

o8
o6
02
o0





media/file12.png
300 presences
PR=1767 m

20

15
1.0
0.5
0.0
0.5

(a) Mean

0.95
0.90
0.85
0.80
0.75
0.70
0.65
0.60

30 presences
PR=6546 m

(b) Standard deviation

Foo2s

0.20
0.15
0.10
0.05
0.00
-0.05
-0.10
-0.15





media/file3.png
Pittosporum undulatum

7269 presences 5000 presences
PR =1904 m PR =1864 m

(b) Standard deviation





media/file9.jpg
Pittosporum undulatum

3188 presences. 3000 presences.
PR=1026m PR=1141m

5 T

(b) Standard deviation





media/file0.png





media/file22.jpg
(b) Standard deviation

0.65

0.60





media/file30.jpg
(b) Standard deviation

0.85
0.80
075
0.70
065
0.60
055
050





media/file8.png
300 presences
PR = 8626 m

2

30 presences
PR=6522 m

(a) Mean

1.9
1.8
1.7
1.6
15
14
13
12
11

—

(b) Standard deviation

0.05

0.04

0.03

0.02

0.01

0.00

-0.01

0.30

0.25

0.20

0.15

0.10

0.05





media/file17.jpg
Prediction with random field

) Standaradeviation

Prediction without random field

(@) Mean





