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Abstract: Recent developments in data mining and machine learning approaches have brought lots
of excitement in providing solutions for challenging tasks (e.g., computer vision). However, many
approaches have limited interpretability, so their success and failure modes are difficult to understand
and their scientific robustness is difficult to evaluate. Thus, there is an urgent need for better
understanding of the scientific reasoning behind data mining and machine learning approaches.
This requires taking a transdisciplinary view of data science and recognizing its foundations in
mathematics, statistics, and computer science. Focusing on the geospatial domain, we apply
this crucial transdisciplinary perspective to five common geospatial techniques (hotspot detection,
colocation detection, prediction, outlier detection and teleconnection detection). We also describe
challenges and opportunities for future advancement.

Keywords: geospatial data science; transdisciplinary foundations; mathematics; statistics;
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1. Introduction

1.1. Motivation

With recent advances in data mining and machine learning, state-of-the-art approaches (e.g., deep
learning) are capable of dealing with complex tasks such as computer vision and natural language
processing, that were previously labeled as tasks that were difficult for computers to learn. While it has
brought a lot of excitement to society, the lack of interpretability (a.k.a., black box [1]) of data mining
and machine learning approaches has raised major concerns and anxiety. In 2008, Google launched its
Google Flu Trends project to forecast flu using big data from people’s search keywords. Despite its
early success over the first several years, it spectacularly failed to predict the peak of the 2013 flu season
with an error rate of 140 percent. In hindsight, multiple reasons (e.g., change in search algorithm) for
the failure have been analyzed but the success and failure modes of these cutting-edge approaches
remain mostly hidden and not readily interpretable [1]. Besides the interpretability of the models,
many other factors also need to be carefully considered, including the “Black Swan” problem [2]
(i.e., limit of predictability) and non-stationarity of real-world phenomenon. Understanding the
scientific reasoning behind data mining and machine learning approaches has become critical and
urgent, and this gives rise to data science, which aims to improve the transparency and reproducibility
of these approaches through examining three transdisciplinary foundations, namely mathematics,
statistics and computer science [3].
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Genesis of foundations: These three disciplines have a long history of studying concepts and
techniques related to the geospatial domain. Mature fields such as geometry and topology in
mathematics have benefited the geospatial domain in many aspects (e.g., projection, modeling of spatial
events and patterns). Spatial statistics has developed many important techniques such as Kriging for
interpolation and variograms for modeling spatial autocorrelation. In computer science, computational
geometry has been established since the 1970s, and spatial data mining has provided a variety of
algorithms to detect spatial patterns (e.g., colocation). Mathematics, statistics and computer science
have also contributed many important general concepts (e.g., significance testing, computational
complexity) that broadly apply to many geospatial problems.

Transdisciplinary vision: Despite many advances in recent decades, geospatial problems are still
often studied and solved within siloed scientific domains, while foundational questions in other
important domains are ignored or less considered. For example, Mixture of Gaussians, which can
be used in spatial process modeling [4], had long been considered as a solved problem in statistics
using expectation maximization. However, from a computer science perspective that original solution
was not well computable or scalable [5]. In contrast, many computationally efficient approaches
in computer science (e.g., random forest, support vector machine) assume data samples have i.i.d.
(identically and independently distributed) property. From spatial statistics’ perspective, this i.i.d.
assumption is not valid for many geospatial tasks (e.g., land cover classification) due to the spatial
dependencies among sample points, and direct applications of the techniques may lead to a large
number of salt-and-pepper errors [6]. The transdisciplinary view of data science aims to address the
limitations of siloed data mining and machine learning approaches by simultaneously considering its
mathematics, statistics and computer science foundations [3]. We envision that future research related
to geospatial data science will likewise consider and address issues from the perspective of all three of
its founding disciplines rather than from a siloed perspective.

1.2. Transdisciplinary Foundations: Mathematics, Statistics and Computer Science

Since this paper aims to discuss transdisciplinary foundations (i.e., mathematics, statistics and
computer science) through concrete examples of popular geospatial techniques (Sections 2–6), in this
section we provide several concepts in the three foundations that are commonly used in our discussion
of geospatial techniques. To avoid overloading details but keep the paper self-contained, the concepts in
this section are introduced at a high level. Technical details of a broader set of concepts in mathematics,
statistics and computer science are provided in Appendix A to keep the paper self-contained for a
broad audience.

Mathematics: Completeness and correctness are often used as constraints in geospatial pattern
detection to make sure the algorithms consider the entire search space defined in the problem and
satisfy all the conditions in the inputs (e.g., hotspot, colocation and teleconnection). Under completeness
and correctness, tight upper and lower bounds can be developed to bound the solution quality within a
subset of the search space, and prune it if the bounds cannot meet certain criteria.

Statistics: Geospatial data are often spatially auto-correlated, which violates the i.i.d. (identically
and independently distributed) assumption of many data mining and machine learning techniques
(e.g., random forest). Thus, spatial statistics should be considered to explicitly model spatial
dependencies among data samples. With appropriate spatial statistics, statistical significance tests can
be used to reduce the chance patterns (e.g., patterns that are likely to be generated from a complete
random process). This is commonly used in hotspot and colocation pattern detection, which will
be discussed in Sections 2 and 3. However, it is important to note that a significance test itself
(e.g., a p-value) is not sufficient to prune chance patterns and it can be combined with other measures
(e.g., effect size) to improve the confidence of results [7,8].

Computer Science: The main concern of computer science is over computational efficiency and
scalability. For a specific problem (e.g., hotspot detection), the hardness of problem (e.g., NP-hard)
and complexity of algorithms need to be analyzed first to identify the bottleneck of computation.
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Based on the analysis, specific algorithm design paradigms can be explored for algorithm
acceleration. For geospatial patterns (e.g., hotspot, colocation, teleconnection), the filter-and-refine
strategy is commonly used to reduce execution time while maintaining mathematical completeness
and correctness.

1.3. Geospatial Techniques

This paper extends the discussion we began in [9] by introducing the transdisciplinary
view of geospatial data science through the lens of five common geospatial techniques, namely
hotspot detection, colocation detection, prediction, outlier detection and teleconnection detection.
Hotspot detection aims to identify geographic regions with high concentration of events (e.g., disease;
crime). Identified regions are tested for statistical significance to avoid false positives, which can
have costly societal impacts (e.g., a community being incorrectly identified as a cancer cluster).
Colocation pattern reveals geospatial events or objects that are frequently located within a close vicinity
to each other (e.g., Nile Crocodiles and Egyptian Plover birds). Prediction aims to predict values
for unlabeled locations in a geographic domain using classification or regression models learned
from training datasets (e.g., land use classification, crop yield prediction). Outlier analysis finds data
points that are likely to be generated from a different distribution other than a major or dominating
distribution in a presented dataset (e.g., water flow anomaly). Teleconnection analysis aims to discover
closely related events or phenomena that are spatially distant from each other (e.g., El Nino).

1.4. Scope and Outline

The scope of this paper is to discuss the emerging field of data science [3] (i.e., the science
of data-driven approaches) with a focus on the geospatial domain. Specifically, we will describe
its transdisciplinary foundations in mathematics, statistics and computer science [3] through the
lens of five geospatial techniques (i.e., hotspot detection, colocation detection, prediction, outlier
detection and teleconnection detection). In this way, we aim to both demonstrate the importance of the
transdisciplinary view of geospatial data science and also provide concrete examples on how these
foundations can be investigated.

Beyond the scope of our discussion, geospatial research is, indeed, widely connected to many
other disciplines (e.g., geography, surveying and remote sensing) [10,11], and has been applied in
a variety of domains, including environmental science [12], urban studies [13], public health [14],
landscape architecture [15], etc. In this paper, we focus on the transdisciplinary foundations of data
science [3] in terms of how they can be studied and applied in the geospatial domain.

The rest of the paper is structured as follows. Sections 2–6 discuss the foundations of each specific
technique in detail. Section 8 discusses gaps and opportunities for future research.

2. Foundations of Hotspot Detection

Geospatial hotspot detection aims to discover geographic regions that are significantly more
active than the surrounding areas in density, appearance, etc. There is a variety of real phenomena that
form these patterns in domains such as epidemiology, criminology, transportation safety, ecology and
environmental science, business, medicine, and urban planning. In epidemiology, for example, hotspot
detection on disease datasets reveals regions that report high concentrations of incidents, potentially
indicating outbreaks [16,17]. Geospatial hotspot detection should incorporate domain-specific theories
to better understand the actual phenomena. For example, diffusion theory, which aims to describe
the spread of a disease in epidemiology, suggests circular hotspots in a study area. Different domain
applications may rely on different theories. Although diffusion theory works well for disease modeling,
it may not be appropriate for criminology, in which the goal is to find a potential residence of a
criminal. A recent effort to find such a pattern is ring-shaped hotspot detection [18,19], which is
based on routine activity theory and crime pattern theory from criminology. It models serial criminals



ISPRS Int. J. Geo-Inf. 2017, 6, 395 4 of 24

(e.g., arsonists), who often commit crimes neither too close to their home due to increased likelihood
of being recognized, nor too far away due to high travel cost.

2.1. Mathematical Foundation of Hotspot Detection

Mathematics provides many building blocks of hotspot detection (e.g., data representation,
bounds). In this section, we focus on mathematical correctness and completeness. Correctness requires
that the algorithm output satisfy all input criteria or constraints. The approach should search
within feasible regions or eliminate candidate outputs that do not satisfy a set of given conditions
(e.g., thresholds). The correctness requirement is particularly important for hotspot detection since
incorrect outputs may have serious consequences in a variety of application domains. For example,
in public transportation, incorrectly identifying a road as a hotspot of car accidents may lead to a waste
of resources to study the site or perform unnecessary reconstructions.

In addition to the correctness claim, approaches should be evaluated for completeness. If an
approach misses patterns that satisfy input criteria or constraints, it is considered incomplete, even
though the results contained in its return set may be correct. For example, SaTScan [20–22] enumerates
circular regions by using pairs of points, whereby one point in a pair is used to define the center
and the distance between the points is used to define the radius. Although the algorithm in SaTScan
guarantees mathematical correctness of its results (based on its own likelihood ratio and p-value
criteria), it may miss circular hotspots that do not have a point located right at the center of the hotspot
in other scenarios (e.g., serial criminals who may not commit crimes too close to their home). In other
words, the approach does not enumerate many other circles (e.g., those defined by three-points on
a circumference). Ring-Shaped hotspot detection aims to improve completeness by enlarging the
enumeration space to consider circular regions with empty or sparse centers. Similar to circular or
ring-shaped hotspots, rectangular hotspot detection was also studied, and there are approaches [23]
that can guarantee completeness when a grid (i.e., a finite discretization of the study area) is used as
input. However, these approaches do not guarantee completeness without grid partitioning (i.e., when
points are treated as distinct 2D vectors). While all these methods focus on hotspots in Euclidean
space, a few have been designed to model hotspots in network space (e.g., road network) [24,25].
These approaches currently only consider shortest paths between points during candidate enumeration
rather than all simple paths due to scalability concerns. In general, state-of-the-art approaches often
trade completeness for computational efficiency, so there is a need for approaches that preserve
mathematical completeness while providing computationally feasible and scalable solutions.

2.2. Statistical Foundation of Hotspot Detection

False positives in hotspot detection may cause serious problems. Many domain applications
(e.g., epidemiology, criminology, transportation) require statistical significance testing of hotspot results
to reduce false positives. For example, a transportation expert may use geospatial hotspot detection to
identify a street that has a high concentration of pedestrian fatalities. If the detected patterns occurred
by chance (i.e., a false positive), the expert may be misled and focus on wrong streets while missing
those really needing attention.

In classic data mining [26,27], most density-based clustering (e.g., K-means, DB-Scan [28])
approaches do not consider statistical significance. For example, K-means will always find several
clusters or hotspots even though data points may follow a pure random (e.g., homogeneous Poisson
process) or uniform distribution. In other words, traditional density-based clustering methods will
generally output chance patterns if applied to geospatial hotspot detection. In contrast, methods
that test for statistical significance (e.g. likelihood ratio based p-value test) can potentially reduce
such chance patterns. For example, SaTScan [20,21] is one of the most well-known applications of
significant hotspot detection. Figure 1 shows an example SaTScan output. The method uses hypothesis
generation and ranking to enumerate possible hotspots, and ranks candidates based on a likelihood
ratio. A statistical significance test is then used to remove chance hotspots based on their p-values.
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However, as stated in [7], a statistical test with a p-value alone may not be enough to reduce chance
patterns. Thus, outputs from SaTScan may still contain false positives even though their p-value may
pass the threshold (e.g., 0.01). In addition, if two randomly distributed points are close enough to each
other, the circular hotspot generated by SaTScan using these two points can have an extremely high
likelihood ratio, leading to a very small p-value which cannot be used to reject the null hypothesis using
the current scheme. In fact, if we conceptually consider all possible circular regions (not limited to any
algorithm-specific definition), we can always have very tiny circles containing only one point that have
an unbounded likelihood ratio (assuming a continuous population distribution) even though they
must be false positives. Since there is still possibility of such chance patterns, we need to strengthen
the p-value based significance test with other measures as suggested in [8]. We may also consider
some constraints on the size of the hotspot based on domain knowledge. Future work is still needed to
improve the statistical rigor of hotspot detection to further reduce the number of chance patterns.

In addition to the traditional frequentist view of hotspot detection, which uses a randomization
test (i.e., Monte Carlo Simulation) to evaluate statistical significance of results, Bayesian approaches
have also been studied to identify emerging hotspots in spatiotemporal datasets. These methods
capture the non-stationarity of data (e.g., change in number of disease incidents) and aims to find
regions with a significant increase of events (e.g., disease, crime) [29,30].

ISPRS Int. J. Geo-Inf. 2017, 6, 395  5 of 23 

 

extremely high likelihood ratio, leading to a very small p-value which cannot be used to reject the 
null hypothesis using the current scheme. In fact, if we conceptually consider all possible circular 
regions (not limited to any algorithm-specific definition), we can always have very tiny circles 
containing only one point that have an unbounded likelihood ratio (assuming a continuous 
population distribution) even though they must be false positives. Since there is still possibility of 
such chance patterns, we need to strengthen the p-value based significance test with other measures 
as suggested in [8]. We may also consider some constraints on the size of the hotspot based on domain 
knowledge. Future work is still needed to improve the statistical rigor of hotspot detection to further 
reduce the number of chance patterns.  

In addition to the traditional frequentist view of hotspot detection, which uses a randomization 
test (i.e., Monte Carlo Simulation) to evaluate statistical significance of results, Bayesian approaches 
have also been studied to identify emerging hotspots in spatiotemporal datasets. These methods 
capture the non-stationarity of data (e.g., change in number of disease incidents) and aims to find 
regions with a significant increase of events (e.g., disease, crime) [29,30]. 

 
Figure 1. Crime hotspots detected by SaTScan. The point dataset contains 3781 cases of assault crimes 
in San Francisco, 2017. The map shows three statistically significant hotspots in blue. 

2.3. Computer Science Foundation of Hotspot Detection 

Geospatial hotspot detection is a computationally challenging task due to the volume of spatial 
big data such as large number of points or event instances (e.g., crime and disease locations) in input 
datasets. For example, in the U.S. there are around 10 million property crimes annually, and that is 
not counting the ever-increasing historical accumulation of these numbers. In addition, the 
enumerations are often challenging due to the large number of potential hotspot regions and the anti-
monotonic properties of the interest measures (e.g., likelihood ratio) that are used for evaluation. For 
example, SaTScan uses a 2-point circle enumeration technique where one point is at the center and 
another is on the circumference of a circle, leading to a time complexity of O(N2), where N represents 
the number of points in the dataset. If we improve completeness by considering 3-point circles (i.e., 
three points on a circumference), this cost increases polynomially, i.e., O(N3). If we consider all 
possible circular regions for total completeness, the enumeration cost becomes exorbitant. Finally, for 
statistical significance testing, since the exact distribution of interest measure values (e.g., likelihood 
ratio) is unknown except for very simple density measures [23], a p-value often cannot be computed 
in close-form. Thus, Monte Carlo Simulation is commonly used in practice to simulate a null 
hypothesis through a large number of trials (e.g., 10,000), which requires repetitive execution of 
detection algorithms and multiplies the computational cost.  

To improve the computational efficiency of geospatial hotspot detection, filter and refine 
strategies are often used to prune uninteresting candidates to save computational time. In Euclidean 

Figure 1. Crime hotspots detected by SaTScan. The point dataset contains 3781 cases of assault crimes
in San Francisco, 2017. The map shows three statistically significant hotspots in blue.

2.3. Computer Science Foundation of Hotspot Detection

Geospatial hotspot detection is a computationally challenging task due to the volume of spatial
big data such as large number of points or event instances (e.g., crime and disease locations) in input
datasets. For example, in the U.S. there are around 10 million property crimes annually, and that is not
counting the ever-increasing historical accumulation of these numbers. In addition, the enumerations
are often challenging due to the large number of potential hotspot regions and the anti-monotonic
properties of the interest measures (e.g., likelihood ratio) that are used for evaluation. For example,
SaTScan uses a 2-point circle enumeration technique where one point is at the center and another is on
the circumference of a circle, leading to a time complexity of O(N2), where N represents the number of
points in the dataset. If we improve completeness by considering 3-point circles (i.e., three points on a
circumference), this cost increases polynomially, i.e., O(N3). If we consider all possible circular regions
for total completeness, the enumeration cost becomes exorbitant. Finally, for statistical significance
testing, since the exact distribution of interest measure values (e.g., likelihood ratio) is unknown except
for very simple density measures [23], a p-value often cannot be computed in close-form. Thus, Monte
Carlo Simulation is commonly used in practice to simulate a null hypothesis through a large number
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of trials (e.g., 10,000), which requires repetitive execution of detection algorithms and multiplies the
computational cost.

To improve the computational efficiency of geospatial hotspot detection, filter and refine
strategies are often used to prune uninteresting candidates to save computational time. In Euclidean
space, a ring-shaped hotspot detection method [19] uses a grid-based multi-resolution technique
to quickly compute upper-bounds of the likelihood ratio on candidates during the prune phase,
so the input threshold can be directly used to filter out candidates with an upper bound smaller
than it. Rectangular hotspot detection [23] also uses a multi-resolution technique by decomposing
each region into overlapping subsets. This approach guarantees an exact solution (i.e., identical
output as a brute-force algorithm), and offers an option for approximated solutions, which exchange
completeness for further speed-up. In the network space, linear hotspot discovery [4] implements
dynamic segmentation which allows detection of hotspots at the sub-edge level on spatial networks
while maintaining scalability. The algorithm also uses a filter-and-refine strategy (e.g., neighbor-node
filtering, shortest path tree pruning) to reduce computational cost.

Parallel formulations have been proposed to speed up hotspot detection using GPU [31].
The Monte Carlo Simulation trials used to test statistical significance are also an embarrassingly
parallel problem (e.g., one trial per node).

Unlike the frequentist approach above (i.e., finding persistent hotspots), the Bayesian spatial scan
statistic [30] for emerging hotspot detection does not require Monte Carlo Simulation, reducing its
execution time.

3. Foundations of Colocation Detection

Geospatial colocation patterns represent spatial features (e.g., geo-located objects or events)
whose instances are often located together in a geographic neighborhood; such patterns are common
in various domains and attract considerable research interest [32]. Colocation patterns often reflect
symbiotic relationships, such as that between the Nile Crocodile and Egyptian Plover [33], which often
reside in close proximity. Other biological dependencies (e.g., different types of blackberry canes) also
have characteristics of colocation [34]. In climate change studies, colocation patterns between global
plant growth and climate variables (e.g., precipitation) have also been found [35].

Unlike association rule mining [36] in classic data mining, which finds frequent subsets of items
in a given set of transactions, colocation pattern detection has to handle spatial point distributions,
where transactions do not naturally exist. To solve this problem, an event-centric model is widely used
to build neighbor graphs to generate geospatial transactions [33].

3.1. Mathematical Foundation of Colocation Detection

Since distributions of spatial feature instances (e.g., trees, animals) do not naturally have
transactions, as required in frequent pattern mining [36], mathematical models are needed to define
transactions in geospatial datasets. A neighbor graph is one of the most common mathematical data
representations used to form transactions using a spatial distribution of instances. In a neighbor
graph, nodes are event instances, and edges are the relationships between them. A spatial relation
(e.g., proximity) is used to convert a point distribution to a neighbor graph. For example, if we choose
Euclidean distance to measure proximity between instances, then events of different feature types
(e.g., a tree and a bird) are connected by edges in a neighbor graph if their Euclidean distance is
smaller than a pre-defined threshold, which specifies the neighborhood size of interest. Whether the
graph is directed or not depends on whether the spatial relation is symmetric (e.g., Euclidean distance
is symmetric but network distance may not be). Because of the different metric spaces where the
relation is defined, different neighbor graphs can be created. Commonly used spaces include Euclidean
space, topological space, geographical space, and network space. Most of the methods for colocation
pattern detection can be applied without considering the complex geographical context by treating the
neighbor graph as an input.
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Original definition for colocation detection [33] only applies to point events. To generalize the
problem beyond point datasets, a buffer-based model was proposed to formulate colocation patterns of
extended objects (e.g., polygons) [37]. In addition, while traditional colocation detection mainly focuses
on global colocation patterns, some colocation patterns may only exist at a regional level (e.g., assault
and drunk driving instances are co-located near bars), and recent approaches have targeted modeling
such regional colocation patterns [38–40]. In this section, we will focus on colocation pattern detection
using point objects.

3.2. Statistical Foundation of Colocation Detection

In order to detect the relationships between more than one feature of point events, spatial
statistics uses the cross-K function, a generalization of Ripley’s K function for multivariate spatial
point processes [41]. The cross-K function is defined as follows:

Kij(h) =
E(# type j instances within distance h of a randomly chosen type i instance)

λj
,

where i and j represents two types of instances (i.e., type i and type j), λj is the density (number per
unit area) of type j instances, h is the distance, and E(·) is the expectation. When there are g features,
there would be g2 cross-K functions for them, such as K11(h), K12(h), . . . , etc.

Figure 2 shows the spatial distribution of instances of five features, namely, plover, crocodile,
green trees, dry trees, and wild fire, in a sample dataset. The pair-wise cross-K functions of four
pairs are shown in Figure 3. The high cross-K function value shows features (i.e., wild fire and dry
trees, plover and crocodile) that are more likely to locate near each other. By contrast, green trees
with plovers and green trees with wild fire do not appear together commonly, as indicated by the
corresponding low cross-K function values of these feature pairs.

Variations of the cross-K function, such as the L-function and the G function, are also used as
interest measures to depict colocation patterns.
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The participation index, an approximation of the cross-K function, is the most commonly used
interest measure in colocation analysis. Before defining participation index, we need to first define
participation ratio, another interest measure used inside the participation index. Given a colocation
pattern C and a feature f1 within it, the participation ratio of f1 in C, pr(C, f1), is the fraction of events
of f1 participating in any colocation instance of C. A large value of pr(C, f1) indicates that events of f1

tend to be located nearby other events of features in C. Then, participation index (pi) is defined as the
minimal participation ratio of the features in a colocation pattern, that is pi(C) = min fi∈C(pr(C, fi)).

Participation index pi({A, B}) of two spatial features A, B is an upper-bound on KAB(h)
W , where KAB(h)

is the estimation of the cross-K function of colocation {A, B} for a proximity neighborhood defined by
distance ≤ h [41], and W is the total area of the region. In addition, given the instances of colocation
pattern {A, B}, and the instances of feature A, B, we have enough information to compute KAB(h)

W .
Statistical significance test is used in colocation pattern detection to remove chance patterns [34].

Colocation pattern detection is concerned with the dependency between different spatial features,
while the existence of autocorrelation between instances of the same feature may affect the value of
the interest measure and result in colocation patterns detected by chance. For example, if clusters
of two features’ instances are located nearby by chance, there will be lots of edges in the neighbor
graph generated between these instances, leading to a colocation pattern. However, this pattern is
more likely due to spatial autocorrelation and randomness instead of dependency between features.
Statistical significance test can help evaluate the probability of a colocation pattern being detected by
chance. Its null hypothesis assumes that different features are distributed in the space independently,
while the alternative hypothesis is that the distribution is dependent. A spatial feature could be
either spatially auto-correlated or not spatially auto-correlated. For example, to model an aggregated
point patterns, a three-step Matern’s cluster process is applied: Step 1: A set of parent events is
generated from a Poisson process with a constant intensity. Step 2: Each parent event is replaced
by a random number of offspring points, where the number of points follows another Poisson
distribution. Step 3: The offspring events are independently and identically distributed in a predefined
neighborhood of their parent event.

3.3. Computer Science Foundation of Colocation Detection

Given a set of geospatial features, the number of combination of features grows exponentially as the
number of features increases, making enumeration of colocation patterns computationally expensive.

To enumerate colocation patterns on spatial transactions, a join-based approach is commonly
used to generate potential instances of patterns [42]. Based on this idea, a geometric approach [33] was
proposed to reduce computational cost using spatial join algorithms and a combinatorial approach,
which uses a sort-merge join strategy. Efforts have also been made to apply an Apriori algorithm [43]
to colocation pattern detection. From a computational perspective, the participation index enjoys its
nice property of monotonicity enjoys the advantage of having a nice monotonic property, that is, the
index decreases monotonically as the size of the colocation pattern increases. If the participation index
of a colocation pattern is less than a certain threshold, the index value for the patterns containing
such a pattern must also be less than the threshold, and this can be used to eliminate un-interesting
pattern candidates.

For large datasets without an available spatial index, a join-less approach can be employed [35].
Parallel formulations have been proposed to speed up colocation pattern detection using
MapReduce [44]. There are also algorithms extending colocation pattern detection by considering
dynamic neighborhoods of points [45].

4. Foundations of Spatial Prediction

Spatial prediction (i.e., spatial classification and regression) is the process of learning a model and
predicting the target variable in a specific location using the training samples and the neighborhood
relationship among the locations [46]. Spatial prediction is widely used by climate scientists, environmental
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specialists, land planners, etc. to identify different land cover types using remote sensing imagery,
to detect changes in time as well as project future climate events. Spatial prediction is challenging due to
specific properties of spatial datasets such as autocorrelation and heterogeneity [47]. Autocorrelation is
the term that is used to describe the dependency between nearby samples. Heterogeneity describes
the variation across different spatial locations [47].

Traditional prediction approaches assume samples are drawn from an identical and independent
distribution (i.i.d.). However, this assumption does not hold for spatial data, due to spatial
autocorrelation and heterogeneity in the data, and using traditional tools for spatial prediction tasks
may result in a large amount of prediction errors. For example, in Figure 4b, a decision tree approach
is used to classify wet land and dry land using spectral features from a satellite image shown in
Figure 4a. Compared to the ground truth in Figure 4c, the output of the decision tree contains a
large amount of salt-and-pepper error due to limited consideration of spatial autocorrelation [6].
Note that focal-test-based spatial decision tree approaches, in which the tree traversal direction of a
sample is based on both local and focal (i.e., neighborhood) information, can reduce such classification
errors [6,48]. In spatial regression analysis, spatial properties are explicitly modeled to address spatial
autocorrelation and heterogeneity. The spatial auto-regressive model (SAR) is a well-established
model in this category. It predicts the dependent variables by considering the spatial relationships
between independent variables, which requires a neighborhood relationship (often represented with
the additional neighborhood matrix term ρ) as an additional input to investigate the effects of the
location on the dependent variable. Similarly, there are approaches that incorporate spatial context into
classification problems. For example, Markov Random Fields (MRF) provide a uniform framework for
integrating spatial properties of the data and derive the probability distribution of interacting objects.
Both SAR and MRF use identical models of spatial context for data.
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Geographically Weighted Regression (GWR) [49] is another classic and widely used approach for
modeling spatial auto-correlation. Instead of doing regression over all sample points, GWR uses only
a subset of samples within a search window centered at the current location, and assigns more weights
to closer samples during local regression.

This section discusses the three transdisciplinary foundations using spatial auto-regression (SAR)
as an example. We’ve selected the SAR model for discussion here mainly based on our familiarity with
it from previous research work [50,51]. Detailed analysis of GWR [49] and other models [52–54] will
be examined in future work.

4.1. Mathematical Foundation of Spatial Prediction

The SAR model uses the spatial dependencies between different variables for prediction [55].
More specifically, given a spatial framework, a set of testing samples with dependent variables, a set
of training samples as well as the neighborhood relationships (e.g., location information) among
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each data sample, SAR aims to find the optimal parameters for the model solution. To address the
spatial dependencies, SAR explicitly includes spatial lag in its models: y = ρWy + xβ + ε, where
W is a row-normalized neighborhood adjacency matrix, ρ is the spatial auto-regression parameter
(i.e., strength of the spatial dependency), x is the matrix of observations of the explanatory variable,
β is the vector of regression coefficients, and ε represents the unobservable errors. Term ρWy is the
autocorrelation term (or spatial lag), representing the spatial dependencies among the observations of
dependent variable y. As an extension of linear regression, SAR is more complex to solve due to the
presence of the autocorrelation parameter (ρWy) [50].

Spatial prediction is often associated with the optimization aspect of mathematics (e.g., minimize
errors, maximize likelihood). In maximum likelihood based SAR, there are mainly two terms involved,
a determinant term and a Sum of Square Error (SSE) term. These terms as well as the log likelihood
function are uni-modular as proved in [55]. However, SAR parameter estimation requires extensive
computational power due to the need for computing the determinant of a large matrix.

4.2. Statistical Foundation of Spatial Prediction

Bias and variance are two important aspects of spatial prediction. Bias is caused by erroneous
assumptions in the prediction method. When the bias is high, the model is often considered as
under-fitting. Similarly, variance is the sensitivity to the training dataset. In other words, if the model
is perfectly fit (without considering the noisy training data and its effects on the model) to the training
dataset, it may cause errors in the testing data due to over-fitting. As a model incorporates more
parameters, and becomes more complex, bias decreases but the variance may cause more errors in the
test dataset. For example, in linear regression, adding more terms to the model will increase the model
complexity and thus increase variance and decrease bias.

A quick comparison with Markov Random Fields (MRF) sheds more light on elucidating the
statistical foundations of SAR. For MRF, the posterior distribution is computed using Bayes’ rule,
whereas in SAR, the posterior distribution is directly fitted to the data without a prior. In MRF, the
relative frequencies are explicitly modeled in the class prior term. Thus, compared to Markov Random
Fields, SAR makes more restrictive assumptions about the probability distributions as well as the class
boundaries [46].

While SAR and MRF have been well studied to handle spatial datasets, many other learning or
predicting algorithms require additional modeling to address the non-i.i.d. characteristics (e.g., spatial
autocorrelation or heterogeneity) of geospatial data. For example, a focal-test based spatial decision
tree was proposed to incorporate a focal autocorrelation statistic (e.g., focal Gamma index) into a
traditional decision tree to reduce salt-and-pepper errors [6].

4.3. Computer Science Foundation of Spatial Prediction

Linear regression, the widely used traditional method in data mining for predicting numerically
dependent variables, is considered to be a relatively inexpensive task computationally (e.g., solving
linear least squares with normal equations, QR factorization, etc.). However, the method’s i.i.d.
assumption ignores the unique spatial properties (e.g., autocorrelation) of geospatial data. SAR is
able to model spatial dependencies using an autocorrelation term but that greatly increases its
computational complexity due to the need for computing the determinant of a large matrix
(i.e., In − ρW).

Both exact and approximate algorithms have been proposed to make SAR more efficient [50], [55].
Exact solutions, even with various algorithmic refinements [46,56] and parallelization strategies [51,57],
may still suffer from high computational complexity and high memory cost (e.g., due to eigenvalues
computation). Approximate solutions [58] aim to reduce complexity by providing reasonably good
solutions (e.g., within a certain bound of the exact solution) instead of exact solutions. These methods
include approximations based on Taylor’s series expansion [59], Chebyshev coefficients [60], and the
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Gauss-Lanczos algorithm [50]. MRF is computationally cheaper than SAR, and its computational cost
can be further reduced by solving a suitable min-cut multi-way graph partitioning problem [61].

5. Foundations of Spatial Outlier Detection

Spatial outliers are spatial objects whose non-spatial attributes differ significantly from their
spatial neighbors [62,63]. Spatial outliers are different from global outliers, which are detected based
on the inconsistency between a set of observations and all other observations (i.e., they are likely to
come from different distributions). A new house surrounded by older houses in a developed city can
be considered as a spatial outlier, but it may not be a global outlier based on the overall house age.

Spatial outlier detection is critical in many applications such as suspicious object and behavior
detection in criminology, anomalous traffic monitoring in transportation engineering, and fraud
detection and prediction in credit card transactions.

5.1. Mathematical Foundation of Spatial Outlier Detection

The determination of a spatial outlier largely depends on the model of spatial proximity used.
One straightforward way is to use Euclidean distance. This works well for objects or phenomena that
generally have no obstacles between them. For example, Euclidean distance is the proper proximity
measure for studying if the precipitation in a region is different from its neighbors. However, more
factors need to be taken into account in other scenarios. When we conduct outlier detection on traffic
data, distance on transportation networks is a much more accurate approximation. When we deal
with data under a jurisdiction boundary such as county level aggregated disease mortality data, the
proximity could be defined simply by the Euclidean distance between the centroid of each county.
However, this assumes homogeneity within each county, which is not always true. Also, the objects
located on two sides of a boundary can be largely different since objects within a county are assumed
to be identical to those at the center of the county, which ignores spatial autocorrelation. For example,
the data on different sides of a boundary are considered to belong to two different counties. A method
to mitigate these negative effects and improve the modeling accuracy is to increase the resolution of
aggregate data by allocating them into census blocks based on the population distribution. A spatial
proximity relationship can be modeled by a neighbor graph in which a node represents an object and
an edge represents the proximity between its two end nodes.

5.2. Statistical Foundation of Spatial Outlier Detection

Statistical tests for spatial outliers fall into two categories: graphical tests (e.g. variogram
clouds [64] and Moran scatterplots [65]) and quantitative tests (e.g. scatter plots [66] and neighborhood
spatial statistics [62]). Graphical tests identify outliers by observing the visual pattern derived.
Outliers usually stay either relatively far from the other points or inside specific regions such as
certain quadrants. Figure 5 illustrates different testing methods for the 1-D input data in Figure 5a.
The variogram cloud shown in Figure 5b finds two pairs of points (Q,S) and (P,S) that are apart
from the cluster of remaining points, each pair representing spatially close points with significantly
different non-spatial attribute values. The same points are detected by the Moran Scatter plot as
shown in Figure 5c where the points in the upper-left and lower-right quadrants indicate points
that are significant from their spatial neighbors. Quantitative tests identify outliers by measuring
the difference between the investigated points’ non-spatial attributes and their spatial neighbors.
Outliers are identified when the difference is larger than a threshold. In Figure 5d, the same points are
detected far from the regression line by the scatter plot. Finally, a spatial statistic which measures the
extent of the non-spatial difference from each point to its spatial neighbors also gives the same results
from the overall score as shown in Figure 5e. Thus, all three approaches find points P, Q, and S to be
of interest. From Figure 5a, we can see that S is a spatial outlier as it is far from its spatial neighbor
P and Q.
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5.3. Computer Science Foundation of Spatial Outlier Detection

A computer science framework for detecting a spatial outlier begins by defining a spatial
neighborhood such as the region within a radius of Euclidian distance or network distance or
region that has high topological connectivity. Then, it computes a test statistic which indicates
how different the current location is compared to the other locations within the neighborhood in terms
of non-spatial attributes [62]. A basic fundamental computational framework is illustrated in [62].
However, several challenges need to be addressed when outlier detection is applied on real-world
problems. When there are multiple non-spatial attributes, defining the difference that incorporates
all the attributes is difficult. Another challenge comes from how to define a neighborhood. Using a
homogenous definition of neighbor area does not perform well given the heterogeneity of the large
area it resides in. However, using a heterogeneous neighbor definition brings in significantly more
computational cost. The irregular shape of a neighbor area also causes computational challenge.
For example, computing the sum of a neighbor over an irregular shape is much costlier than over a
rectangular area. Another challenge comes from the size of datasets. With the increased resolution of
remote sensing imagery, raster data volumes are becoming larger and larger. In addition, each cell in
the raster data is associated with a time-series of non-spatial attributes, which also multiplies the size
of the dataset.

Recent computational research on spatial outlier detection falls into several categories. First, there
are approaches that measure the occurrence of categorical attributes [67], overcoming the limitation
that non-spatial attributes need to be numerical. Another approach combines multiple non-spatial
attributes to a comprehensive outlier score [68]. Outlier detection has also been extended to flow
anomaly detection, which finds outliers among time series in multiple locations. The key computational
challenge is to identify the dominant intervals due to the lack of both monotonicity and optimal
substructure in statistics of different time intervals, which disallows the use of Apriori-based
and dynamic programming-based approaches. One solution to this problem is efficient window
enumeration [69], which investigates algebraic properties. Finally, another popular direction is
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trajectory outlier detection [70,71], which identifies either trajectories that are significantly different
from other trajectories [72] going through the same region or segments in a trajectory that are different
from the rest of the trajectory [73–75]. The main challenge of trajectory outlier detection comes from
the high dimensionality of trajectory data that is recorded in high frequency (e.g., one GPS record
per second). Efficient computational schemes have been proposed [71,72] based on investigating
the continuity of moving objects, which tend to have a momentum on their current direction and
speed [70]. Thus, the trajectory data can be summarized by “change points” between which the
trajectory keeps the same speed and direction.

6. Foundations of Teleconnection Discovery

Given a collection of spatial time series at different locations, teleconnection discovery aims to
identify pairs of significant positively or negatively correlated spatial time series at large distances [47].
Teleconnection patterns are important in understanding the variability in climate through the discovery
of pressure dipoles which are known to impact precipitation and temperature anomalies in the
world [76]. Atmospheric pressure dipoles represent long distance connections between pressure
anomalies of two distant regions that are negatively correlated with each other. Examples of pressure
dipoles include the North Atlantic Oscillation which captures atmospheric fluctuations between
Greenland and northern Europe, and the Southern Oscillation which captures pressure fluctuations
between Tahiti and Darwin, Australia and corresponds to the well-known “El-Nino” effect (i.e., El-Nino
Southern Oscillation). Computational challenges of teleconnection discovery include the large number
of candidate pairs and the length of the time series. Another challenge is the large number of spurious
high correlation patterns (i.e., false positives) that can occur. These challenges are addressed through a
combination of mathematical, statistical and computer science approaches as discussed next.

6.1. Mathematical Foundation of Teleconnection Discovery

To address the challenge of the large number of candidate pairs, upper bounding techniques
(Appendix A.1) have been proposed to allow pruning of uninteresting patterns [77,78]. First, a
multi-dimensional unit sphere representation of the time series is used where the correlation of a pair
of a time series is related to the cosine of the angle between their unit vector representations in the unit
sphere. A cone representation is then used to represent a set of time series in the multi-dimensional
unit sphere, and is characterized by two parameters: the center of the cone, and the span representing
the maximal angle between any time series in the cone and the cone center. In [78], it was proved that
if the smallest and largest angle between two cones are within a specific range then the correlation of
any pair of time series from the two cones will be above (or below) the minimal required correlation
threshold. These bounding conditions allow a more efficient traversal of the candidate pairs search
space as discussed later in the computer science section (Section 6.3).

6.2. Statistical Foundation of Teleconnection Discovery

Statistics plays an essential role in teleconnection discovery since the pattern definition relies on a
correlation measure, namely the Pearson correlation, for measuring the similarity between a pair of
time series. To avoid spurious or false positive patterns, statistical significant tests have been proposed
using a frequentist approach to identify statistically significant teleconnection patterns from climate
data [79]. Challenges of significance testing include the underlying assumption of randomization tests
that the data has i.i.d. As noted previously, this assumption does not hold for spatio-temporal data
due it its high spatial and temporal autocorrelation. Another challenge is that the data is influenced
by seasonality and trends that can impact the time series, leading to type I or type II errors. A third
challenge is how to generate random samples under the null hypothesis in a way that is as close as
possible to the true data generating process of the observed data. The null hypothesis in this case
would be that the teleconnection pattern is spurious or uninteresting. Table 1 shows the approaches
used to address each of these challenges as proposed in [79].
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Table 1. Approaches for addressing challenges of statistical significance testing of teleconnection patterns.

Challenge Approach

Spatial and temporal autocorrelation.
Spatio-temporal dependencies are captured by using a time series
decomposition that requires each end of the dipole to share the same global
component and using an auto-regressive term to capture time dependencies.

Seasonality and trends. The time-series decomposition captures the seasonality and trends by
extracting the underlying governing time series against local noise variations.

Generating random samples under the
null hypothesis.

A “wild bootstrap” approach generates samples by multiplying random
noise to the residuals

6.3. Computer Science Foundation of Teleconnection

As discussed earlier, discovering teleconnection patterns is a computationally challenging task
due to the large number of time series pairs to be considered as well as the length of the time series.
To efficiently identify these patterns, a filter and refine approach was proposed [77,78]. Given the upper
and lower bound conditions on the smallest and largest angle between two cones [78] (the mathematical
definition discussed in Section 7.1), cone-pairs can be classified into three categories: (a) those where
all time series satisfy the correlation threshold (i.e., All-True), (b) those where no time series satisfies
the correlation threshold (i.e., All-False), and (c) those which may have mixed time series. To reduce
the number of time series pairs to be considered, an efficient cone-tree index structure was proposed
where the spatial autocorrelation of nearby spatial time series is used to filter out redundant correlation
computations. The proposed tree is based on a quad-tree implementation with threaded leaves to
allow sequential scanning of the data. A heuristic is used to bound the maximal span of any cone in
the tree. Once the tree is built, all-time series that are highly correlated with a given time series can be
identified by starting from the root of the tree and scanning a node’s children only when it fails both
the All-True and All-False conditions. In addition, a time series in a node that satisfies the All-True
condition will be output, while All-False condition nodes will be ignored.

In [76], a framework was proposed to allow the discovery of dynamic teleconnections where
dipoles are defined by moving rather than fixed regions. The framework consists of two phases: In the
network construction phase, nodes are used to represent the set of nodes on the globe grid and edges
connect node pairs with highly correlated time series. This is followed by a dipole construction phase.
Using a greedy approach, it starts by selecting the most negative correlation edge in the network, and
gradually grows the region on each end of the dipole edge by including other nodes which are highly
positively correlated with one end of the edge while also being highly negatively correlated with the
other end. The algorithm continues finding dipoles by picking the next most negative edge until the
graph becomes very sparse or the most negative edge falls below a threshold. To ensure that the regions
on each end of the dipole are spatially contiguous, a community-based method was proposed for
partitioning the network before running the dipole construction algorithm. The community detection
algorithm, based on random walk, allows partitioning the network into smaller subsets of nodes to
find regions containing nodes that are highly positively or negatively correlated and avoiding smaller
non-contiguous locations.

7. Discussion

Through our analysis of the mathematical, statistical and computer science foundations of
the five geospatial techniques (Sections 2–6), it is evident that each foundation is important and
necessary for solving geospatial data science problems. Additionally, many of the foundational
concepts (e.g., mathematical modeling, statistical significance, computational structure) can be
broadly applied across not only the five geospatial techniques that we discussed, but also other
geospatial techniques. Statistical significance testing, for example, has been considered in multiple
geospatial data mining techniques (e.g., for detecting hotspots, colocations and teleconnections) to
reduce chance patterns, but there are many other approaches that have not considered much about
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statistical robustness (e.g., cascading spatiotemporal pattern detection [80], change footprint pattern
discovery [81], co-occurrence pattern detection [82]). Using the statistical concepts and examples
provided (e.g., Section 2.2), null and alternative hypotheses can be designed to incorporate significance
testing and strengthen these techniques.

Each of the geospatial techniques discussed here underwent a long development before
many important concepts from mathematics, statistics and computer science were recognized and
incorporated. Hotspot detection, for example, started with a focus on statistical rigor (e.g., use of
likelihood ratio and significance testing) [20,21] but did not consider much about computational
scalability and efficiency, whereas colocation detection first developed through many computational
refinements [33] and later recognized the importance of statistical rigor [34]. This further emphasizes
the importance of a transdisciplinary view of data science in the geospatial domain. By not working
in silos, and instead, taking a more holistic view that integrates foundational concepts from all
three disciplines simultaneously, researchers can greatly improve and speed up problem solving
in the geospatial domain. Most importantly, without a transdisciplinary view or understanding of
geospatial data science, it will remain difficult to correctly apply or interpret results from geospatial
data mining or machine learning techniques. As noted earlier, without awareness of the statistical i.i.d.
assumption used in many machine learning techniques (e.g., random forest), a direct application of
such techniques may return results with a high volume of salt-and-pepper errors in auto-correlated
geospatial datasets [6]. Thus, it is critical to keep the transdisciplinary foundations in mind when
developing or applying data-driven geospatial techniques.

7.1. Gaps and Opportunities

With the transdisciplinary view of geospatial techniques, there are still many challenges and
opportunities lying ahead.

From siloed foundations to transdisciplinary foundations: While the five examples of geospatial
techniques have made developments in mathematics, statistics and computer science, there still exist
many other techniques that are studied in siloed disciplines. For example, as we mentioned earlier,
many techniques are strong in computational scalability and mathematical completeness but have not
considered statistical robustness, including cascading spatiotemporal pattern detection [80], change
footprint pattern discovery [81] and co-occurrence pattern detection [82]. In addition, many patterns
can be well defined mathematically and statistically (e.g., linear hotspots as simple-paths between
nodes on road segments) but have no efficient algorithms to enumerate them unless assumptions are
simplified (e.g., shortest-paths as a simplification of all simple-paths). These techniques should be
further strengthened by addressing their transdisciplinary limitations.

For current geospatial techniques that have considered all three transdisciplinary foundations
(e.g., hotspot detection), there still exist major gaps that need to be addressed. Statistical robustness is
one of the major concerns given its importance to many critical societal applications (e.g., alarm of
disease outbreaks, crime pattern analysis).

Effect size: Although significance testing has been incorporated into many of the techniques, the
test itself (e.g., p-value test) still offers limited insight into the patterns detected and has raised broad
concerns in recent years [7,8]. For example, in hotspot detection, if a pattern (i.e., a hotspot region)
is statistically significant based on the p-value threshold, we are confident that an individual inside
the region is more likely to be affected by an event (e.g., the spread of a disease) than an individual
outside. However, the p-value does not tell how much more likely it is (i.e., the effect size). If the effect
size is in fact small, then domain experts may still consider the pattern as a false positive. Thus, there
is still a need to further consider effect size beyond a p-value test.

Multiple significance testing: For pattern detection problems (e.g., hotspot, colocation,
teleconnection), geospatial data mining techniques can be considered as methods of hypotheses
generation and testing, that is, they often enumerate a large number of possible candidate patterns
(e.g., geographic regions in hotspot detection) and then conduct significance tests on them. When the
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total number of significant tests is large, although each single significant result may have a low
probability of being false (e.g., 0.01 or 0.05 depending on the p-value threshold), the probability of all
of them being true can be very low. Thus, the technique of multiple significance testing [83] can be
introduced to mitigate this issue. For example, the p-value threshold for each individual test can be
made smaller to maintain a good overall performance. Lowering p-value threshold (i.e., type-I error),
however, could lead to lower statistical power (i.e., higher type-II error) [84] and this will consequently
require more data to improve the power. Such issues have yet to be well addressed in geospatial
pattern mining.

Additionally, beyond the scope of this paper, opportunities exist to further improve the
understanding of transdisciplinary foundations for a broader set of models, including spatiotemporal
techniques and simulation models.

Spatiotemporal techniques: Besides space, time is another important dimension that is frequently
related to geospatial problems [85–89], and many geospatial techniques have been expanded to
enable spatiotemporal analysis (e.g., Bayesian spatial scan statistics [30], cascading spatiotemporal
pattern [80]). Adding temporal aspects into geospatial problems may require new mathematical
modeling (e.g., time-expanded graph [90]), spatiotemporal statistics [85] and more complex
computational structures.

Simulation models: Simulation models based on physical rules (e.g., the Soil and Water Assessment
Tool [91], flood and solar simulation [92,93]), as opposed to data-driven models, provide different
perspectives on problem solving. These models are built using domain knowledge (e.g., soil and water
physics) and can be compared with data-driven solutions. Due to the computational complexity of
many simulation models, data science techniques have been applied to provide fast approximation of
the solutions [94].

8. Conclusions

Geospatial data science is a transdisciplinary field with foundations in mathematics, statistics,
and computer science. To provide concrete examples of how geospatial techniques can be examined
through the lens of mathematics, statistics, and computer science, we presented case studies on five
geospatial techniques, namely hotspot detection, colocation detection, prediction, outlier detection and
teleconnection detection. Many of the foundational concepts (e.g., statistical robustness) discussed in
the five specific case studies can be broadly applied to other geospatial techniques. Through the
case studies on five geospatial techniques, we showed that it is important to understand the
transdisciplinary foundations (e.g., concepts, assumptions) in order to appropriately develop and
apply geospatial techniques.

Gaps and opportunities: While lots of developments have been made to strengthen geospatial
techniques, two major gaps need to be addressed as detailed in Section 7.1. First, many techniques are
still studied within siloed disciplines and have not considered issues in the others. Second, statistical
robustness of existing techniques must be further strengthened by considering effect size and multiple
significance testing. Filling these gaps will lead to great opportunities in sectoral applications
(e.g., robust prediction of disease outbreak with improvements in hotspot detection).

In future work, we will first study the transdisciplinary data science foundations of more
geospatial techniques, identify their limitations and address them (e.g., spatially-constrained
optimization [95,96], detection of co-occurrence patterns [82] and trajectory patterns [71,97], evacuation
planning [98] and change detection [81,99]). Second, we will extend our scope to investigate the
foundations of spatiotemporal techniques and simulation models. Third, we will further improve the
current understanding and robustness of data science foundations of the techniques studied in this
paper (e.g., maturing significance test as discussed in Section 7.1).
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Appendix A. Transdisciplinary Foundations: Mathematics, Statistics and Computer Science

This appendix provides a broader set of important concepts in mathematics, statistics and
computer science to consider in geospatial data science research (not limited to the techniques discussed
in this paper). More details are also provided for the common concepts that are briefly discussed
in Section 1.2.

A.1. Mathematics

Data representation: Mathematics provides powerful and succinct tools for data representation
(e.g., matrix theory, graph theory). In pattern mining, these tools can be used to precisely define a
pattern (e.g., a set of parameters needed to uniquely identify a pattern instance) and its search space
(e.g., a parameter space of all possible parameter values). Based on the data representations, specialized
analytics can be used to explore the properties of data and improve data quality (e.g., principle
component analysis). In the geospatial domain, some traditional mathematical data models need to be
extended to handle spatial dataset. For example, graph models in mathematics do not intrinsically
have the capacity to model turns in road networks (e.g., the wait time for left turns and right turns
is different) or non-stationary properties (e.g., travel time of edges is longer during rush hours).
These issues call for additional modeling (e.g., time-expanded graphs).

Bounds: Upper and lower bounds are often used to narrow down the search space of a candidate
pattern or provide guarantee on solution quality. When a search space is very large, non-smooth or
non-convex, it is very challenging to efficiently enumerate through the search space (e.g., gradient
descent). In this case, upper and lower bounds of solutions at unsearched places can be derived and
compared with existing solutions to reduce the number of candidates. Monotonicity is often very
helpful to derive tight bounds. When an optimal solution cannot be guaranteed, upper bound and
lower bound analysis can provide meaningful insights to understand solution quality.

Completeness and correctness: Completeness guarantees all choices (e.g., combinatorial
combinations of parameters) in the search space have been evaluated or the unevaluated ones are
strictly bounded by the current best choices. Correctness comes with constraints (e.g., likelihood
ratio or p-value threshold). Analysis should be performed to prove solutions do not violate any of
the constraints.

Optimization: Optimization (both constrained and unconstrained) is commonly used in geospatial
data science (e.g., parameter estimation in prediction). Appropriate use of optimization methods
(e.g., gradient descent) should include discussions on properties of smoothness, convexity, convergence,
global optimality (e.g., global vs. local optimality), etc.

A.2. Statistics

Traditional statistics vs. spatial statistics: Many core theories in statistics (e.g., central limit theorem)
assume that data points have identical and independent distribution (i.i.d.). The i.i.d. assumption
does not hold, however, for geospatial data analysis. As stated by Tobler’s first law of Geography:
“Everything is related to everything else, but nearby things are more related than distant things” [100];
geospatial objects are not independent on each other. This fundamental difference gave rise to spatial
statistics, which explicitly deals with spatial autocorrelation and spatial heterogeneity. In addition, the
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issue of anisotropy also needs to be considered. Tools of spatial statistics [101] include geostatistics
(e.g., variograms, Kriging) for point-reference data analysis, spatial point processes (e.g., complete
spatial randomness, Matern cluster process) for point distribution analysis, and lattice statistics
(e.g., Moran’I, simultaneous autoregressive model, conditional autoregressive model) for discrete data
analysis (e.g., raster).

When applied to geospatial datasets, traditional statistics needs to be reconsidered to handle the
spatial relationships among data points. The example in Figure A1a shows a distribution of three
types of events. There are three instances of green, two of orange and two of yellow. In order to apply
Pearson’s correlation analysis on event types, a natural pre-processing step is to partition the study
area as shown in Figure A1b (i.e., to make sure that each event can be modeled using a fixed length of
parameters). The four grid cells in Figure A1b are ordered as follows: top-left, bottom-left, top-right
and bottom right [9]. Then, to represent each event type, we can use a vector of length four to store the
number of instances of each type in each grid cell. For example, the green type event has one instance in
the top left cell, two in bottom-left, and zeros in top-right and bottom-right, so its vector representation
is [1, 2, 0, 0]. Similarly, the vector representation of orange is [0, 0, 1, 1] and yellow, [0, 0, 1, 1].ISPRS Int. J. Geo-Inf. 2017, 6, 395  18 of 23 
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Figure A1. Example of spatial statistics. (a) Shows distribution of three types of events colored in green,
orange and yellow. (b) Shows a grid partition that splits original study area into four cells. (c) Shows a
neighbor graph generated based on point distribution in (a).

For event pairs (orange, green) and (orange, yellow), Table A1 shows their Pearson’s correlation
coefficients and participation index [33] values (computed using neighbor graph in Figure A1c).
Although orange instances are close to both yellow and green instances, Pearson’s correlation
values indicated opposite relationships (i.e., negative vs. positive) between the two pairs of events.
This unexpected result is caused by the space partitioning, whose boundaries break the adjacency
between orange and green instance. In contrast, with spatial neighbor graph [33], participation index
correctly captures both adjacencies of (orange, green) and (orange, yellow). This example shows the
importance of spatial modeling when statistics is applied to geospatial dataset.

Table A1. Pearson’s correlation coefficient and participation index for two event pairs.

Event Pairs Pearson’s Correlation Coefficient Participation Index

(Green, Orange) −0.90 0.67
(Yellow, Orange) 1 1

Frequentist vs. Bayesian: Frequentist and Bayesian are two different views on parameter estimation.
Frequentist approaches assume parameter values are stationary and can be accurately estimated with
a sufficiently large number of observations. In contrast, Bayesian methods assume a prior distribution
of parameters, making their real values not fixed. As more data samples are collected, the new data
is used to update the prior distribution, which captures the change of parameter values over time.
Compared to the Frequentist approaches, Bayesian methods require a correct prior distribution.
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Significance test: In a real-world scenario, we often have to deal with incomplete observations so
the analysis will always be associated with some uncertainty. Frequentist approaches address this
issue with a confidence interval to test the confidence on the analysis. In addition, we can evaluate
how well a pattern conforms to the assumptions of the null hypothesis using a p-value test. We are
more confident about the alternative hypothesis if the pattern is less likely to be generated from the
null hypothesis. However, it is important to note that a p-value itself may not be sufficient to confirm
a pattern or relationship (e.g., it does not show the size of the effect) [7,8]. In Bayesian statistics,
predictions rely on Bayes Rule and the outputs directly give a posterior probability, so a separate
significance test is not needed.

A.3. Computer Science

Hardness of problem: Before the design of an algorithm, the hardness of a given problem should
be studied to narrow down the goal of the algorithm. For example, if a problem is NP-hard, then
finding a polynomial time exact algorithm that guarantees solution optimality is as difficult as solving
the “P versus NP” problem, which is one of the seven Millennium Prize Problems [102]. If the goal
of the research is not to solve such a difficult theoretical problem, then it is more appropriate to find
approximation or heuristic algorithms to solve the problem. In some cases, the solution of a problem
can even be NP-hard to approximate within some constant ratios (e.g., APX-hard, NPO-complete) [103].
In such cases, designing problem-specific heuristic algorithms or adopting meta-heuristic algorithms
(e.g., genetic algorithm, simulated annealing) might be a preferred choice. However, without hardness
analysis, finding a heuristic solution rather than an optimal solution cannot be well justified.

Data structure and algorithm design paradigms: Based on the structure of the geospatial problems
(e.g., point search, combinatorial enumeration), appropriate data structures (e.g., variations of trees and
graphs) and algorithm design paradigms (e.g., dynamic programming, divide and conquer, greedy)
can be selected to reduce computational cost. Note that a greedy algorithm is different from a heuristic
algorithm. A greedy algorithm has two key properties, namely a greedy-choice property and an
optimal substructure property, which together guarantee global optimality [104]. Heuristic algorithms
generally have no guarantee on solution quality although they may use a greedy choice at a local
step (e.g., decision tree). For optimization problems in prediction, gradient descent approaches are
commonly applied to find either global or local optimum. In such problems, a variety of strategies exist
to improve computational efficiency, including choices of descent direction (e.g., conjugate gradient
descent), step size (e.g., Armijo rule) and batch size (e.g., stochastic gradient descent), as well as other
acceleration techniques (e.g., Nesterov’s optimal first order method). For more difficult problems
(e.g., non-differentiable, constrained cases), algorithms (e.g., ADMM, proximal gradient descent,
projected gradient descent) should be chosen appropriately based on specific problem properties.
Parallelization and high performance computing platforms (e.g., CyberGIS [105]) should also be
considered to reduce computational cost. Especially, some algorithms may run slowly on a single
core, yet perform very well once being parallelized (e.g., embarrassingly parallel). Dedicated parallel
computing formulations have been proposed to accelerate algorithms on geospatial dataset [86].

Asymptotic complexity analysis: Space and time complexity is a direct indicator of the scalability of
an approach and thus need to be carefully analyzed. Computer science provides a variety set of theories
to analyze algorithm complexity, including Big O (upper bound), Theta (tight bound) and Omega
complexity (lower bound), as well as amortized analysis (e.g., accountant method) [104]. In cases
where time complexity varies significantly across problem instances (e.g., filter and refine algorithms),
average time complexity or best/worst case scenarios can be analyzed to evaluate performance.
For optimization problems, iteration complexity (or convergence rate) should be analyzed.
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