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Abstract: Mining for resources extraction may lead to geological and associated environmental
changes due to ground movements, collision with mining cavities, and deformation of aquifers.
Geological changes may continue in a reclaimed mine area, and the deformed aquifers may entail
a breakdown of substrates and an increase in ground water tables, which may cause surface
area inundation. Consequently, a reclaimed mine area may experience surface area collapse,
i.e., subsidence, and degradation of vegetation productivity. Thus, monitoring short-term landscape
dynamics in a reclaimed mine area may provide important information on the long-term geological
and environmental impacts of mining activities. We studied landscape dynamics in Kirchheller Heide,
Germany, which experienced extensive soil movement due to longwall mining without stowing,
using Landsat imageries between 2013 and 2016. A Random Forest image classification technique was
applied to analyze land-use and landcover dynamics, and the growth of wetland areas was assessed
using a Spectral Mixture Analysis (SMA). We also analyzed the changes in vegetation productivity
using a Normalized Difference Vegetation Index (NDVI). We observed a 19.9% growth of wetland
area within four years, with 87.2% growth in the coverage of two major waterbodies in the reclaimed
mine area. NDVI values indicate that the productivity of 66.5% of vegetation of the Kirchheller
Heide was degraded due to changes in ground water tables and surface flooding. Our results inform
environmental management and mining reclamation authorities about the subsidence spots and
priority mitigation areas from land surface and vegetation degradation in Kirchheller Heide.

Keywords: mining; mine reclamation; land cover change; vegetation productivity; NDVI;
post-mining; Spectral Mixture Analysis; Random forest classification; remote sensing

1. Introduction

Mining is an important source of raw materials and minerals, e.g., metals, salt, and coal,
for industrial and domestic usage [1,2]. Countries in the European Union (EU) produce about 7% of
the industrial and domestic commodities from mine-extracted resources [2]. Mining industries also
play a vital role in global to regional economies, e.g., in energy production and fuel supply [1].

Mining activities may lead to several geological changes, i.e., ground movements, collision
with mining cavities, and deformation of aquifers (Figure 1). These changes may constitute an
increase in the groundwater table, and thus a slow sinking of subsurface soils and an unexpected
collapse, i.e., subsidence [2]. The extraction processes and machines used to access mine galleries
may produce irreversible damage in soil cohesion and eventually compress soil substrates [3,4].
Consequently, groundwater may intrude the surface level, form new waterbodies, and cause
inundation. This, in turn, leads to several adverse long-term environmental impacts, such as vegetation
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degradation, soil erosion, flooding, sinkhole formation, and soil and water contamination [5–8], as well
as to the damage of infrastructures [8,9]. The geological changes and associated environmental impacts
may continue even after reclamations, if mines are not properly backfilled [10–12].
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Regular landscape management and monitoring at the surface level are crucial for the 
prevention of subsidence and development of early warning systems in a reclaimed mine area 
(Figure 1). These are also vital for environmental protection, as well as for mitigation of the aftermaths 
from mining activities [8]. Particularly, monitoring short-term landscape dynamics, i.e., changes in 
the extent of waterbodies and vegetation, may provide important information about long-term 
geological changes such as subsidence, sinkhole formation, and changes in water table dynamics and 
associated effects on the environment [9]. In addition, changes in the productivity of vegetation is an 
important indicator for assessing the geological changes in an active and reclaimed mine area [13,14]. 
Productivity of vegetation may surrogate ecological health as well as growth of water bodies and 
plant stress [8]. 

Remote Sensing (RS) techniques and Geographic Information Systems (GIS) have shown clear 
advantages over conventional field monitoring and laboratory measurements for assessing long- to 
short-term landscape dynamics [15–17]. Particularly for large areas, where surveying using Global 
Positioning System (GPS) and ground levelling are time-consuming, expensive, and labor-intensive, 
RS and GIS provide prompt and efficient information on geological changes and subsidence [4]. 
These techniques are also useful for detecting changes in vegetation productivity and cover and flood 
dynamics through land-use and landcover maps [17,18]. Multispectral satellite images allow for 
detecting gradual as well as abrupt changes in landscapes [19]. However, besides widespread 
application in monitoring general landscape dynamics, the application of RS and GIS in monitoring 
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and vegetation productivity dynamics is limited [10–14,20]. Although high-resolution Light 
Amplification by Stimulated Emission of Radiation (LASER), Interferometric Synthetic Aperture 
Radar (InSAR), and Light Detection and Ranging (LIDAR) mapping have been sparsely applied in 
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Figure 1. Inundation and subsidence through geological changes in a mining-affected area. The changes
observed in the surface level using remote sensing (RS) may indicate the geological changes at the
subsurface level. The figure is created according to the description of subsidence in Brunn et al.
(2002) [4].

Regular landscape management and monitoring at the surface level are crucial for the prevention
of subsidence and development of early warning systems in a reclaimed mine area (Figure 1). These are
also vital for environmental protection, as well as for mitigation of the aftermaths from mining
activities [8]. Particularly, monitoring short-term landscape dynamics, i.e., changes in the extent of
waterbodies and vegetation, may provide important information about long-term geological changes
such as subsidence, sinkhole formation, and changes in water table dynamics and associated effects on
the environment [9]. In addition, changes in the productivity of vegetation is an important indicator
for assessing the geological changes in an active and reclaimed mine area [13,14]. Productivity of
vegetation may surrogate ecological health as well as growth of water bodies and plant stress [8].

Remote Sensing (RS) techniques and Geographic Information Systems (GIS) have shown clear
advantages over conventional field monitoring and laboratory measurements for assessing long- to
short-term landscape dynamics [15–17]. Particularly for large areas, where surveying using Global
Positioning System (GPS) and ground levelling are time-consuming, expensive, and labor-intensive,
RS and GIS provide prompt and efficient information on geological changes and subsidence [4].
These techniques are also useful for detecting changes in vegetation productivity and cover and
flood dynamics through land-use and landcover maps [17,18]. Multispectral satellite images allow
for detecting gradual as well as abrupt changes in landscapes [19]. However, besides widespread
application in monitoring general landscape dynamics, the application of RS and GIS in monitoring
and assessing mining effects on landscapes and environment and in associated geological changes and
vegetation productivity dynamics is limited [10–14,20]. Although high-resolution Light Amplification
by Stimulated Emission of Radiation (LASER), Interferometric Synthetic Aperture Radar (InSAR),
and Light Detection and Ranging (LIDAR) mapping have been sparsely applied in small areas,
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environmental impacts in large mine reclamation areas have rarely been investigated using RS and
GIS techniques [21–27].

This study aims to identify the subsidence zones and vegetation productivity degradation in
a reclaimed mine area through the analyses of short-term landscape dynamics using RS and GIS
techniques. The specific objectives were:

(1) To examine the short-term, i.e., during 4 years, land-use and landcover (LULC) dynamics in the
reclaimed mine area;

(2) To quantify the emergence and growth of wetlands in the mining-influenced area and thus
identify potential subsidence spots, i.e., spots exhibiting abrupt growth of waterbodies; and

(3) To examine the vegetation productivity dynamics as a surrogate of the ground water table
fluctuation and ecological stress.

2. Study Area

The study area, “Kirchheller Heide” (in English “Kirchhellen Heath”), is located in western
Germany, surrounded by the towns of Bottrop and Huxe in the North, Oberhausen in the South,
Gladbeck in the East, and Dinslanken in the West (Figure 2). The mining reclamation area lies between
51◦34′53′ ′ N and 6◦51′50′ ′ E and covers an area of about 57.74 km2. This site is one of the recreation
areas for 7.5 million residents of the Kirchheller Heide and Ruhr district [2,8].

The area was a major industrial region dominated by 229 coal and steel mines from the second
half of the 19th to the end of the 20th century, which produced approximately 400,000 tons of coal per
year [2,8]. The coal was extracted from this area from depths up to 1500 m using the longwall mining
method [2]. This mining method creates cavities in the ground and rock formation, which may result
in surface subsidence and changes in the ground water table [20]. Moreover, 88.9% of production area
was not properly backfilled when it was reclaimed during the 1990s [1,8]. Improper backfilling often
leads to surface and sub-surface level depressions, while the magnitude of depressions depends on the
length of long walls and the dip and width of the mined area [1–4,8]. Usually, such depressions and
surface movements start six months after reclamation and gradually result into subsidence, surface area
inundation, and vegetation degradation [3]. Hence, Kirchheller Heide was chosen to study potential
occurrence of subsidence, inundation, and vegetation degradation caused by mining activities [8].
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GMES4Mining team and EU-project MINEO have monitored the wetland and vegetation
dynamics in Kircheller Heide until 2012 [1–3,8]. These monitoring programs have detected
incidences and passive impacts of surface flooding and subsidence using ground monitoring and
air-borne hyperspectral images [3]. However, this monitoring was tedious, lengthy, and stopped
after October 2012, largely because hyperspectral sensors could not cover the area in a
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continuous mode, i.e., mono-temporal, and hence, continuous monitoring was impossible [8,28–31].
Consequently, we aim to quantify landscape dynamics as well as to identify potential subsidence zones
and vegetation degradation in Kircheller Heide after 2012, i.e., during 2013–2016, using imageries from
sensors that continuously captured images of the area at a regular (yearly) interval, i.e., Landsat ETM+.

3. Materials and Methods

3.1. Satellite Data

We used four Landsat Enhanced Thematic Mapper plus (ETM+) imageries covering the dates of
22 July 2013, 25 July 2014, 03 July 2015, and 30 July 2016, with 30 m spatial resolution. The imageries
covering four years were chosen to study short-term landscape dynamics. To be consistent with
seasonal variations and the vegetation productivity analysis, we selected images covering the
frost-free growing season of Germany. This season starts in May (Spring) and ends in September
(Fall/Autumn) [4,8]. To be further consistent with vegetation proportion, we selected images of July
(growing season), which recorded consistent precipitation level varying between 28.2 and 34.4 L per m2

during 2013–2016 [32]. Landsat ETM+ data were freely downloaded from the United States Geological
Survey (USGS) gateway [33].

3.2. Image Processing

We followed a four-step procedure for investigating the landscape dynamics and vegetation
productivity in Kirchheller Heide (see Figure 3). First, the satellite images were ortho-rectified and
geo-corrected using the available “geoshift” and “georef” functions of the “Landsat” package in R
studio [34–36]. Then, we geo-referenced the images using Universal Transverse Mercator (UTM)
coordinate system [37]. The ETM+ images were cropped to the study area using a 10 km buffer
around the mining area. To enhance the separability of the mining area from other land-use and
landcover types, we applied the Tasseled Cap transformation for each imagery based on digital
numbers (DN) [37].
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We were cautious about the scan line error that occurred in the Landsat 7 ETM+ sensor in
2003 and subsequently affected the produced imageries in 2003 and following years [35]. To fill the
data-gap, i.e., Not Available (NA) values, in the imageries that occurred due to this scan line error,
we applied Landsat 7 Scan Line Corrector (SLC)-off Gap function [35]. The SLC-off images were further
rectified by mosaicking as suggested by USGS [35], and the residual gaps were filled using histogram
correction [38–40]. Scan line error correction was performed in ERDAS Imagine (version 8.7) [37].

We first distributed and stored the Landsat images in a common radiometric scale to detect
and quantify changes in the landscape of Kirchheller Heide, particularly for waterbodies and
vegetation. For this purpose, we converted digital number (DN) integer values (0–255) to at-satellite
radiance values using the available parameters in the ETM+ metadata (radiometric calibration),
i.e., Top-of-Atmosphere (TOA) radiance [39]. We also applied atmospheric correction to overcome the
mismatch between surface reflectance and at-sensor reflectance. The cloud, snow, aerosol, and cirrus
were first identified and classified, and then were removed using absolute atmospheric correction,
i.e., Dark Object and Modified Dark Object Subtraction Method. To ensure the homogeneity of
reflectance values for the analysis of vegetation dynamics, invariant features in images across 2013–2016
were identified using the Pseudo-invariant features (PIF) function and subsequently corrected using a
major axis regression. The radiometric and atmospheric corrections were conducted employing
an atmospheric simulation model available in Landsat and RStool packages available in the R
library [41–45].

3.3. Land-Use and Landcover Classification and Accuracy Assessment

We analyzed the overall surface level landscape dynamics over the four years using an
unsupervised image classification technique. The images were classified for 2013, 2014, 2015, and 2016
into five land-use and landcover (LULC) classes (Table 1). We applied a Random Forest (RF)
classification technique that optimizes the proximities among data points [46,47]. The RF classification
algorithm constitutes the following steps:

• Draw n-tree bootstrap model from the satellite imageries;
• For each bootstrap model: grow unpruned classification according to the DN values;
• Generate N number of polygons according to the DN values;
• Choose five classification land-use classes;
• Display land-use classification.

The LULC classification was performed in R [41] using Classes and Methods for Spatial Data (Sp),
Raster Geospatial Data Abstraction Library (Rgdal), Raster, and Random forests packages [44–47].

Table 1. Description of Land-Use and Landcover (LULC) classes.

No LULC Classes Land Uses Involved in the Class

1 Settlement Urban built-up and roads
2 Dense vegetation Forests, gardens and shrubs
2 Waterbodies Rivers, lakes, ponds, open water and streams
3 Agriculture Farms and Agriculture parcels
4 Bare land Non-irrigated properties and Dry lands

The accuracy of image classification was evaluated by comparing the classified LULC maps
with reference Google Earth images from 2013 to 2016 of the study area obtained from Google Earth
Engine (GEE) platform [48]. We produced a set of 75 random points and extracted those values for
four different study periods. Then, the selected random point values were identified from GEE and
compared to the LULC maps. We used the kappa coefficient to quantify the accuracy of the classified
images using ERDAS Imagine (version 8.7) [49]. The user and producer accuracies were also calculated
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through a confusion matrix [19]. A kappa coefficient of more than 0.8 indicates a satisfactory accuracy
of classified images, i.e., classified images are analogous to the reference data [50–54].

3.4. Wetland Coverage and Surface Flooding

The dynamics of wetland coverage as well as the extent of surface flooding were assessed
to identify potential subsidence zones. We applied a SMA on the Landsat imageries to track the
changes in wetland coverage and identify the emergence of waterbodies [55]. SMA delivers pixel
estimates for water extent delineated from other landcover pixels based on available radiometric data
in imageries [55] (Equations (1) and (2)). Hence, the RF classification was expanded to the SMA for an
accurate and precise examination of wetland dynamics, delineated from other LULC classes.

DNi ∑
j

FjDNi,j + ri (1)

∑
j

Fj = 1 (2)

where, DNi is the measured value of a mixed pixel in band i; DNj is the measured value of each
endmember (wetland pixel); Fj is the fraction of each endmember; and r is the root mean square
(rms) residual that accounts for the difference between the observed and modeled values [51].
Thus, waterbodies and their extent were delineated from other landcover classes for each year during
2013–2016. We calculated the total and individual area coverage of waterbodies in each year, as well as
identified if any waterbody emerged. SMA calculation and changes in waterbodies were analyzed
using R packages SP, Rgdal, Raster, and Raster Time Series Analysis (rts) [45–47].

3.5. Vegetation Productivity and Coverage

We calculated the Normalized Difference Vegetation Index (NDVI) for the quantification of
vegetation productivity during 2013–2016 using Equation (3) [56]:

NDVI = (NIRRed)/(NIR + Red) (3)

where, NIR = Near Infrared Band value and R = Red Band value recorded by the Landsat ETM+
imageries [57]. Photosynthesis is the main function of plants, which is directly associated with
electromagnetic energy [58–60]. The spectrum of visible region strongly absorbed by green vegetation
and reflects in the NIR region [61–63]. NDVI performed the NIR and R band-ratio to describe the
relative density of vegetation greenness. Thus, we integrated plant ecological functions with available
radiometric data of mining area associated with the principles of electromagnetic spectrum.

We classified the obtained NDVI values into 10 raster zones based on natural breaks to distinguish
among different stages of vegetation productivity and coverage, i.e., value ranges 0.42–1, 0.08–0.42,
and −1–0.08 indicated high productivity (dense canopies), medium productivity, and low productivity
(mostly bare land and water) vegetation, respectively. We calculated the changes in the area coverage
of each raster zone during 2013–2016 and thus quantified the dynamics in vegetation productivity and
coverage. NDVI calculation and changes in vegetation productivity were analyzed using R packages
SP, Rgdal, Raster, and rts [46,47].

4. Results and Discussion

4.1. Landscape Dynamics in Kirchheller Heide during 2013–2016

Figure 4 displays the LULC maps of Kirchheller Heide mining area obtained for July 2013, 2014,
2015, and 2016 using RF classification in R. We obtained an overall accuracy value of more than 85%
for the classified LULC maps of all years with kappa coefficient values of more than 0.84 (Table 2).
These values indicate a satisfactory accuracy of the classified LULC maps.
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The classified LULC maps exhibit a 19.9% increase in the coverage of waterbodies between 2013
and 2016 with an annual growth rate of 6.5% (Table 3, Figure 4). This increase in the coverage of
waterbodies was associated with a 5.43% decrease in the coverage of dense vegetation and 25.6%
increase in the bare land area (Table 3, Figure 4). The coverage of agricultural land also exhibited a
3.2% decrease, whereas the settlement coverage increased by 5.45%. The increase in the coverage of
waterbodies may relate to the subsidence and changes in ground water table in the surface level [2,3].
This subsidence may have led to collision with non-stowed mining cavities, groundwater intrusion,
and caused surface flooding, which, in turn, affected and caused the decrease in the coverage of
dense vegetation and agricultural lands. These results are in line with [1], which showed the relation
between surface landscape dynamics and subsurface geological changes. The observed increase in the
coverage of bare land may also indicate the vegetation damage caused by the subsidence and surface
flooding [3,4].
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Table 2. Summary of the confusion matrix for the classified images of 2013–2016.

LULC Classes
2013 2014 2015 2016

Producer
Accuracy

User
Accuracy

Producer
Accuracy

User
Accuracy

Producer
Accuracy

User
Accuracy

Producer
Accuracy

User
Accuracy

Settlement 87.02 82.21 86.01 82.12 88.22 79.71 92.02 88.19
Dense Vegetation 83.05 83.85 82.14 85.34 81.76 81.96 83.14 87.02
Agriculture land 86.78 91.76 83.21 94.21 83.45 92.12 88.46 96.75

Water bodies 86.95 91.35 81.11 89.55 87.65 88.76 82.11 85.88
Bare land 91.21 84.12 88.54 79.32 89.31 83.66 81.43 83.23

Kappa 0.87 0.84 0.86 0.85
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Table 3. Comparison of the land-use and land cover (LULC) types during 2013–2016.

LULC Classes
Area in km2 Differences (km2)

2013–2016
Differences (%)

2013–20162013 2014 2015 2016

Settlement 12.70 13.04 13.25 13.40 0.69 0.05
Dense vegetation 30.78 30.27 29.72 29.10 −1.67 −0.05

Waterbodies 0.29 0.31 0.32 0.35 0.06 0.20
Agriculture 9.24 9.16 9.02 8.95 −0.29 −0.03
Bare land 4.74 5.03 5.75 5.95 1.21 0.26

4.2. Emergence and Growth of Waterbodies

The SMA did not identify any emergence of waterbodies in Kirchheller Heide during 2013–2016
(Figure 5a). However, we observed an abrupt growth (0.06 km2) in the coverage of two waterbodies
within the four years (Figure 5a). The increase in the coverage of these two waterbodies (waterbodies A
and B) accounted for 87.2% of the total growth the coverage of waterbodies in Kirchheller Heide,
with an annual growth rate of 29% (Figure 5b,c). Waterbodies A and B exhibited a 67% and 90% growth,
respectively, in their coverage during 2013–2016 (Figure 5c). Hence, the locations of waterbodies A and
B may have been the potential subsidence spots that led to surface sink, collapse, and groundwater
intrusion, entailing an increase in the coverage of those waterbodies [2,3].
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(87.2%) growth and potential subsidence spots; (b) the dynamics of the extent of waterbodies A
and B during the years 2013–2016; and (c) the changes in the area coverage of waterbodies A and B
during 2013–2016.
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4.3. Vegetation Productivity

We observed a substantial decrease in the area coverage of highly productive vegetation,
which was associated with an increase in the area coverage of medium and lowly productive vegetation
(Figure 6, Table 4). The area around the waterbodies, which experienced the abrupt growth, was with
the highest decrease in NDVI values between 2013 and 2016, i.e., the average NDVI values decreased
from 0.61 to 0.29 (Figure 6). A total of 58.5% degradation in the productive vegetation mostly occurred
in the neighborhood of waterbodies and along the water courses in the east (Figure 6, Table 4).
Overall, the total area coverage under highly productive vegetation decreased from 56.5% to 28.3%
with an annual rate of −9.5%, whereas the area coverage under medium and lowly productive
vegetation increased from 14% to 76% with an annual rate of 15.5% between 2013 and 2016 (Table 4).

Our results indicate an overall degradation of vegetation productivity with substantial loss of
vegetation productivity along the water course in the east of Kirchheller Heide (Figure 6, Table 4).
This degradation of productivity was likely entailed by the increase in the groundwater table and
consequent intrusion into the surface level (Figure 6) [3].
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Figure 6. (a) NDVI map of the Kirchheller Heide mining area in July 2013, 2014, 2015, and 2016.
Value ranges 0.42–1, 0.08–0.42, and−1–0.08 indicated highly, medium, and lowly productive vegetation,
respectively (see b and Table 4 for details). The location of the waterbodies, which experienced abrupt
growth, are in the black circles; (b) Area coverage in km2 by vegetation productivity classes in 2013,
2014, 2015, and 2016.

Table 4. Vegetation productivity changes between 2013–2014, 2014–2015, and 2015–2016. Value ranges
0.42–1, 0.08–0.42, and−1–0.08 indicated highly, medium, and lowly productive vegetation, respectively,
and the overall changes in their coverage are reported in bold.

Vegetation
Productivity Classes NDVI Values

Changes in Area Coverage % (km2)

From 2013 to 2014 From 2014 to 2015 From 2015 to 2016

Highly Productive

0.97–1 −6% (0.55) –8% (0.36) –12% (0.27)
0.54–0.97 –45% (7.56) –67% (6.49) –78% (4.36)
0.42–0.54 –34% (11.25) –62% (8.84) –79% (4.85)

0.42–1 –28% (19.36) –45.66 (15.69) –56% (9.48)

Medium Productive

0.34–0.42 62% (5.30) 71% (6.07) 74% (6.33)
0.29–0.34 35% (3.20) 42% (3.83) 67% (6.11)
0.24–0.29 51% (29.00) 64% (3.64) 72% (4.10)
0.16–0.24 35% (8.00) 38% (0.87) 42% (0.96)
0.08–0.16 21% (0.60) 29% (0.83) 44% (1.25)
0.08–0.42 40% (12.80) 48% (15.24) 59% (18.75)

Lowly Productive
0–0.08 12% (0.18) 61% (0.29) 86% (0.55)
−1–0 16% (0.21) 57% (0.34) 66% (0.56)

−1–0.08 14% (0.39) 59% (0.63) 76% (1.10)

The variation in vegetation productivity can also be caused by confounding ecological
variables, e.g., phenological characteristics (differences between growing characteristics across years).
However, we controlled for the dominant drivers of seasonal variations, i.e., chose images from
frost-free growing season in Germany, and precipitation level, i.e., between 28.2 and 34.4 L per m2 in
July during 2013–2016, while selecting the imageries [32]. Moreover, ours is a short-term study and
hence, excludes variation in plant phenological characteristics, which is usually long-term and gradual.
Furthermore, the major decrease in vegetation productivity was observed for the area neighboring
the waterbodies that experienced the abrupt growth. Consequently, we argue that the increase in the
groundwater table caused by the subsidence is the dominant cause for the degradation of vegetation
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productivity in Kirchheller Heide. Increasing groundwater table led to surface flooding as well as to
soil erosion, which directly influenced the vegetation productivity, as observed in the extent of NDVI
values (Figure 6) [1,2].

5. Outlook

We applied freely available Landsat imageries to study short-term landscape dynamics in the
mine-reclaimed Kirchheller Heide, and identified two potential subsidence spots that may be under
risk of collapse and overall degradation and damage of vegetation (Figure 5). Thus, our results
inform environmental management and mining reclamation experts about land surface and vegetation
loss because of subsidence. Environmental management authorities in Kirchheller Heide should
prioritize the indicated subsidence areas for further surface and subsurface investigation, as well as for
remediation and mitigation. The potential biodiversity and ecosystem impacts of subsidence should
also be investigated.

In general, our study proves the virtue of RS and GIS for monitoring short-term geological changes
and thus for predicting long-term environmental impacts in reclaimed mine areas. Thus, we urge
the importance of including RS and GIS monitoring in environmental conservation and management
projects in addition to field monitoring [1–3]. Our approach is also useful for identifying ecological
stress, and surface erosion and inundation, and thus may provide important metrics for ecological
restoration and infrastructure provision [2–4].

Our study also emphasizes the need for proper backfilling and management of reclaimed mine
areas [1–3]. Environmental regulations mostly address the direct impacts of mining activities and
insufficiently address the long-term impacts of post-mining activities [2–4]. We recommend that
environmental management should take advantage of satellite imageries and RS and GIS techniques [7].
The reclaimed mine areas should be regularly monitored for the identification of subsidence and
surface collapses.

Field observation and survey data should complement the applied RS techniques with freely
available satellite data to validate our results [2]. The results should also be compared with the
SAR analyses and monitoring [3,8]. Future studies should apply higher spatial resolution (e.g., 5 m)
satellite imageries, e.g., Quickbird and LIDAR images, for the identification of subsidence extent and
magnitude in reclaimed mine areas [3,4]. RS-based monitoring could also result in surface metrics for
quantification of geological changes in reclaimed mine areas.

High- and hyperspectral and temporal satellite imageries may provide landscape dynamics
with higher precision than in our study [2–8]. For example, a comprehensive monthly variation
analysis may provide precise information on the emergence and dynamics of subsidence zones when
compared to yearly analysis, as subsidence occurs abruptly at the surface level [8]. Moreover, images
with higher coverage of bands may identify subsidence spots that are not observed through the
growth of waterbodies, e.g., sink holes and landslides [4–8]. We particularly recommend the usage
of high- and hyperspectral and temporal resolution imageries collected in continuous mode for
monitoring immediately after reclamation, when urgent surface and subsurface level investigation, as
well as proper remediation through backfilling to avoid surface level collapse, are needed.
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