
 International Journal of

Geo-Information

Article

Analysis of the Spatial Variation of
Network-Constrained Phenomena Represented by
a Link Attribute Using a Hierarchical Bayesian Model

Zhensheng Wang 1,2,3,4, Yang Yue 1,2,*, Qingquan Li 1,2, Ke Nie 4 and Changbin Yu 5

1 Shenzhen Key Laboratory of Spatial Smart Sensing and Services, College of Civil Engineering,
Shenzhen University, Shenzhen 518060, China; wangzhensheng@szu.edu.cn (Z.W.); liqq@szu.edu.cn (Q.L.)

2 Key Laboratory for Geo-Environmental Monitoring of Coastal Zone of the National Administration of
Surveying, Mapping and GeoInformation, Shenzhen University, Shenzhen 518060, China

3 College of Information Engineering, Shenzhen University, Shenzhen 518060, China
4 Key Laboratory of Urban land Resources Monitoring and Simulation, Ministry of Land and Resources,

Shenzhen 518034, China; nieke@whu.edu.cn
5 School of Management, Ningbo Institute of Technology, Zhejiang University, Ningbo 315010, China;

yuchangbinboy@gmail.com
* Correspondence: yueyang@szu.edu.cn; Tel.: +86-755-2697-9741

Academic Editors: Arpad Barsi and Wolfgang Kainz
Received: 13 October 2016; Accepted: 10 February 2017; Published: 14 February 2017

Abstract: The spatial variation of geographical phenomena is a classical problem in spatial data
analysis and can provide insight into underlying processes. Traditional exploratory methods mostly
depend on the planar distance assumption, but many spatial phenomena are constrained to a subset
of Euclidean space. In this study, we apply a method based on a hierarchical Bayesian model to
analyse the spatial variation of network-constrained phenomena represented by a link attribute in
conjunction with two experiments based on a simplified hypothetical network and a complex road
network in Shenzhen that includes 4212 urban facility points of interest (POIs) for leisure activities.
Then, the methods named local indicators of network-constrained clusters (LINCS) are applied to
explore local spatial patterns in the given network space. The proposed method is designed for
phenomena that are represented by attribute values of network links and is capable of removing
part of random variability resulting from small-sample estimation. The effects of spatial dependence
and the base distribution are also considered in the proposed method, which could be applied in the
fields of urban planning and safety research.

Keywords: network-constrained; points of interests; hierarchical Bayesian model; attribute-based
method; local indicators of network-constrained clusters (LINCS)

1. Introduction

Spatial variation is a classic problem in spatial data analysis and can provide insight into the
spatial patterns of geographic phenomena and spatial processes. In traditional analysis methods,
it is generally assumed that the spatial events can be located stochastically on a plane, and the
spatial association between event locations or sub-areas is analysed using the Euclidean (or planar)
distance [1–3], in which the inherent spatial processes are quantified based the assumption of Euclidean
geometry [4]. However, this assumption is not appropriate when a spatial phenomenon is apparently
constrained to a subset of geographical space, such as a street network. In the real world, there are
many events, the existence of which are strongly restricted by networks, such as vehicle crashes
on roads, retail services alongside streets, street crimes, and many others. These events are termed
network-constrained events or network events for short [4–6]. Euclidean-based methods, which are
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designed for events occurring on a continuous plane, are likely to lead to biased conclusions when
analysing the network events. Therefore, network spatial analysis has been developed in the past two
decades and is widely applied in analysing network-constrained spatial phenomena [7–15].

For spatial phenomena consisting of network events, it is obvious that the Euclidean distance
assumption is often violated because the network and Euclidean spaces are not isomorphic and
have their own intrinsic properties [16]. For example, vehicle crashes and traffic violations are more
likely to occur on the road networks than in other locations within a planar space. In addition,
the Euclidean distance might not be an appropriate measure of the spatial separation of events [16]
and is inappropriate for analysing point events constrained in a network space [17]. Spatially close
point events in the Euclidean space could be far apart from each other in the network space when
accounting for connectivity. For instance, bus stations are designed based on a pre-defined road
network distance rather than the Euclidean distance. However, in some circumstances, the Euclidean
distance assumption may be appropriate for analysing network-constrained phenomena. For instance,
the association between traffic-related air pollution exposure and disease mortality at the individual
level is estimated using a Euclidean distance-based buffer in epidemiology.

In planar spatial analysis, geo-referenced data can be viewed either as point events (e.g., vehicle
crashes, crimes, or residential locations) or as spatial units with attribute values (e.g., population or
disease rates) [18]. Analogously, a network-constrained phenomenon can be represented either as
a set of points distributed over links of the network or as a set of attribute values assigned to the
links [5,16], which drives the need for different analysis methods. These statistical methods have
been developed using two commonly used approaches in spatial analysis, namely, the attribute-based
approach [5,13,16] and the event-based approach [5,6]. For the former, spatial events are not analysed
directly but are assigned to a road network when the exact locations of discrete events are not of
interest or available. The aggregated counts of events are treated as attribute values of the links,
and this method is also termed the link-attribute-based approach [16]. For the latter, the physical
locations of discrete events are analysed directly. This article introduces a Bayesian-based method to
analyse spatial variation of network-constrained phenomena that are represented by the link-attribute
approach. The motivation for this method is as follows.

An observed spatial pattern of a phenomenon could merely result from spatial variation of the
base distribution, and this possibility should be considered in network spatial analysis. For instance,
the spatial variation of a disease largely depends on the distribution of the population at risk. Therefore,
the procedure of standardization is usually applied to calculate a ratio, such as the relative risk [19],
between the observed event counts and the expected event counts, which are determined using the
base distribution. In addition, the links are usually divided into shorter segments called basic spatial
units (BSUs) in the link-attribute approach [13–15], which enables the detection of spatial patterns at
a much finer spatial resolution than that imposed by a given network [16]. However, analyses based
on fine spatial units with small base values introduce an extra source of variability into the analysis
because of random variation [20]. Typically, links with few (or zero) cases can generate extreme values
of the ratios, as the variance of the standardized value is inversely related to the expected case count,
and the small size of the base distribution will cause large variability in the estimated results.

The paper introduces a method based on hierarchical Bayesian models to analyse the spatial
variability of network-constrained phenomena by considering the random variation resulting from
small sample estimation in conjunction with two experiments based on a simplified hypothetical
network and a complex road network in Shenzhen that includes 4212 urban facility points of interest
(POIs) for leisure activities. For large Chinese cities that are undergoing fast economic growth and
rapid urban development, there is an urgent need to study spatial distribution characteristics of urban
facilities in order to better understand the urban structure and patterns of human mobility. In a GIS
(geographical information system) environment, urban facility POIs, just like many other geographical
phenomena including car crashes on a road, crimes, and disease outbreak sites, can be abstracted as
points for spatial analysis. Points can be either specific geographical entities or locations of past events.
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Based on the spatial location of these point events, spatial analysis has been widely applied to study
the characteristics of global or local spatial distributions [16]. The remainder of this paper is organized
as follows. A literature review is conducted in Section 2. Section 3 introduces the framework of the
proposed method and two experiments. Section 4 reports the details of the application, and the results
and comparisons using data on urban facility POIs. The last section concludes the study.

2. Literature Review

Originally, planar spatial methods were directly applied to measure the spatial variation of
network events [12,21] and the network autocorrelation of traffic crashes was first examined by using
global spatial statistics [22]. In recent years, the primary concern of spatial analysis has been to explore
the nonstationarity of spatial processes and to detect specific concentrations using local spatial statistics.
In [12], local indicators of spatial association (LISA) [23] were applied to identify traffic hot zones.
However, the application of planar methods to network-constrained phenomena can lead to systematic
bias and improper pattern inferences [21]. Therefore, many researchers have made significant progress
by extending the planar methods to network-based methods. For instance, two popular event-based
methods, planar kernel density estimation (KDE) and planar K-function methods have been extended
to the network KDE [4,6,14,15] and the network K-function [4,5,11,24] methods, respectively. Using the
link-attribute approach, an exploratory methodology named local indicators of network-constrained
clusters (LINCS) was introduced to detect the local scale clustering of network events [16]. Two types
of LINCS methods, namely ILINCS and GLINCS, are the network extension of the local Moran’s I and
the local Getis-Ord G statistics, respectively.

With respect to handling background variations in the base distribution, a radical approach
is to regenerate the spatial process of event occurrence itself under the null hypothesis of no
spatial pattern [4]. There are two alternative assumptions that can be used in this simulation [16].
In the first approach, the probability of each spatial unit in the base distribution being an event is
constant over the network and the number of observed events for each link is assumed to follow
a Poisson distribution [19]. The second approach assumes the probability of an event occurring for
a link is proportional to the link’s base value, which can be simulated using a binomial-based null
distribution, such as the binomial distribution, the multinomial distribution or the negative binomial
distribution [25].

As discussed earlier, the random variability that results from small sample estimation should be
considered in network-based spatial analysis. One significant merit of the Bayesian approach is its
ability to generate robust estimates in the presence of sparse data or rare events [25], which was first
applied in the area of disease mapping [26]. The basic principle of Bayesian methods is that uncertain
data can be strengthened by combining them with prior information [25], which makes Bayesian
inference an attractive estimation method in many fields. In disease mapping, Bayesian statistics have
been applied to remove part of the random component from the map to produce smoothed estimates
of relative risk in each area by considering neighbourhood relationships in the data [19,27]. Methods
based on Bayesian statistics have also been implemented in other fields that employ small-area spatial
analysis, such as crime [28], air pollution [29], and traffic crashes [30]. However, the application of
Bayesian approaches to explore the spatial variation of network-constrained phenomena is still limited
in terms of the number of existing studies.

It is recognized that Bayesian estimation represents a trade-off between improved precision and
the introduction of bias [31]. In the case of empirical Bayesian disease mapping, the posterior estimates
of spatially varying disease risk are evaluated based on a weighted combination of two components,
namely the local risk and prior information from the surrounding areas [25,27]. The relationship
between the two components depends on the population size in the local area. The smoothed risk,
which can be estimated using a prior based on the global mean of the neighbours, is more stable and
has less uncertainty. In addition, the prior can be arranged as a hierarchical or multilevel structure,
which can simplify the estimation of parameter distributions such as the convolution prior. However,
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because empirical Bayesian methods tend to oversmooth towards the summarized data from the
neighbouring areas, two types of Bayesian methods have been developed to address the limitations
of empirical estimates, namely hierarchical Bayesian models [26] and the BYM model introduced by
Besag, York and Mollié [32].

The use of hierarchical models estimated in a Bayesian framework to account for different levels
of variability of spatial data has been well established in recent years. Hierarchical Bayesian models
were originally developed in the field of image analysis, and have subsequently been widely used in
disease mapping and ecological studies. In conventional spatial statistics, the results of a regression
model explain only a small amount of variance [2,25]. However, in hierarchical Bayesian models,
the unexplained “extra variance” [25,26] is represented by either the spatially correlated effects or
spatial heterogeneity effects [27,31,33]. Unlike other Bayesian models, spatial dependence is considered
in hierarchical Bayesian models. The parameter estimates for a given spatial unit are obtained by
“borrowing” strength from neighbouring spatial units [19,31]. In addition, the term “hierarchical”
indicates that observed outcomes are modelled conditionally on a set of parameters that are themselves
given a probabilistic value in terms of other parameters, which are defined as hyperparameters in
Bayesian statistics. In Bayesian inference, posterior estimates can be produced from a weighted
combination of the local estimates (also called the likelihood) and the estimates in surrounding spatial
units. Empirical Bayesian estimates are inexact and tend to oversmooth towards the global mean [31],
whereas in full Bayesian methods, the hyperparameters have hyperprior distributions. As a result,
the estimates for each spatial unit better approximate the true value [32].

This study attempts to develop a Bayesian method for analysing the spatial variation in
network-constrained phenomena. The high uncertainty and random variation of link-attribute-based
data are eliminated by applying a hierarchical Bayesian model to network space. To examine the
performance of the Bayesian method proposed here, a simulation study-based hypothetical network
and a case study are conducted with the urban facility POI data in Shenzhen, China, respectively.
Moreover, we apply two types of LINCS methods to detect the local-scale clusters.

3. Materials and Methods

3.1. Hierarchical Bayesian Models for Network-Constrained Data

In this study, we focus on tangible networks such as road networks and river networks. Links
in the network are defined as the edges between two intersections and can be split into BSUs. Let us
consider a network that consists of n BSUs, and let yi be a count value of interest observed at BSU
i(i = 1, . . . , I). As mentioned above, the effects of the base distribution should be considered when
measuring the spatial variation of network-constrained phenomena. In this study, we consider
a Poisson model for the counts and formulate the Bayesian spatial models within a Poisson framework
with a logistic link. Extending this model to the binomial case is straightforward. In the hierarchical
Bayesian framework that we consider, the Poisson likelihood of the observed counts is the first level of
the model, which is used for modelling the within-segment variability of the event counts conditional
on unknown risk parameters. The prior distributions of these parameters are specified at the second
level of the model where the spatial dependence is also measured.

In the first level, the likelihood model assumes that the observed event counts yi for each BSU
follow a Poisson distribution centred on πi to capture the within-segment variability of the counts:

yi ∼ Poisson(πi) (1)

Therefore, πi is an estimate of the true number of events in BSU i, which could be calculated by:

πi = Ei × Ri (2)
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where Ri is the ratio between the observed event counts yi and the expected event counts Ei for BSU i,
which could be termed the relative risk. Ei is given by:

Ei =
∑I

j=1 yj

∑I
j=1 nj

× ni, i = 1, . . . , I (3)

Ri =
yi
Ei

Ri =
yi
Ei

(4)

where ni is the total number of events for BSU i. It is important to identify a reasonable base distribution
which is largely dependent on the phenomena of interest. For instance, when shopping facilities or
traffic crashes are the research subjects, the number of all types of POIs or traffic volumes can be
viewed as the corresponding base distribution. Within a Bayesian regression context, the relative risk
in BSU i can be parameterized as a function of a series of explanatory variables [31]. At the second
level of the model, we split the ratio Ri on a logarithmic scale into an overall intercept α and main
spatial effects Si, which is assumed to be approximately normally distributed:

log(Ri) = α + Si (5)

Therefore, the estimate of the true number of events for BSU i is given by

log(πi) = log(Ei) + α + Si (6)

A noninformative prior distribution (flat distribution) is given for the intercept term α. The spatial
dependence is represented by means of a spatial weights matrix that defines a set of spatial neighbours
δi for each unit i. A weight matrix W =

(
wij

)
is then defined to measure the proximity between

segments in the given network. In the simplest case, wij = 1 if segment i and j share a common node,
and is 0 otherwise, which is denoted in this paper by i ∼ j; it might also be defined by the network
distance between the midpoints of segments. Although the weight matrix in network space can be
complex in some situations, we consider the above two types of spatial neighbourhoods because of
their much broader applications in the field. The spatial dependence is modelled using a conditional
autoregressive process (CAR) [19]. Given a matrix W, the conditional distribution of a set of parameters
µi is specified by:

p(µi
∣∣µj, j 6= i) ∼ N(µi, σ2

ε /ki) (7)

µi =
1
ki

∑
i∼j

µj (8)

where σ2
ε is an unknown variance parameter, ki is the number of neighbours of segment i, µ = (µ1, .., µI)

denotes the random effects in Bayesian spatial models, and µi is the conditional expectation of µi. Thus,
the value of a parameter associated with segment i is affected by the average value of its neighbours
with additional variability. The variance parameter σ2

ε controls the amount of variation between
the random effects. This variance structure recognizes the fact that in the presence of strong spatial
correlation, the more neighbors a unit has the more information there is in the data about the value
of its random effect. However, a strong spatial dependence is defined by the CAR process, which
has only one free parameter linked to the conditional variance σ2

ε. The main spatial effect can be
divided into two parts: a spatial unstructured effect and a spatial structured effect, which indicate
the spatial heterogeneity and spatial dependence, respectively [19]. Thus, to increase the method’s
flexibility, we apply a convolution BYM model to combine the CAR process (spatial structured effect)
with an unstructured exchangeable normal component (spatial unstructured effect). The resulting
model can be written as:

Si ∼ N(µi, σ2
ν ), i = 1, . . . , I (9)
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µi ∼ CAR(W, σ2
ε ) (10)

where σ2
ν is variance of the unstructured component. We further define a third level of the model

so that the variation parameters that are involved in the second level (Equations (9) and (10)) are
themselves treated as unknown and given hyperprior distributions. For the hierarchical standard
deviation, we specify a uniform distribution on the interval (0,100) because this range is wide enough
to cover any realistic value in log-transformed modelling [19].

Bayesian inference is based on the joint distribution of all parameters, which was considered
difficult and intractable in the past. In this study, the posterior means of all parameters were estimated
using Markov chain Monte Carlo (MCMC) algorithms. We used the free software WinBUGS, which is
based on MCMC algorithms, to implement the model [34]. The deviance information criterion (DIC)
is applied to evaluate the goodness of fit of the model; if the differences in DIC are greater than 5,
the model with the lowest DIC is selected as best model [35]. The DIC, which is a hierarchical modelling
generalization of the Akaike information criterion (AIC) and the Bayesian information criterion (BIC),
is particularly helpful in Bayesian model selection problems where the posterior distributions of the
models are acquired based on MCMC simulation [19].

3.2. The ILINCS and GLINCS Approaches

Based on the planar Moran’s I statistic, the network autocorrelation analysis modifies the
spatial weight matrix to reflect the network connectivity between links. Like the local I statistic,
the local G statistic can be applied to analyse network-constrained phenomena by modifying the
weight matrix [13,15]. The local I statistic aims to determine the autocorrelation between a region and
its neighbours; however, the local G statistic measures the concentration of attributes of a variable
around a region [36]. In [37], the authors revised the local G statistics to allow the variable to be
nonpositive and the weight matrix to be nonbinary. There are two versions of the local G statistic,
namely Gi(d) and G∗i (d). The only difference between the two statistics is whether the unit i is itself
included or not. In [16], the authors recommended performing analyses with the local I and G* statistics
simultaneously because the two statistics are complementary to each other.

The Moran’s I and Getis-Ord G statistics follow an asymptotic normal distribution when either
the normality assumption or the randomization assumption holds [16,20]. However, in the context of
local-scale cluster detection in a network space, the randomization assumption is preferred over the
normality assumption because each link is usually connected to a relatively small number of other
links [23]. To measure the null distributions of the local statistics, statistical inference based on Monte
Carlo simulation was recommended in previous studies [5,13,23]. In this study, we applied the ILINCS
and GLINCS methods to explore local spatial patterns on a network, which incorporates a Monte
Carlo simulation to assess the statistical significance of detected clusters.

3.3. POI Data and Analysis Design

To illustrate the validity of the proposed method, two experiments are carried out in this paper.
The first experiment involves a hypothetical network, and the second experiment uses data from
Shenzhen city. In the first experiment, the methodology is used to analyse the variations of repeated
simulated link-attribute phenomena in a simplified hypothetical network. The second experiment
uses a road network system and urban facility POI data for 2013 from Futian District, an advanced
region of Shenzhen city (Figure 1). Compared to other large cities in China, Shenzhen is a young
immigrant city with rapid economic growth because of its high-tech industries and finance. However,
because it is a thriving city with a high population density, it is important to study the distribution of
urban facilities throughout the road network, and this need has drawn the attention of policymakers
and scholars [38]. We chose a type of urban facility POIs which are most likely to be located on road
networks, such as hotels, restaurants, pubs, cinemas and art galleries, which cover numerous leisure
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activities for urban residents. The number of these facilities is 4212 and the total number of all types of
POIs in the study region is regarded as the base distribution.ISPRS Int. J. Geo-Inf. 2017, 6, 44  7 of 14 
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Figure 1. Shenzhen city and the study region: (a) the position of the study region (red box); (b) the road
network in the study area.

To apply the LINCS and the proposed methods, it is necessary to convert the event-based POIs
into link-attribute-based data. We apply the following procedure in this study. Routes are first split
into shorter segments at reference points using a network segmentation algorithm [13,16]. Taking
1 km as the standard BSU length, the above splitting process results in 4372 BSUs for the 651 km of
road network in the study area (Figure 2b). Secondly, we count the number of urban facilities along
network segments and assign the resulting values to the BSUs as new attributes. To avoid edge effects,
a facility that is located at the end nodes of more than one BSU is randomly assigned to one of the BSUs.
Finally, in the LINCS methods, the allocated number of facility POIs for each BSU is standardized
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according to the base distribution, which is approximated by the total number of POIs in the case
study. By applying the Monte Carlo method, the local statistics are simulated to identify the spatial
pattern in the given network [13,16]. The proposed method, which is based on a hierarchical Bayesian
model, is implemented in WinBUGS. For each model in the hypothetical study, three parallel MCMC
chains that each contain 10,000 MCMC iterations are simulated and visualized with time series plots
and Gelman–Rubin statistics [39]. The posterior distributions of the unknown parameters are acquired
after a burn-in of 1000 iterations. We apply a longer run for the case study (50,000 iterations after 10,000
iterations of burn-in), and posterior estimates are used as the inputs for calculating LINCS without
adjustment for the base distribution. Figure 2 describes the spatial variation of the base distribution
over the study region.

ISPRS Int. J. Geo-Inf. 2017, 6, 44  8 of 14 

 

BSUs. Finally, in the LINCS methods, the allocated number of facility POIs for each BSU is 
standardized according to the base distribution, which is approximated by the total number of POIs 
in the case study. By applying the Monte Carlo method, the local statistics are simulated to identify 
the spatial pattern in the given network [13,16]. The proposed method, which is based on a 
hierarchical Bayesian model, is implemented in WinBUGS. For each model in the hypothetical study, 
three parallel MCMC chains that each contain 10,000 MCMC iterations are simulated and visualized 
with time series plots and Gelman–Rubin statistics [39]. The posterior distributions of the unknown 
parameters are acquired after a burn-in of 1000 iterations. We apply a longer run for the case study 
(50,000 iterations after 10,000 iterations of burn-in), and posterior estimates are used as the inputs for 
calculating LINCS without adjustment for the base distribution. Figure 2 describes the spatial 
variation of the base distribution over the study region. 

 
Figure 2. The base distribution in the study region: (a) the facility points of interest (POI) counts in 98 
communities; (b) the POI counts for the 4372 basic spatial units (BSUs). 

4. Results and Discussion 

4.1. A Simplified Hypothetical Network 

In this section, the proposed method is first tested by analysing a simulated network-constrained 
phenomenon represented by link attributes in a simplified hypothetical network. The length of the 
simplified road network is 10 km; using the standard BSU length of 200 m, the simplified network is 
split into 80 BSUs. Then, we randomly distribute 5000 events over the network to represent the base 
distribution. Figure 3 describes the simplified hypothetical network and the spatial distribution of 
simulated network events. 

 
Figure 3. The spatial distribution of the hypothetical network and simulated network events: (a) a 10-
km hypothetical network; (b) the number of randomly distributed 5000 network events along 80 BSUs. 

Figure 2. The base distribution in the study region: (a) the facility points of interest (POI) counts in
98 communities; (b) the POI counts for the 4372 basic spatial units (BSUs).

4. Results and Discussion

4.1. A Simplified Hypothetical Network

In this section, the proposed method is first tested by analysing a simulated network-constrained
phenomenon represented by link attributes in a simplified hypothetical network. The length of the
simplified road network is 10 km; using the standard BSU length of 200 m, the simplified network is
split into 80 BSUs. Then, we randomly distribute 5000 events over the network to represent the base
distribution. Figure 3 describes the simplified hypothetical network and the spatial distribution of
simulated network events.
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Since the spatial patterns might depend on the BSU length, we also apply a shorter standard
BSU length, 100 m, to implement the network segmentation. Two kinds of spatial weight matrices,
node-based and distance-based matrices, are also used. Moreover, we simulate a set of randomly
distributed point events to represent the observed network phenomenon and the spatial distributions
of the events are identical in models with same BSU length and event counts. Table 1 shows the
summary statistics of the proposed method. The results indicate that the model, which has 50 network
events with a standard BSU length of 200, shows a higher performance with a lower DIC, and there is
no considerable difference in the smoothing properties of the CAR model using two types of spatial
weight matrices because the differences in DIC are less than 5. Figure 4a shows crude estimates of
the relative risk. Based on the results of M2, the spatial distribution of posterior estimates is depicted
in Figure 4b. A comparison of Figure 4a,b reveals that the extreme values of the crude risk can be
smoothed by the proposed method, which is based on Bayesian statistics, for network-constrained
phenomena. This could imply that the spatial variation of risk estimates in a network space is
attributable to the spatial dependence and extra variability relative to planar space. LINCS methods
are then applied to detect spatial clusters within the simulated phenomenon based on the results of
M2 (Figure 5).

Table 1. The results of the proposed method under different scenarios.

Weight Matrix Model BSU Length Event Counts Dbar 1 Dhat 2 pD 3 DIC 4

Node-based

M1 100 50 199.457 192.344 7.113 206.570
M2 200 50 156.022 150.979 5.044 161.066
M3 100 100 276.031 266.234 9.796 285.827
M4 200 100 200.296 192.094 8.202 208.497
M5 100 200 368.890 360.617 8.273 377.162
M6 200 200 254.844 249.845 4.999 259.843

Distance-based

M7 100 50 199.146 192.457 6.690 205.836
M8 200 50 155.513 149.565 5.948 161.461
M9 100 100 275.655 265.605 10.050 285.705
M10 200 100 203.896 196.413 7.483 211.379
M11 100 200 368.364 360.303 8.062 376.426
M12 200 200 254.877 249.359 5.518 260.395

1 Dbar denotes the posterior expected deviance; 2 Dhat denotes the deviance evaluated at the posterior expectations;
3 pD denotes the effective number of model parameters, 4 DIC: deviance information criterion.
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Figure 5a,c present the results from the LINCS methods adjusted for the base distribution given
999 conditional permutations and a significance level of 0.01; one BSU is identified as having significant
negative autocorrelation (Figure 5a) and there are significant spatial concentrations in the simulated
phenomenon (Figure 5c). Using the posterior estimates as the attribute values of the BSUs for



ISPRS Int. J. Geo-Inf. 2017, 6, 44 10 of 14

computing the LINCS and using a significance level of 0.01, two BSUs are identified as having
significant network autocorrelation (Figure 5b), and Figure 5d shows the distribution of significant
concentrations of values. A comparison of Figure 5a,b reveals that there are significant differences in
results between ILINCS and the proposed method; the links with significant concentrations of values
identified by GLINCS (Figure 5c) do not always correspond to links with significant concentrations
identified by the proposed method (Figure 5d). This implies that spatial dependence could be
a major factor influencing the spatial pattern inferences and simulation methods, such as MCMC and
permutation methods, should be applied in this field.ISPRS Int. J. Geo-Inf. 2017, 6, 44  10 of 14 
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4.2. Spatial Patterns of Urban Facilities in Futian

In this section, the proposed method is used to analyse the spatial variation of urban facility POIs
for leisure activities in a complex road network. In practical research treating subjects such as spatial
analysis of crimes and traffic crashes, the identification of high-high autocorrelation and high-value
concentration patterns attract more attention than others. Therefore, in the case study, the LINCS
methods are applied to detect hotspots of urban facilities for leisure activities distributed along
651 km of road network in Futian, Shenzhen. The structure of the road network is complex; it contains
expressways, primary roads, secondary roads and branch roads. The proposed method is implemented
on one personal computer with an Intel® Core™ 2 Duo CPU and 4 GB RAM (Lenovo T430) running
a 64-bit OS (Windows 7 Professional). The experimental results are stored as shapefiles and visualized
in ArcGIS 10.0 software. The LINCS are calculated based on 999 iterations of Monte Carlo simulations
using a significance level of 0.001 and a binary connectivity matrix. We apply two kinds of spatial
weight matrices, node-based and distance-based matrices, for the proposed method. Table 2 shows the
summary statistics of the proposed method. The results indicate that there is no significant difference
in the performances of the CAR models using two types of spatial matrices. The posterior distribution
of the parameters of hierarchical Bayesian models using two types of spatial matrix is summarized
in Table 3.
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Table 2. The results of the proposed method using two kinds of spatial matrices.

Weight Matrix Dbar 1 Dhat 2 pD 3 DIC

Node-based 1012.100 893.768 118.332 1130.430
Distance-based 1011.310 891.668 119.647 1130.960

1 Dbar denotes the posterior expected deviance; 2 Dhat denotes the deviance evaluated at the posterior expectations;
3 pD denotes the effective number of model parameters.

Table 3. The results of the posterior distribution of the parameters.

Weight Matrix Node Mean sd 1 MC Error 2 Median
Credible Level

2.5% 97.5%

Node-based
α 0.05996 0.06838 2.781×10-4 0.06007 −0.07689 0.1948
σ2

ν 7.762 40.57 1.06 4.491 2.342 20.6
σ2

ε 41.56 564.3 16.36 4.245 1.223 158.9

Distance-based
α 0.08824 0.03024 1.332×10-4 0.0884 0.02829 0.1473
σ2

ν 6.395 48.99 1.982 1.666 0.9203 19.41
σ2

ε 36.74 489.1 21.28 5.871 1.814 264.5
1 sd denotes standard deviation; 2 MC Error denotes Markov Chain errors.

Figure 6a,c shows the distributions of the local statistics for the standardized POI counts
adjusted for the base distribution. For the proposed method, the posterior distribution is acquired
based on three parallel MCMC chains that each contains 50,000 iterations after a 10,000 burn-in.
Then, the posterior estimates based on node-based CAR model are applied as inputs for calculating
LINCS without adjustment for the base distribution (Figure 6b,d). The results of the local-scale analyses
are summarized in Table 4.

In Figure 6a, there is no significant high-high network autocorrelation in the study region;
while a number of BSUs are identified as having significant high-high clustering patterns based
on the posterior risk (Figure 6b). This implies that the proposed method based on hierarchical Bayesian
models is helpful for detecting hotspots within network-constrained phenomena. Figure 6d presents
the results of the local statistics using posterior risk without adjustment for the base distribution,
where a smaller number of links are identified as having significant high value concentrations than in
the results from GLINCS (Figure 6c). A comparison of Figure 6c,d reveals that the BSUs with significant
high-value concentrations using posterior risk without adjustment for the base distribution always
indicate significant clusters of high value using GLINCS. This implies that the selected POIs tend to
form a clustered pattern with adjustment for the base distribution and that posterior risk can be used
to identify clusters of urban facilities.

Table 4. Number of BSUs with significant high-high autocorrelation (local Ii) and high value
concentration (local G∗i ) (0.001 significance level).

Statistic Used Pattern
Data Type

Raw POI Counts Adjusted
for Base Distribution

Posterior Risk
without Adjustment

ILINCS (local Ii statistic) High-high network autocorrelation 0 121
GLINCS (local G∗i statistic) Cluster of high values 273 140

In a network space, spatial dependence still has a significant impact on spatial pattern detection.
The method based on hierarchical Bayesian models can remove the part of random variability resulting
from small-sample estimation, which is valuable for exploring spatial patterns in network-constrained
phenomena. Moreover, it is convenient to combine explanatory variables in the proposed method,
which can be used to better understand the determinants of unrevealed spatial process. One notable
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limitation is that the weight matrix W was set to be simple spatial weight matrices in the case study;
the road links were split into 1-km BSUs. Although the results confirm the findings that there is no
considerable difference in the smoothing properties of the CAR model using two types of spatial
weight matrices, it is often worthwhile to search for the most effective scale of clustering by examining
multiple values of standard BSU length with multiple weight matrices. At the areal level, we created
several spatial neighbourhoods (e.g., adjacency-based, distance-based, and similarity-based matrices)
and applied them to a large dataset of hypertension admissions in Shenzhen. The results indicated that
spatial weight matrices had limited impact on the performance of CAR models. Although defining
network neighbours is a complex task, it could reduce potential bias resulting from an assumed cluster
size and might also mitigate the modifiable areal unit problem associated with the aggregation of
events into link segments, which should be investigated in further research.
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5. Conclusions

Given the ongoing progress in data collection and statistical inference, research interests in spatial
analysis have shifted from the meso-scale to the micro-scale to measure the spatial patterns of complex
spatial processes [23]. For instance, in road crash analysis, a traffic crash blackspot is defined as
an individual road segment with a large number of crashes. A set of continuous road segments with
elevated crash counts describes a traffic crash hot zone. In this study, we applied a method based
on hierarchical Bayesian models to explore the spatial variation of network-constrained phenomena
represented by a link attribute in conjunction with two experiments based on a simplified hypothetical
network and a complex road network in Shenzhen with 4212 urban facility POIs for leisure activities.
Statistically precise estimates were generated by incorporating prior information from adjacent links
to remove the random variation resulting from small numbers of observations. The proposed method
incorporated a spatial weights matrix to account for spatial dependence and considered background
variations in the base distribution.

In the case study, the proposed method was applied to explore the spatial variation of urban
facility POIs for leisure activities in Shenzhen, China and LINCS methods were further applied to
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detect the local-scale clusters. In modern cities, urban facilities such as community public service
facilities, medical institutions, and retail stores, are significant components that are necessary to
the daily lives of urban residents. Moreover, urban facilities are generally expected to form spatial
clusters in geographical space because of the inherent association between various types of urban
facilities. For example, financial facilities, commercial and consulting facilities, and retail shops are
often clustered in central business districts (CBD), which is an important issue for urban planning [40].
However, in the case study, we did not account for the types of individual urban facility POIs
(e.g., banks, retail stores and cinemas) nor the relationship between different types of POIs (e.g., schools
and residential areas). Incorporation of these characteristics and information on human mobility would
significantly increase the practical usefulness of the proposed method, which could be applied in the
fields of urban planning and safety research.
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