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Abstract: With the increasing use of mobile GPS (global positioning system) devices, a large volume
of trajectory data on users can be produced. In most existing work, trajectories are usually divided
into a set of stops and moves. In trajectories, stops represent the most important and meaningful
part of the trajectory; there are many data mining methods to extract these locations. DBSCAN
(density-based spatial clustering of applications with noise) is a classical density-based algorithm
used to find the high-density areas in space, and different derivative methods of this algorithm
have been proposed to find the stops in trajectories. However, most of these methods required a
manually-set threshold, such as the speed threshold, for each feature variable. In our research, we
first defined our new concept of move ability. Second, by introducing the theory of data fields and by
taking our new concept of move ability into consideration, we constructed a new, comprehensive,
hybrid feature–based, density measurement method which considers temporal and spatial properties.
Finally, an improved DBSCAN algorithm was proposed using our new density measurement method.
In the Experimental Section, the effectiveness and efficiency of our method is validated against real
datasets. When comparing our algorithm with the classical density-based clustering algorithms, our
experimental results show the efficiency of the proposed method.

Keywords: trajectory data; stops and moves; improved DBSCAN algorithm; temporal and
spatial properties

1. Introduction

In recent years, miniaturized GPS (global positioning system) devices have become more widely
used in daily life and large amounts of target trajectory data can be easily recorded. For instance,
people’s daily activity trajectories can be recorded by car GPS equipment and GPS-enabled mobile
phones. A common trajectory of a person’s daily life is illustrated in Figure 1. Useful information
can be extracted from these trajectories and they can be used to benefit daily life. As a result, many
location-based services, such as position-based recommender systems and destination prediction
systems, are receiving increasing attention from both users and developers. The primary concern
of location-based applications is how to understand the semantic meaning of a trajectory, and not
just to consider trajectory as a combination of recorded points. The work in Reference [1] proposed a
conceptual model to present trajectories with semantic annotations, allowing one to assign semantic
information, such as moves and stops, to specific parts of trajectories. Stops in trajectories represent
the trajectory segments corresponding to a person’s stay in certain locations. Moves correspond to the
trajectory segments created by the motion of a target between stop locations.
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and the results of these works are dramatically affected by distance parameters. Additionally, this 

will be worse when multiple features are considered together, since users have to specify a 

parameter for each feature, respectively.  

In this paper, taking the aspects described above into consideration, we constructed a new, 

comprehensive, hybrid feature–based density measurement method. In our method, we define a 

new concept for move ability and apply data field theory, proposed in Reference [4], to measure the 

density around a GPS point; the new concept of move ability is considered by giving density a move 

ability–dependent weight. In our work, the density threshold is automatically determined when 

calculating core points. After that, we use our density measurement method to improve the original 

DBSCAN (density-based spatial clustering of applications with noise) algorithm. 

The rest of our paper is organized as follows. Some common stop detection algorithms are 

presented in Section 2. In Section 3, we give the definitions of some basic concepts, for example, 

detailed definitions of GPS trajectory and stops. After describing our improved DBSCAN algorithm 

in detail in Section 4, we validate our method with real datasets both in terms of feasibility and 

efficiency by comparing it with the four other algorithms in Section 5. We conclude our work in 

Section 6. 

  

Figure 1. An example of a trajectory.

Stop locations in a trajectory are an indispensable part of various applications, such as purpose
prediction services, navigation services, and generic or personalized recommendations. In this paper,
the problem of how to extract stop locations from trajectories is called stop detection. In the literature,
many models have been proposed to divide a trajectory into stop parts and move parts. Research on
stop detection can be divided into two categories: static methods and dynamic methods. Important
positions are defined in advance for static techniques [2,3], while no prior knowledge regarding stops
is given for a dynamic approach. Recently, several papers have studied the dynamic solution by
considering different aspects of mobility characteristics, such as velocity characteristics. Typically,
general clustering algorithms, which are able to cluster one’s stop locations by assigning different
constraints to different features, are adopted in the dynamic solution.

In general, most of the existing clustering methods used in stop detection suffer from their
respective drawbacks. First, the value of commonly used characteristics in these clustering methods,
such as speed, intensely fluctuates when dealing with a real trajectory. We provide a qualitative
analysis about the speed feature in Section 3. Furthermore, this problem further leads to the second set
of drawbacks, namely that, in most cases, the algorithms need to be given manually-set parameters for
different features, which is a difficult task for users due to the fluctuations described above. Finally,
most of the clustering-based algorithms take the number of GPS points within a given distance as a
measurement of density. As a result, these methods ignore sequential features and the results of these
works are dramatically affected by distance parameters. Additionally, this will be worse when multiple
features are considered together, since users have to specify a parameter for each feature, respectively.

In this paper, taking the aspects described above into consideration, we constructed a new,
comprehensive, hybrid feature–based density measurement method. In our method, we define a
new concept for move ability and apply data field theory, proposed in Reference [4], to measure the
density around a GPS point; the new concept of move ability is considered by giving density a move
ability–dependent weight. In our work, the density threshold is automatically determined when
calculating core points. After that, we use our density measurement method to improve the original
DBSCAN (density-based spatial clustering of applications with noise) algorithm.

The rest of our paper is organized as follows. Some common stop detection algorithms are
presented in Section 2. In Section 3, we give the definitions of some basic concepts, for example,
detailed definitions of GPS trajectory and stops. After describing our improved DBSCAN algorithm in
detail in Section 4, we validate our method with real datasets both in terms of feasibility and efficiency
by comparing it with the four other algorithms in Section 5. We conclude our work in Section 6.

2. Related Works

In this section, we provide a survey of the clustering algorithms described or analyzed in the
literature. Various of methods can be used to extract the stop locations in GPS trajectories. In general,
the approaches for stop detection can be summarized into two categories: static methods and dynamic
methods. In static techniques [2,3], important positions, such as gas stations, are defined in advance.
When extracting stops from trajectories, if targets enter into a predefined region and the stay duration
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exceeds the duration threshold, this previously defined region is regarded as a stop location in the
trajectory. The main drawback of static algorithms is that users need to specify their respective places
of interest. As a result, some interesting and personalized stop locations will not be found if they are
not provided by users beforehand.

As for dynamic approaches, no prior knowledge regarding stops is given and personalized
stop locations can be discovered. Multiple sources from the literature have studied the dynamic
solution by considering different aspects of mobility characteristics [5–10]. Considering only the spatial
characteristics, several classical clustering algorithms are introduced to extract stops from a trajectory.
A predictive model, based on automatically detected stop positions, is proposed in Reference [11],
and the authors adopted a variation of the traditional K-Means methods in order to detect stop
locations. The selection of the value of parameter K and the initial clustering center is the main issue,
and will directly affect the final results. The DBSCAN [12] algorithm is used in Reference [13] to
extract significant locations. In Reference [14], a modified DBSCAN algorithm, DJ-Cluster (density and
join-based clustering algorithm), is proposed to detect personal meaningful places. These density-based
clustering algorithms can overcome many limitations of the K-Means approach [15]; however, they
only take spatial dimensions into consideration and the temporal sequential features are ignored.

Compared with the algorithms described above, many studies have taken both the spatial and
temporal characteristics into consideration. Different derivative methods of the DBSCAN method, with
temporal sequential characteristic being considered, have been adopted by many researchers in order
to extract stop positions [5,6,14,16,17]. In Reference [5], an improved DBSCAN algorithm with gap
treatment was proposed to detect stop episodes in a trajectory. The CB-SMoT (clustering-based stops
and moves of trajectories) algorithm was proposed in Reference [6] to extract known and unknown
stops. As it considers temporal speed and spatial features, CB-SMoT is a density-based clustering
algorithm. In detail, clusters are generated by evaluating trajectory sample points at a slower speed
than the velocity threshold. In addition, one of the major parameters in Reference [6], namely Eps
(a given distance threshold around which the points are regarded as neighbors), is obtained using a
quantile function. As is described in Reference [16], the quantile function in Reference [6] does not
always work in estimating the appropriate value for the parameter Eps, making it difficult to determine
an appropriate threshold for the parameter. The method proposed in Reference [16] improves the
CB-SMoT algorithm by proposing an alternative for calculating the Eps parameter, but it is still difficult
to calculate it as it depends on users to distinguish the low speed part and high speed part. Additionally,
by assigning different thresholds to different characteristics, some clustering approaches have been
proposed [18–21]. Especially, information from satellites is introduced in the TDBC (a spatio-temporal
clustering method used to extract stop points from individual trajectory) algorithm [21]. Additionally,
a time-based clustering algorithm was proposed in Reference [18] and both the clustering distance
threshold and the time threshold are needed.

The methods mentioned above can obtain a desirable performance in some situations; however,
these methods also have their drawbacks. Most of these methods need to assign appropriate threshold
values for each parameter. While calculating the density of GPS points, most clustering-based
algorithms take the number of GPS points within a given distance into account, without considering
their consequential characteristics. In this paper, the density of GPS points will be calculated using
the adjacent points over the trajectory, but not the overall spatial points. First, we define the new
concept of the move ability feature. To the best of the authors’ knowledge, the move ability feature
was first proposed in stop detection. After that, by combining the theory of the data field, proposed
in Reference [4], and our new concept of move ability, we construct a new, comprehensive, hybrid
feature–based, density measurement method. In our method, the density threshold is automatically
determined when calculating core points. Finally, we use our density measurement method to improve
the original DBSCAN algorithm.
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3. Basic Concepts

In this section, we show the definitions of GPS trajectory, stop, and move, based on the general
definitions in Reference [1]. These definitions will be used in the rest of this paper. These definitions
are given according to the particular application studied in this paper; for example, altitude is not
considered in this paper since there are small variations in altitude within urban regions.

Definition 1. GPS Trajectory:A GPS Trajectory is a list of GPS data points {p0 = (x0, y0, t0),
p1 = (x1, y1, t1), . . . , pn = (xn, yn, tn)}, where ∀i ∈ [1, n], pi = (xi, yi, ti) and ti < ti+1, and xi, yi
and ti represent the longitude, latitude, and timestamp, respectively.

Stops represent the significant places of a GPS trajectory where a target has spent a minimal
amount of time, and, essentially, with a higher density of GPS points. A move represents the trajectory
between stops and is equipped with a lower density of GPS points. In Reference [1], Spaccapietra
defined some of their characteristics.

Definition 2. Stop: A stop is a part of a trajectory and the features are as follows: (i) the user has explicitly
defined this part of the trajectory to represent a stop; (ii) the temporal extent is a non-empty time interval;
(iii) the traveling object does not move as far as the application view of this trajectory is concerned; and (iv) all
stops in the same trajectory are temporally disjointed, i.e., the temporal extents of two stops are always disjointed.

Definition 3. Move: A move is a part of a trajectory, such that: (i) the part is delimited by two extremities that
represent either two consecutive stops, or tbegin and the first stop, or the last stop and tend, or [tbegin, tend] (the
case when a trajectory has no stops); (ii) the temporal extent [tbegin, tend] is a non-empty time interval; (iii) the
spatial range of a trajectory for the [tbegin, tend] interval is a spatio-temporal line (not a point) defined by the
trajectory, where tbegin is the initial point of the trajectory and tend is the final one.

Definition 4. Distance: The distance between two points < pn, pm > is denoted by:

Dist(pn, pm) = 2R× arcsin

√
sin2

(
latm − latn

2

)
+ cos(latn)× cos(latm)× sin2

(
lgtm − lgtn

2

)
(1)

where R represents the radius of the Earth (R = 6371 km), latn and latm represent the latitudes of pn and pm,
respectively; similarly, lgtn and lgtm represent the longitude.

Definition 5. Trajectory curve distance: the curve distance of a sub-trajectory segment, trajnm, which is
composed of a sequence of points {pn, pn+1, . . . , pm}, and is denoted by

TrajCurveDist(trajnm) =
m−1

∑
k=n

Dist(pk, pk+1) (2)

Definition 6. Trajectory direct distance: the direct distance of sub-trajectory segment trajnm =

{pn, pn+1, . . . , pm} equals the distance between the first point and the last point in the sub-trajectory and
is denoted by:

TrajDirectDist(trajnm) = Dist(pn, pm) (3)

In general, when a target stays at a stop region, the corresponding trajectory direct distance is far
less than the trajectory curve distance. On the contrary, the corresponding trajectory direct distance
would be close to the trajectory curve distance when the target moves between stop regions. Taking
this into consideration, we propose our new concept of move ability.
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Definition 7. Move ability: the move ability of a sub-trajectory segment trajnm = {pn, pn+1, . . . , pm} is
denoted by:

MoveAbility(trajnm) =
TrajDirectDist(trajnm)

TrajCurveDist(trajnm)
(4)

Figure 2 illustrates the concept of move ability. In the figure, there are three sub-trajectories, each
of which contains six points. In detail, the coordinates of each point illustrate the spatial longitude
and latitude in the real world. In addition, for simplicity, the Euclidean distance is used in this
illustration to calculate the move ability features. These three sub-trajectories represent real trajectories
corresponding to different situations: Figure 2a represents the activity at a stop; Figure 2b represents
the movement on curved roads; Figure 2c represents a linear motion in reality. Comparing the move
ability of each sub-trajectory in Figure 2, the results are consistent with our reasoning, described above.
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Figure 2. Examples of move ability. (a) The activity at a stop; (b) movement on curved roads;
(c) linear motion.

Furthermore, we find that our new concept of move ability is more suitable for distinguishing
move and stop episodes. A qualitative comparison between the velocity feature and the move ability
was done. Taking a real track as an example, the velocity curve after Gaussian smoothing is shown
in Figure 3a. The velocity curve shows that the speed of moving objects can vary dramatically and
there are many short, slow-speed segments during high-speed parts, which may be caused by short
decelerations in motion. Comparatively, the move ability curve is more stable and discriminatory. The
smoothed move ability curve, using the same Gaussian kernel, is shown in Figure 3b. Especially, a low
value for move ability is only obtained when the target stays in movement around a certain region,
which is likely to be a stop region. In addition, even a low-speed sub-trajectory may achieve a high
move ability; for example, when a target moves in an approximately linear fashion with a low speed,
this can help to remove some fake stops, such as short-duration traffic jams.
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(b) smoothed move ability curve.

4. Methodology

The basis of our approach is that the stop part of a trajectory should have a lower move ability and
a higher density of GPS points; therefore, it is meaningful to find an appropriate method to estimate
the density when move ability is considered. Especially, no special treatment is done when dealing
with long-duration gaps in a trajectory. These gaps in trajectory may be caused by many things, such
as a GPS logger running out of power. It is inappropriate to assume that a target stays in the same
place. In our method, trajectory point density is the primary consideration and the short temporal
gaps in trajectories have little effect on the results.

Following the reasoning described above, we propose a comprehensive, hybrid feature–based,
density measurement method. Furthermore, we improve the original DBSCAN algorithm by using
our own density measurement method.

4.1. Density Function

DBSCAN [12] is a classic density-based clustering method. The density of a current point is
measured by the number of points within a certain distance from the current point. In our work,
taking our new concept of move ability into consideration, we propose a method to measure density
by introducing the data field proposed by Li et al. [4]. According to the data field, each trajectory
point will receive an interactive impact from other points. Without losing generality, we estimated the
impact between points using a Gaussian function, which has acceptable mathematical properties, and
the equation is shown as follows:

ϕ(pi) =
n

∑
j=1

e−(
dij
σ1

)
2

(5)

where pi(i = 1, . . . , n) represents a trajectory point, dij equals the distance between pi and pj, and σ1

represents the standard deviation.
In our work, we regard the summation of the impact from a set of points before and after pk as

an alternative to density. The number of these adjacent points is presented as the input parameter
Nap. In addition, we take our new concept of move ability into account by multiplying a move
ability–related weight function. The final density of points is calculated as follows:

ϕ(pi) = e−(
MAi
σMA

)
2

× ∑
jεadj(i)

e−(
dij
σ1

)
2

(6)
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where MAi represents the move ability of the sub-trajectory, which is denoted by the adjacent points
described above, σMA represents the standard deviation of the weight function, and adj(i) represents
the adjacent points, before and after pi, and the other parameters are the same as those in Equation (5).

4.2. Improved DBSCAN

In our method, most of the concepts of DBSCAN are the same as the original definition [12].
Instead of using a minimal number of points to define the core point, we define the core point
as follows:

Definition 8. Core point: A trajectory point pi = (xi, yi, ti) of a trajectory is called the core point with respect
to MinDensity, if ϕ(pi) > MinDensity, where MinDensity represents the threshold of density.

In our paper, in order to find the appropriate value for MinDensity, like the quantitative method
in the work of Yuan [22], we consider the ‘elbow point’ as the threshold. The ‘elbow point’ refers to the
point with the maximum curvature and usually indicates the cut-off point of two states. In our method,
a curvature calculation method, KD (a technique to estimate the curvature on curves) curvature [23], is
used to determine the ‘elbow point’. Taking three consecutive points, {pi−1, pi, pi+1}, as an example,
the corresponding KD curvature is calculated as follows:

Kd(pi) =
π − γi

η
(7)

where γi = ∠(pi−1 pi, pi+1 pi) and η = (|pi−1 pi|+ |pi+1 pi|)/2.
Furthermore, the density sequence in practice fluctuates frequently and is not smooth enough,

making it difficult to calculate the ‘elbow point’. In order to get the exact ‘elbow point’, we smooth
the density curve with a Gaussian kernel. After that, considering horizontal and vertical coordinates
as being equally important, a normalization procedure is adopted to normalize the density sequence.
In addition, we discretize the density curve by sampling with a given length interval, making
it easier to calculate the ‘elbow point’. Taking one track in our real dataset as an example, the
non-smoothed original density sequence is shown in Figure 4a; the density sequence after smoothing
is illustrated in Figure 4b.The figures show that there are indeed fluctuations and gaps in the sequence.
In our algorithm, the normalized density sequence, after sampling with a length interval ∆l = 0.1,
is illustrated in Figure 5a. The asterisk in Figure 5b refers to the final ‘elbow point’ in the normalized
density sequence, which is noted with a black arrow.

ISPRS Int. J. Geo-Inf. 2017, 6, 63  7 of 16 

 

represents the adjacent points, before and after 𝑝𝑖, and the other parameters are the same as those 

in Equation (5). 

4.2. Improved DBSCAN 

In our method, most of the concepts of DBSCAN are the same as the original definition [12]. 

Instead of using a minimal number of points to define the core point, we define the core point as 

follows: 

Definition 8. Core point: A trajectory point 𝑝𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑡𝑖) of a trajectory is called the core point with 

respect to MinDensity, if 𝜑(𝑝𝑖) > 𝑀𝑖𝑛𝐷𝑒𝑛𝑠𝑖𝑡𝑦, where MinDensity represents the threshold of density. 

In our paper, in order to find the appropriate value for MinDensity, like the quantitative method 

in the work of Yuan [22], we consider the ‘elbow point’ as the threshold. The ‘elbow point’ refers to 

the point with the maximum curvature and usually indicates the cut-off point of two states. In our 

method, a curvature calculation method, KD (a technique to estimate the curvature on curves) 

curvature [23], is used to determine the ‘elbow point’. Taking three consecutive points, 

{𝑝𝑖−1, 𝑝𝑖 , 𝑝𝑖+1}, as an example, the corresponding KD curvature is calculated as follows: 

𝐾𝑑(𝑝𝑖) =
𝜋 − 𝛾𝑖

𝜂
 (7) 

where 𝛾𝑖 = ∠(𝑝𝑖−1𝑝𝑖 , 𝑝𝑖+1𝑝𝑖) and 𝜂 = (|𝑝𝑖−1𝑝𝑖| + |𝑝𝑖+1𝑝𝑖|)/2. 

Furthermore, the density sequence in practice fluctuates frequently and is not smooth enough, 

making it difficult to calculate the ‘elbow point’. In order to get the exact ‘elbow point’, we smooth 

the density curve with a Gaussian kernel. After that, considering horizontal and vertical 

coordinates as being equally important, a normalization procedure is adopted to normalize the 

density sequence. In addition, we discretize the density curve by sampling with a given length 

interval, making it easier to calculate the ‘elbow point’. Taking one track in our real dataset as an 

example, the non-smoothed original density sequence is shown in Figure 4a; the density sequence 

after smoothing is illustrated in Figure 4b.The figures show that there are indeed fluctuations and 

gaps in the sequence. In our algorithm, the normalized density sequence, after sampling with a 

length interval ∆𝑙 = 0.1, is illustrated in Figure 5a. The asterisk in Figure 5b refers to the final 

‘elbow point’ in the normalized density sequence, which is noted with a black arrow. 

  
(a) (b) 

Figure 4. Density sequence. (a) Non-smoothed density sequence and (b) smoothed density 

sequence. 
Figure 4. Density sequence. (a) Non-smoothed density sequence and (b) smoothed density sequence.



ISPRS Int. J. Geo-Inf. 2017, 6, 63 8 of 16ISPRS Int. J. Geo-Inf. 2017, 6, 63  8 of 16 

 

  
(a) (b) 

Figure 5. Sampled density sequence and ‘elbow point’. (a) Density sequence after sample and (b) 

the final ‘elbow point’. 

Finally, a merger step is introduced in our improved DBSCAN algorithm. In detail, two 

consecutive stops with the same geographic location and a short temporal interval are merged. This 

is consistent with real life, in that people always move around certain regions, resulting in the 

appearance of several small spatiotemporal similar stops in the same region. In our experiments, 

two consecutive stops are merged if the distance between them is less than 200 m and the temporal 

interval is less than one hour. 

Compared with the original DBSCAN algorithm, our method contains two main modifications 

for clustering in single trajectories: (i) we propose a new measurement method for density by 

suggesting the new concept of move ability and introducing the theory of data field; additionally, 

we take several points before and after 𝑝𝑖 into consideration to measure local density; (ii) by 

introducing the quantitative method from Yuan [22], our method can automatically select an 

appropriate value for the density threshold. 

5. Experimental Results 

In this section, we validate our improved DBSCAN algorithm through experiments on real 

trajectory datasets. Comparative experiments between our method and two classic, density-based 

clustering algorithms were conducted. In the following sections, we first discuss the datasets, and 

then relevant experimental results are shown. 

5.1. Datasets Description 

In this paper, we use the Geolife dataset and our own collected dataset to perform our 

experiments. The Geolife dataset was collected by Microsoft Research Asia during their Geolife 

project. It shows the trajectories of 182 users from April 2007 to August 2012.In total, this dataset 

contains 17,621 trajectories. Each trajectory in this dataset consists of a sequence of temporal, ordered, 

time-stamped points; each point contains geographical coordinate information, such as longitude, 

latitude, and altitude. Additionally, more than 90% of these trajectories were recorded in a dense 

representation, namely, every 5–10 m or 1–5 s per point. 

In our experiment, a software tool was developed based on the Bing Maps APIs, which is a 

web-mapping service provided by Microsoft. Based on this software, hundreds of trajectories were 

visually inspected by a group of research assistants. During this work, regions with high densities 

and long durations were labeled as stops. A labeled real trajectory in our dataset is illustrated in 

Figure 6, where 𝑆1 and 𝑆2 represent two stops. Considering that there are many short trajectory 

segments in the Geolife dataset, the trajectories selected for our experiment should be long enough 

to ensure that there are, indeed, stops in the trajectories. Finally, in order to verify our algorithm, we 

Figure 5. Sampled density sequence and ‘elbow point’. (a) Density sequence after sample and (b) the
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Finally, a merger step is introduced in our improved DBSCAN algorithm. In detail, two
consecutive stops with the same geographic location and a short temporal interval are merged. This is
consistent with real life, in that people always move around certain regions, resulting in the appearance
of several small spatiotemporal similar stops in the same region. In our experiments, two consecutive
stops are merged if the distance between them is less than 200 m and the temporal interval is less than
one hour.

Compared with the original DBSCAN algorithm, our method contains two main modifications for
clustering in single trajectories: (i) we propose a new measurement method for density by suggesting
the new concept of move ability and introducing the theory of data field; additionally, we take
several points before and after pi into consideration to measure local density; (ii) by introducing the
quantitative method from Yuan [22], our method can automatically select an appropriate value for the
density threshold.

5. Experimental Results

In this section, we validate our improved DBSCAN algorithm through experiments on real
trajectory datasets. Comparative experiments between our method and two classic, density-based
clustering algorithms were conducted. In the following sections, we first discuss the datasets, and then
relevant experimental results are shown.

5.1. Datasets Description

In this paper, we use the Geolife dataset and our own collected dataset to perform our experiments.
The Geolife dataset was collected by Microsoft Research Asia during their Geolife project. It shows
the trajectories of 182 users from April 2007 to August 2012.In total, this dataset contains 17,621
trajectories. Each trajectory in this dataset consists of a sequence of temporal, ordered, time-stamped
points; each point contains geographical coordinate information, such as longitude, latitude, and
altitude. Additionally, more than 90% of these trajectories were recorded in a dense representation,
namely, every 5–10 m or 1–5 s per point.

In our experiment, a software tool was developed based on the Bing Maps APIs, which is a
web-mapping service provided by Microsoft. Based on this software, hundreds of trajectories were
visually inspected by a group of research assistants. During this work, regions with high densities and
long durations were labeled as stops. A labeled real trajectory in our dataset is illustrated in Figure 6,
where S1 and S2 represent two stops. Considering that there are many short trajectory segments in the
Geolife dataset, the trajectories selected for our experiment should be long enough to ensure that there
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are, indeed, stops in the trajectories. Finally, in order to verify our algorithm, we used 100 labeled
trajectories, which were selected from the Geolife dataset, and cover more than 50 users. In detail, our
selected trajectories were recorded daily by volunteers and contain different modes of transportation,
such as walking and biking. Additionally, all of the trajectories were urban trajectories.
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Figure 6. An example of a labeled trajectory.

The second dataset in our experiments was collected by our team, from daily life, using mobile
phones. In total, this dataset contained the trajectories of our team for a month and was recorded every
2 s, per point. All stops in these trajectories were recorded in detail. In our experiments, 14 trajectories
of this dataset were selected to validate the effectiveness of our new algorithm.

5.2.Parameter Estimation

In our improved DBSCAN algorithm, as shown in Equation (6), there are three parameters to be
estimated in order to determine the density calculation model. These are Nap (the number of adjacent
points), σ1 and σMA. In order to find the appropriate value for these parameters, we used real trajectory
data in our dataset to carry out on the simulation experiments for each parameter. The estimation
results of these three parameters are shown in Figure 7.
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In our improved DBSCAN algorithm, parameter σMA determines the weight assigned to different
move abilities. As previously described, when the target stays in a region, the resulting sub-trajectories
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have a smaller move ability; when the target moves from one region to another, the resulting
sub-trajectories have a larger move ability. Figure 7a shows the variations of move ability weight with
parameter σMA. A high weight should be given to a point with a low move ability, and a low weight
to a point with a high move ability. We found parameter σMA = 0.5 to be favorable as the value of a
weight has a large distribution, without causing serious two-stage differentiation.

Parameter σ1 determines the interactive impact between trajectory points. In our algorithm, the
summation of impacts from adjacent points is used to measure the density around a certain trajectory
point. Meanwhile, each point receives a stronger impact from closer points and a weaker impact from
farther points. A lesser setting of σ1 results in recieving weaker impact from farther points. When σ1 is
given too small a value, trajectory points will only receive an effective impact from closer points.

Parameter Nap demonstrates the number of adjacent points considered in our density calculations.
When parameter Nap is given too small a value, the density is determined by a few adjacent points,
resulting in a lower robustness to noise. In addition, Nap has an effect on the size of clusters. Since
people always move at a small scale, even when they stay in a certain stop region, for example students
move from place to place when they perform activities on a playground, too small a setting value
for parameter Nap would reduce the size of the clusters and divide a larger stop region into several
smaller stops. However, too large a setting value for Nap would make it difficult to detect smaller
stops, as the local small changes of move ability would be smoothed.

In order to find the appropriate value for the three parameters in our algorithm, we selected five
trajectory segments from the Geolife dataset to carry out simulation experiments for each parameter. By
observing the total number of detected stops for different combinations of parameters, the appropriate
range of values for each parameter was determined. The merge step in our algorithm was removed in
our simulation experiments, as small stops, which are close to each other, may be merged. Figure 7b
demonstrates the number of discovered stops for different values for parameter σMA. For each curve
in Figure 7b, parameter Nap and parameter σ1 are set to a fixed value. From the graph in Figure 7b,
we can see that the curve decreases dramatically when σMA is less than 0.5. On the other hand, when
the value of parameter σMA is greater than 0.5, the curve tends to be stable. Therefore, the value of
parameter σMA was set to no less than 0.5 in the experiments.

Similarly, with the premise that σMA = 0.5, the number of detected stops with different values for
Nap and σ1 is shown in Figure 8a,b, respectively. Figure 8a shows that the number of detected stops
decreases intensely until Nap > 50. When the value of Nap is set to be larger than 50, the curves tend
to be stable. The variation in the number of detected stops with different values for σ1 is shown in
Figure 8b. The graph shows that the number of detected stops increases slowly with an increase in σ1.
In our experiments, the value of Nap was set to be greater than 50. As for parameter σ1, considering
that the value should not be set too small, we set the parameter as σ1 > 0.3.

In this paper, using one trajectory segment selected from the Geo-life dataset, we further estimated
the values for parameters Nap and σ1 by observing the sse (sum of squared error). As described in
Reference [24], sse is an evaluation of the partitioning of detected locations. The smaller the sse value is,
the better the clusters are; especially when the number of stops becomes very large, the sse tends to be
very small. However, this does not mean a good result for the clustering.

In order to estimate the values for parameters Nap and σ1, the parameter σMA is set to a fixed
value (σMA = 0.5). Figure 9a shows the variations of sse with the growth of Nap. The sse is small when
Nap < 50 and it becomes large when Nap > 50. Therefore, the value of parameter Nap was set as
Nap > 50 in our experiments. Figure 9b demonstrates the variations of sse with the growth of σ1.
We can find that the larger σ1 is, the larger sse becomes. This is consistent with our reasoning that σ1

should not be set to be too small.
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number of stops found for different Nap; (b) the number of stops found for different σ1.

ISPRS Int. J. Geo-Inf. 2017, 6, 63  11 of 16 

 

  
(a) (b) 

Figure 8.The number of detected stops with different values for parameters Nap and 𝜎1. (a) The 

number of stops found for different Nap; (b) the number of stops found for different 𝜎1. 

  
(a) (b) 

Figure 9.The sse (sum of squared error) with different values for parameters Nap and 𝜎1. (a) Thesse 

for different Nap; (b) the sse for different 𝜎1. 

5.3.Evaluation of Effectiveness 

In order to verify the feasibility of our algorithm, we compared our method with four other 

stop-detection algorithms, the CB-SMoT algorithm [6], DBSCAN algorithm, DJ-Cluster algorithm 

[14],and time-based clustering [18], using the public dataset and our own collected dataset. In this 

paper, we validate our algorithm using the same experimental method described in Reference [25], 

which also used the same Geolife dataset. In our experiments, the computation of precision and 

recall are as follows: 

Precision =  
number of correct stops found

number of stops found
 (8) 

Recall =  
number of correct stops found

number ofcorrect stops 
 (9) 

In addition, as described in Reference [25], the weighted harmonic mean of precision and recall, 

Fmeasure, is computed as follows: 

Fmeasure =  
2 × Precison × Recall

Precision + Recall
 

(10) 

Figure 9. The sse (sum of squared error) with different values for parameters Nap and σ1. (a) Thesse for
different Nap; (b) the sse for different σ1.

5.3.Evaluation of Effectiveness

In order to verify the feasibility of our algorithm, we compared our method with four
other stop-detection algorithms, the CB-SMoT algorithm [6], DBSCAN algorithm, DJ-Cluster
algorithm [14],and time-based clustering [18], using the public dataset and our own collected dataset. In
this paper, we validate our algorithm using the same experimental method described in Reference [25],
which also used the same Geolife dataset. In our experiments, the computation of precision and recall
are as follows:

Precision =
number of correct stops found

number of stops found
(8)

Recall =
number of correct stops found

number ofcorrect stops
(9)

In addition, as described in Reference [25], the weighted harmonic mean of precision and recall,
Fmeasure, is computed as follows:

Fmeasure =
2× Precison× Recall

Precision + Recall
(10)
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In the first experiment, we conducted a comparative experiment on 100 labeled trajectories, which
were selected from the public Geolife dataset. In addition, in order to investigate the experimental
effects of different combinations of parameters, we ran the experiment with different combinations of
parameters for our improved DBSCAN algorithm. In detail, all the parameters of our method were
selected according to the discussion in Section 5.1. In our experiments, parameter σMA = 0.5 and
remained unchanged.

Table 1 shows the experimental results of our algorithm using different combinations of
parameters. The results show that our algorithm works best when σ1 = 0.3 and Nap=51 in our
dataset. Moreover, we found that the precision increased with an increase in parameter Nap, but the
recall decreased. The main reason for this is that when Nap became larger, the local variation of the
density was smoothed. As a result, only stops with a longer duration would be found in our algorithm;
at the same time, some fake stops are discarded with the increase in Nap.

Table 1. The experimental results of the improved algorithm with the Geolife dataset.

No. œ1 Nap Precision Recall Fmeasure

1 0.3 51 0.92105 0.7749 0.8417
2 0.3 71 0.9698 0.7122 0.8213
3 0.3 91 0.9267 0.6531 0.7662
4 0.5 51 0.7729 0.8413 0.8057
5 0.5 71 0.9167 0.7712 0.8377
6 0.5 91 0.9289 0.7232 0.8133

With respect to the other four algorithms, we ran several experiments using different combinations
of the respective parameters. Considering the optimal value of the three measurements, namely the
precision, recall and Fmeasure, the t optimal combinations of the parameters were selected to run
comparative experiments using the improved algorithm. With respect to the CB-SMoT algorithm, as it
is inappropriate to calculate using the quantile function, as described in Reference [16], the value of
Eps was set manually when calculating the optimal combination of parameters.

Table 2 shows the experimental results of our algorithm and the other four clustering algorithms
using the Geolife dataset. As can be seen in from Table 2, the improved DBSCAN method worked
better than the other four algorithms in a real-world dataset.

Table 2. Experimental results with the Geolife dataset.

Metrics OurMethod CB-SMoT DBSCAN DJ-Cluster Time-Based

Parameters
σ1 = 0.3 Eps = 50 Eps = 80 Eps = 80 Eps = 80

Nap = 51 MinTime = 5 MinPts = 100 MinPts = 80 Time = 6
Labeled 271 271 271 271 271
Detected 228 358 241 282 308
Matched 210 225 187 215 212
Precision 0.9211 0.6285 0.7759 0.7624 0.6883

Recall 0.7749 0.8303 0.6900 0.7934 0.7823
Fmeasure 0.8417 0.7154 0.7305 0.7776 0.7323

In this paper, we found that the CB-SMoT algorithm is incapable of dealing with fake stops.
For example, some moving points with a lower velocity, such as passing crossroads, are detected as
stops by CB-SMoT. The main reason for this is that the CB-SMoT algorithm is velocity-dependent, and,
thus, short slow-speed segments lead to fake stops. As for the DBSCAN algorithm, compared with our
method, the main drawback is that it only considers spatial density information. Some intersections of
a road, which are frequently visited by a user, would be detected as stops. The DJ-Cluster algorithm is
a modification of the original DBSCAN method; however, it still only considers spatial information.
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The time-based clustering method is sensitive to the time threshold. In this paper, we applied our new
concept of move ability, instead of speed, to detect stops. This is an important reason why our method
is more effective than the others.

In order to further verify the feasibility of our algorithm, and to reduce the impact of artificially
labeled data on the experiment, a second experiment was done using our own dataset, which was
collected by the authors. In detail, the dataset contained14 trajectory segments and the stops in each
trajectory were recorded. As in the first experiment, after a number of experiments with different
combinations of respective parameters, the optimal parameters used were selected. Finally, we matched
the detected stops with the recorded stop information. The experimental results are shown in Table 3,
and are in accordance with the experimental results of the labeled Geolife dataset. Our improved
DBSCAN algorithm worked better than the other four algorithms for stop detection.

Generally, our method and the other four clustering algorithms can be used to detect stops in
their respective scenarios. CB-SMoT is applicable to detect some very small stops, such as a short
traffic jam, in case the fake stops are not critical. The trajectories of traffic jams, although having
a relatively slow speed, are usually a linear motion. Our method would not detect these jams as
being stops, as the move ability feature corresponding to these segments is rather large. As for the
DBSCAN and DJ-Cluster algorithms, both methods only consider spatial information and can detect
most locations with a higher density of trajectory points, for instance, positions visited by a subject
frequently. The time-based clustering method is suitable for dealing with trajectories with an unstable
recording frequency. Considering the spatial and temporal information, our algorithm works better for
detecting activity stops that have a longer duration. Usually, users are only interested in these activity
stops. In addition, our method is more robust to fake stops, such as traffic jams.

Table 3. Experimental results using data collected by the authors.

Metrics Our Method CB-SMoT DBSCAN DJ-Cluster Time-Based

Parameters
σ1 = 0.5 Eps = 50 Eps = 50 Eps = 50 Eps = 80

Nap = 71 MinTime = 5 MinPts = 100 MinPts = 100 Time = 6
Recorded 48 48 48 48 48
Detected 48 51 60 59 49
Matched 46 37 42 41 41
Precision 0.9583 0.7255 0.7000 0.6949 0.8367

Recall 0.9583 0.7292 0.8750 0.8542 0.8542
Fmeasure 0.9583 0.7475 0.7778 0.7664 0.8454

5.2. Evaluation of Efficiency

In this paper, we also performed an evaluation of the computational efficiency of our improved
DBSCAN algorithm. We ran the algorithms, our method and the other four methods on a set of
trajectories with a different number of trajectory points. The running time of this comparative
experiment was recorded to evaluate the efficiency. Figure 10a shows the efficiency of the different
methods. As we can see from Figure 10a, the curves corresponding to both the DBSCAN and DJ-Cluster
algorithms increase sharply. This demonstrates that the DBSCAN and DJ-Cluster algorithms are not
suitable for dealing with long trajectories. As for the other three methods, the computational efficiency
of the algorithms is approximately linear. Moreover, the gap in the efficiency among these three
methods is small enough to be negligible.
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Both our improved DBSCAN method and the CB-SMoT algorithm are derivative methods of
the DBSCAN algorithm. The main difference among these derivative methods is how a core point is
defined, leading to a difference in complexity. A distance calculation between all pairs of trajectory
points is needed in the traditional DBSCAN method to select the core points; thus, the complexity of
the DBSCAN method is O

(
n2). However, in our method, and in the CB-SMoT algorithm, the distance

to only a part of the trajectory points is necessary to determine whether a point is a core point, leading
to the complexity being O(n). In more detail, the complexity of these algorithms is proportional to
the number of times the distance between pairs of points is calculated. In our method, parameter Nap
represents the number of adjacent points, and is related to the number of times the distance between
pairs of points is calculated. Figure 10b shows the effect of parameter Nap on the computational
efficiency. The results demonstrate that a larger value for Nap leads to a longer running time, which is
consistent with our previous analyses.

6. Conclusions

In this paper, we first proposed the new concept of move ability. By introducing the theory of the
data field in order to calculate the density of trajectory points, we proposed a new, comprehensive,
hybrid feature–based, density measurement method to improve the original DBSCAN method. In our
improved DBSCAN method, the move ability was taken into consideration by giving a lower move
ability a larger weight. In addition, the density threshold can be automatically determined. In the
experiments, we compared our method with four other clustering algorithms, CB-SMoT, DBSCAN,
DJ-Cluster, and time-based clustering. The experimental results show that our method works better
than the traditional methods, demonstrating the feasibility of our method.
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