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Abstract: Parallel processing in the real-time visualization of three-dimensional Geographic
Information Systems (3DGIS) has tended to concentrate on algorithm levels in recent years, and
most of the existing methods employ multiple threads in a Central Processing Unit (CPU) or kernel
in a Graphics Processing Unit (GPU) to improve efficiency in the computation of the Level of
Details (LODs) for three-dimensional (3D) Models and in the display of Digital Elevation Models
(DEMs) and Digital Orthphoto Maps (DOMs). The systematic analysis of the task and data
characteristics of parallelism in the real-time visualization of 3DGIS continues to fall behind the
development of hardware. In this paper, the basic procedures of real-time visualization of urban
3DGIS are first reviewed, and then the real-time visualization pipeline is analyzed. Further, the
pipeline is decomposed into different task stages based on the task order and the input-output
dependency. Based on the analysis of task parallelism in different pipeline stages, the data parallelism
characteristics in each task are summarized by studying the involved algorithms. Finally, this paper
proposes a parallel co-processing mode and a collaborative strategy for real-time visualization of
urban 3DGIS. It also provides a fundamental basis for developing parallel algorithms and strategies
in 3DGIS.
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1. Introduction

Photorealistic visualization is not only one of the key technologies of Geographic Information
Systems (GIS), but also one of the basic elements for public geospatial services [1]. As one of the
basic functions in GIS, the ability to visualize 3D spatial information in an efficient, photorealistic,
and real-time manner has become an important indicator for the performance of systems [2].
The advancement of modeling technologies and the improvement of the measurement of accuracy have
made the understanding and usage of geographic information transition from the traditional vector or
raster of the 2D age into a new 3D age in which objects can be represented by an accurate geometry
model with high quality textures and a spatial-temporal mode with dynamic features. The volume
of geospatial data has experienced exponential growth, and the data that need to be rendered are
far beyond the processing abilities of current personal computers (PCs) [3]. Making full use of the
existing multi-CPU (Central Processing Unit) and multi-GPU (Graphics Processing Unit) architectural
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features to speed up the data processing and visualization of large-scale geospatial data has become
a hot research issue, as well as a large challenge in the fields of geographic information science and
computer graphics science.

Real-time visualization is generally described as a cyclical procedure that can be divided into three
stages: the application stage, the geometry processing stage, and the fragment processing stage [4].
Since the 1990s, the analysis and realization of parallel processing for real-time visualization have
fallen into two categories. The first type is process based, which appeared in the earlier years of
the PC age, when the processing abilities of the CPUs were not powerful enough. The procedure
of the visualization stage can be divided into four tasks: the visibility calculation task, the render
task, the data loading task, and the LOD (Level of Detail) selection task. Each task is handled in a
separate CPU and is run as a process. This kind of processing method has wide applications. The UC
Berkeley walkthrough system [5] takes four CPUs to perform the tasks. Each CPU of the system runs
one process, and each process of the CPU performs one task. The Massive Model Rendering (MMR)
system [6] decomposes the procedure of visualization into eight tasks, namely culling, LOD selection,
view frustum culling, occlusion culling, occlusion rendering, Textured Depth-Mesh (TMD) rendering,
geometry rendering, and pre-fetch asynchronously. These tasks are performed in four CPUs. Each
CPU runs two processes, and each process binds with one task. The second type of parallel processing
is thread based, which appears in the fast developing times of the CPU with a hyper-thread and
multi-core trend. This kind of processing method adopts the same strategy as the previous method.
Both of them break down the procedure of visualization into several tasks. However, the thread-based
method performs each task in a single thread. The iWalk system [7] breaks down the procedure of
visualization into five tasks, which are approximate calculation for visibility, conservation calculation
for visibility, rendering, look-ahead pre-fetching, and loading form disks, and each task is attached
to one independent thread. The Quick-VDR system [8] divides the rendering process into four tasks,
namely LOD selection, occlusion culling, rendering, and data fetching. The feature of this system that is
different from others is that each task may be performed in more than one thread. For example, the data
fetching task runs in two threads to load the data from external memory. The Geomorphing of Levels
of Detail (GoLD) system [9] breaks down the procedure of visualization into five tasks, including LOD
selection, occlusion culling, rendering, geometry data loading, and texture data loading. The system
takes only two threads to perform the above five tasks, one thread for the data loading task and the
other thread for all other tasks. The ANYGL system [10] adopts a different strategy in which the six
tasks, namely visibility calculation, LOD selection, rendering, disk mapping for data loading, data
pre-fetch asynchronously, and disk mapping replacement, are cataloged into three types and each type
can be performed by multiple threads.

In the field of Geographic Information Science, many studies have been conducted to investigate
the high efficient rendering in 3DGIS (three-dimensional Geographic Information Systems). Zheng [11]
proposed a parallel dynamic storage and rendering algorithm based on integer wavelet transform
and restricted quad-tree combination in a GPU to reduce the impacts of data updating and data
storage to real-time terrain deformation for a dynamic rendering speed. The high-precision surface
modelling method, which is GPU accelerated, can also be used to create a high accuracy Digital
Elevation Model (DEM) [12]. According to different characteristics of parallel algorithms, Song [13]
noted that the data divide mechanism has become the key issue among research problems. Other kinds
of methods, such as Map Reduce [14], divide the grid area into raster cells and assign every raster
data to different calculating units to achieve parallel computing for terrain processing. To achieve
efficient rendering of 3D models, Xu [15] proposed a fast data loading strategy, which combined the
data-bind stream reader through a multi-thread parallel processing algorithm, and implied a new data
re-organized method by converting the CityGML city model into a grid Direct3D object. To process
the remote sensing images efficiently, a CPU and GPU co-processing mode is performed through
orthorectify. Xie [16] took full advantages of the natural features of the parallel patterns in remote
sensing images, and Guo [17] explored the usage of GPU for image matching. Aiming at the specific
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tasks, the optimization algorithms are implied by using a CPU and GPU collaborative model for
parallel processing. The traditional methods of visualization in 3DGIS mainly focus on the issues
of symbolization, scale, and representation in three dimensions. In the era of big data, given the
massive volume, dynamic changes, and uncertainty of data, it is urgent to develop new interactive
and dynamic demonstration methods to explore the discoveries and to develop a visual analytics
method combined with geographic calculations, including statistics or data mining. These methods
have become important characteristics of GIS big data [18].

In summary, there is no a systematic analysis for real-time visualization of urban 3DGIS in the
fields of computer graphics or geographic information science. Real-time visualization for the dynamic
observation targets and the sensor data has become an urgent topic, especially since Real-Time GIS
has been proposed [19]. We need to investigate a method for real-time big data processing from a
theoretical model to a real tool.

This paper first summarizes the basic procedure of real-time visualization of urban 3DGIS and
then analyzes the pipelines of the real-time rendering process of the visualization. Furthermore,
the decomposition of the pipeline with tasks is taken by the task order in the pipeline and the data
input-output dependency between adjacent tasks. After that, the data characteristics of the basic
algorithms inside tasks are evaluated. On this basis, this paper proposes a parallel co-processing mode
and a collaborative strategy for real-time visualization of urban 3DGIS. This method seems to provide
effective evidence for the development of rendering applications of 3DGIS systems.

2. Procedure Analysis on Real-time Visualization of Urban 3DGIS

As one of the visualization methods of 3D city models, the vector-based visualization method
uses a vector to represent 3D models. After the view point and the view directions are set, considerable
processing such as shading, occlusion, lighting, texture mapping, projection, and finally a photograph
are generated to reflect the virtual scene [20]. The tasks and functions associated with the visualization
of 3D city models can be summarized as multi-view browsing, zooming in and out, walking-through,
rotating, and flying by any router and driver on ground [21]. With the development of real-time GIS,
the requirement for visualization ability has grown rapidly, which can process various data acquired
from space, airplane, and ground equipment sensors or generated by new interface techniques,
such as somatosensory interactive devices, or virtual reality and augmented reality sensor devices.
The real-time visualization of urban 3DGIS should be able to process the exponentially growing data
with limited memory, manage the scene graph, and schedule the large-scale data dynamically and
effectively. The procedures range from the data input, scene management, and dynamic scheduling to
real-time rendering. The basic procedure of visualization of urban 3DGIS is shown in Figure 1.
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Similar to the methods in computer science, the visualization procedure mentioned in this paper
takes the real-time visualization of urban 3DGIS as a pipeline and then divides the pipeline into
four stages based on the task order and the data input-output dependency. They are the human
interface and output feedback stage, scene management and data selection stage, scheduling and cache
management stage, and the content-based real-time rendering stage. Each stage can be further divided
into several tasks. In the stage of human-interface and output feedback, the urban 3DGIS system can
process the input data from commonly used devices such as a mouse and keyboard. In addition, with
the fast development of virtual reality and augmented reality, the system should have the ability to
address all kinds of signals acquired from real-time input sensors, attached systems, and holographic
interactive input devices and virtual glasses, such as Kinect, Google Glass+, Oculus, and HoloLens.
The input signals will be converted into commands as soon as they are transferred into the system,
and then these commands will be calculated into parameters used for visualization. In the stage of
scene management and data selection, the nodes of the scene graph are first updated with the data
change, and then the visible nodes are calculated according to the visual conditions. At the end of the
stage, a node list is generated for data loading, and a list of objects is also generated for rendering.
One more important job in this stage is that the suitable LODs of the data should be selected based
on the balance between the rendering quality and the cost of rendering. In the stage of scheduling
and cache management, a high-efficient buffer management method is implemented for a limited
memory size. It allocates threads to load the data dynamically and unload the unnecessary data to
maintain a suitable size. In the stage of content-based real-time rendering, the data are pushed into the
cache for rendering. The data contents include DEM, DOM, 3D models, vector-based data, figures,
notations, annotations, and stream-based real-time input data. The sub-tasks in this stage include the
data division of content, the setup of elementary graphics, the creation of the texture objects, the data
transformation into GPU, and the geometry and pixel processing to generate the output image.

3. Real-Time Visualization Pipeline of Urban 3DGIS

The visualization of urban 3DGIS is a process that maps the digital value into a cognitive scale and
transfers the information in a visual manner, and it is also a calculation process from the description of
a scene to image generation [22]. In this paper, we describe the detail process of rendering pipeline of
urban 3DGIS, as shown in Figure 2. First, the system catches the signals from the input devices such
as a mouse, a keyboard, sensors, and other third-party devices. The signals might be a moving view
point, a query box, a gesture, and/or a voice command. Then, all of these signals are converted into a
visual box, which is the most important parameter used to calculate the visual objects and suitable
LODs. Based on the calculated visual object list and the LODs, the data content of the object lists
that are located in external memory are loaded into the main memory by multi-threads. After, the
loaded data are processed by Graphic Application Programming Interfaces (APIs), such as OpenGL
or DirectX, by the steps of rendering environment setting, primitive setup, and state setting. Finally,
the data primitives, the draw commands, and control commands of the rendering are transferred into
the graphic cache, such as frame buffer, and finally a picture is generated. After the user observes the
image and then receives feedback, the visual condition changes and the process begins with the first
step, which runs as loops. In such a manner, the procedure of real-time visualization of urban 3DGIS
works on the pattern of a pipeline. The asynchronous pipelined manner can address the fluctuation
of the frame rate caused by waiting and delay during the steps of synchronous serials and realize
real-time and smooth visualization.
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3.1. Pipeline Task Characteristics

The real-time rendering pipeline in computer graphics can be divided into the application stage,
the geometric process stage, and the pixel process stage [23,24]. This method focuses on the tasks
processed in the graphics hardware. In this paper, the pipeline for urban 3DGIS is divided into the
human-computer interaction and output feedback stage, the scene management and data selection
stage, the scheduling and cache management stage, and the content-based real-time rendering stage.
The first three parts correspond to the application stage defined in computer graphics. The fourth part
of the content-based real-time rendering stage can be subdivided into geometry processing and texture
processing stages.

The task of the human-computer interaction and output feedback stage is to monitor all kinds of
input devices and receive the input instruction and data stream. The input contents include mouse
input signals, keyboard input signals, sensor data, and other input signals from third-party devices.
The output to the following stage in the pipeline can be regarded as a visual output and feedback
output, which are the images and the standard signals of the sensor devices.

The scene management and data selection stage can be subdivided into three tasks: the update
services for visual conditions, the visibility calculation, and the LOD selection. The update services for
visual conditions can be defined as when the system receives the input parameters, it converts them
into a viewpoint position, and transfers them into a view volume box. The tasks of visibility calculation
include traversing the scene graph and calculating the intersection of each node with the view volume
box by performing the frustum visibility algorithm, occlusion culling calculation, and back visibility
calculation. The list of visible scene nodes is the output for the next stage. The LOD selection entails
calculating the distance between each node and the viewpoint by using the list of visible scene nodes.
According to the projection screen error tolerance of projection screen and the distance, the appropriate
LOD level for each node can be determined based on the storage of the data content of the node.
Therefore, the input of this stage is the viewpoint parameter of the human-computer interaction, and
the output for the next stage is an object list with its suitable LOD.

The scheduling and cache management stage can be subdivided into three tasks: cache
management, multi-thread management, and dynamic scheduling management for data loading
and unloading. Cache management needs to implement the allocation and deallocation algorithms for
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blocks of memory and a replacement policy to ensure high efficiency without duplication of loading
from slow external storage devices. Multi-thread management develops a thread pool to manage
bundles of threads. For the data that should be loaded, the threads are applied from the pool and then
bound to certain loading jobs. The state of the thread will be monitored during the job, and then the
thread will be returned to the pool when the job is finished. Data loading and unloading management
makes it clear where the data are stored. The storage location will decide the method used for data
loading by local disk data file reading, by network data transferring, by databases data loading, or by
streaming. The output of this stage is a list of scene graph nodes with a data list.

The content-based real-time rendering stage decomposes the content of the data. The existing
data type can be classified as DEM, DOM, 3D model, 2D vector, chart properties, annotation tags, and
video data. All the data are analyzed and then expressed as a geometry with its corresponding texture
units or data stream. After, all of the data will be set up by using the drawing APIs (such as OpenGL or
DirectX) for the primitives and the texture units. The graphic APIs will try to package all the drawing
commands and elements to create the display lists or high speed drawing orders, which will be sent
to the graphics engine. Lastly, a resulting image is generated as the output to the frame buffer and is
output by the display devices. The input data of this stage are the object list and the data list with its
content, and the output are the displayed image and other feedbacks.

3.2. Data Characteristics in Task

The parallel patterns of real-time visualization of urban 3DGIS show the characteristics of the
tasks’ parallel pattern in the pipeline and the data parallel pattern of algorithms in tasks. Thus, it is
necessary to explore the characteristics of the data in each task of the stages in the pipeline. Based
on the clear description about the data input-output dependency relationship between tasks, we can
build the single instruction multiple data parallelism mode (SIMD mode) to improve the ability of
real-time rendering of urban 3DGIS.

3.2.1. Human-Computer Interaction and Output Feedback Stage

The input data of this stage can be expressed as the instructions during the real-time rendering of
3DGIS and the feedback from the input sensors during the visualization process in each frame image.
After the user observes the rendering image and decides the new feedback through the input devices
or sensors, the new instructions will be generated and then converted to new parameters, which are
the input data for the next stage.

3.2.2. Scene Management and Data selection Stage

The instructions of sensors in the previous stage can be converted into visual information.
Further, the codes of sensors and visual information are calculated as the view point position or
other parameters. In addition, the scene graph of the study area can be used as input data, and the
visual conditions of the view point can be transferred into the view scope, which is represented as
a view box. Then, the task of visibility calculation uses the scene bounding box as the parameter to
perform frustum culling, back-face culling, and occlusion culling calculation. The data characteristics
of these algorithms can be represented as faces of the view frustum, the bounding box of the nodes,
objects and polygons of the objects, which are organized by the b-rep representation method. In LOD
selection, the viewpoint and the positions of the nodes of the scene graph are used to compute the
distance or projection error parameter, which are used to select the discrete LOD or to compute the
continuous LOD for the connected scene graph nodes. The output of this stage is the visible list of
nodes and the LOD parameters of the scene graph nodes.

3.2.3. Scheduling and Cache Management Stage

After the visibility calculation and data selection, the list of visible scene graph nodes and the
LODs of each node are the input parameters for this stage. The dependent input data of this stage also
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include the geometry and texture data located in slow external memory and the sensor data from a
data center or network. The organization structure of the data in external memory should be consistent
with the data organization of the scene graph, which means that one can locate the external memory
data storage of the object through the scene graph nodes. The data storage and organization in external
memory are always established during the off-line process. The functions of the buffer management
make the memory allocation and management in data blocks. The data characteristics represented in
memory allocation are a data block. Data management and loading scheduling achieve the smooth
loading of data from the external memory to the cache memory by multiple threads, and the data
pattern is the block of the geometric data, the texture data, and the data stream of sensors.

3.2.4. Content-Based Real-Time Rendering Stage

This stage relies on the lists of data loading in caches, including the geometric data, texture data,
and stream data of sensors. Taking the common implementation method into account, the cached
data refer only to the data that have been loaded into the frame cache. They can also be called the
cache rendering data of the current frame. The geometry processing task first breaks down the block
data of the object into vertex and polygon data and then applies the model view transform, lighting
calculations, projection computing, and cutting operations. For the texture data, the texture coordinate
values are interpolated based on the vertex and original texture coordinate. Finally, the coordinates
should be further transformed into the texture space, which can map the coordinate to draw an image
to complete the geometry processing task. The input data of the pixel processing task include the
vertex object and the texture object. The vertex object is the colored value generated in the vertex
processing stage, and the texture object is produced through a command processing and texture format
setup by the graphical interface API, such as OpenGL. Both of the above objects can be used to generate
the fragment after the raster stage, and the fragment can be called as a pixel after the related operations.
The final output of this stage is a generated image put to the frame buffer for display.

4. Parallel Mode of Tasks and Collaborative Mode of Data in Real-Time Visualization Pipeline

The frame rate required for real-time visualization is up to 15 frames per second (FPS) or more,
whereas a frame rate of over 60 FPS is beyond the perceived sensitive ability of the human eye [4].
Therefore, the time for each frame to be rendered is approximately 0.0167 to 0.067 seconds. Because the
tremendous fluctuation frame rates will affect the user experience dramatically, it is a basic requirement
for most real-time visualization applications to obtain a stable frame rate, such as a constant frame rate
for films at 24 FPS or 30 FPS. In this paper, the real-time visualization pipeline of urban 3DGIS has
been analyzed. However, the different visual conditions between frames can cause a large imbalance
in data, which will result in a misbalance of the processor working load and create a stop or delay
during the frame rendering. The time-based self-adaptive visualization method limits the processing
time of each frame by adaptively selecting the appropriate LOD level for each model and stops the
processes when the total rendering time reaches the time budget [25]. This method can effectively
solve the processing timeouts, but cannot avoid inter fluctuations for frame rates.

This paper proposes a collaborative model based on sharing the data list during the processing
of queue data of each stage. A data queue which can be operated in parallel is set up according to
the relationships between the input and output data quantity of the consequent tasks in the pipeline.
The previous tasks write the results to the queue once it finishes the job, and the following task
monitors the states of the queue. That is, once the data signals change, the task operates the data
as input parameters to finish the process and then passes the results as the new input parameters
to the queues of the following tasks. The shared queue of different tasks is ensured to be read and
written consistently by a muted value in globe. The processing of all the tasks and shared queues
is shown in Figure 3. The task of interaction input monitors the queue of interactive operation and
sensor instructions to get the input data. When it finishes the jobs, the output is written to the queue of
the visual point and commands. The task of visual condition calculation obtains the input data from
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the queue of visual point and commands, uses the visible frustum viewpoint coordinates to calculate
the view frustum parameters, and writes the result to the queue of the view frustum. The task of
visibility calculation monitors the queue of the view frustum to obtain a new frustum, and a visible
list of scene graph nodes can be written to the queue of visible scene nodes of the scene graph by the
complex process of visibility calculation. The task of LOD selection grabs the data to perform the
calculation of LOD parameters for each visible scene graph nodes, and finally the outputs are written
to the queue of visible nodes with LODs. The task cache management uses the LOD parameters and
the visible scene graph nodes to calculate the desired buffer size and allocate the suitable blocks to the
queue of available cache blocks. At the same time, the data lists should be loaded and written to the
queue of data loading tasks. The task of thread management generates a thread job by binding the
data loading to the target cache block with a thread, and then writes the job to the queue of loading
threads. The task of data loading monitors the changes and then employs a different thread to load the
data. According to the data type of geometry data, texture data, and stream data of sensors, the data
content will be stored to different queues by the data types. Lastly, the task of content-based rendering
monitors the changes of the queues, completes the drawing and feedback sessions, displays the result
image on a screen, and sends the feedback through the sensors.
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The unbalanced computational complexity and data-dependent accessibility issues between
frames can cause asynchronous operation in each frame during the real-time rendering. Therefore,
a synchronization control is needed to make the data and processing balanced for inner-frame and
intra-frames. We designed a task parallel collaborative model based on the shared data queue. Figure 4
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shows the tasks and the queue synchronization process. When the frame starts, an operation named
inner-frame synchronization synchronizes all the queues. The data items in the queue will be tagged,
which represents the previous frame. It makes sure that the newest items in the queue have the priority
to be processed first during the current frame. Each task monitors the data change of the related
queue and obtains the correct result for the current frame based on the principle of Last In First Out
(LIFO). It achieves frame synchronization and collaboration by allocating the threads to process the
data in queues.
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Because the different visual conditions between frames cause differences in computational
complexity and amounts of data, the current frame may not be able to complete the process for
all the items in the queue. This paper proposes a collaboration method to dynamically adjust the
number of threads based on the amount of data between frames. At the beginning of the new frame,
the task receives a frame synchronization signal, and the processing thread is set to the intra-frame
processing thread. If more data need to be processed, the task will apply a new inter-frame processing
thread from the thread pool to monitor the data changes of the queue. While the current frame
processing threads are in a monitoring state, we do not need to apply a thread from the thread pool,
but to just set the jobs of the tasks to the current thread. After the intra-frame processing threads
complete the tasks, the frame number tag will be added to the output data. It will process directly
if the associated tasks obtain the result from the intra-frame and the current inner-frame processing
threads hold the waiting state. While the inner-frame thread is currently in execution, it will check
whether there is an intra-frame processing thread. If it exists, the tasks will bind to the intra-frame
processing thread. If the intra-frame processing thread returns to the thread pool, the jobs of the tasks
will be added to the ends of the queue and will wait for the inner-frame processing threads until one
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thread becomes idle. If the difference between the output tagged frame and the current frame is more
than three, it should apply a new processing thread for the intra-frame to process the current task
data. The adaption of threads in frame or between frames can maintain a balance in the consistency of
frame rates.

5. Experiments and Results

In this section, we discuss the development of a walk-through navigation program to test the
proposed methods. The implementation of the application was a desktop program using VC++.
The dataset of the urban city we used comes from the surveying and mapping department of the
government, which is not public. Figure 5 shows part of the test scenario. The test program realized
inter-frame synchronization and intra-frame collaboration by using multiple threads to perform the
tasks. The number of threads was based on the input-output dependency relationship between
adjacent tasks. We chose a walking path, which could access almost any part of the test area, and two
different viewpoint positions were selected to extrude the operand of the tasks.
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Dataset description: the test dataset includes DEM and DOM for terrain surfaces and 3D models
with fine textures for urban buildings, real-time camera stream data for security monitoring, and
graphs and annotations for information demonstration. We use the bounding box to represent the
object and construct a 3D R-tree as the spatial index, which is the main structure for constructing the
scene graph. Each leaf node of the scene graph represents one feature of the scene and includes the
geometric data in the form of cuboid, so the cost of operation on each node is equal. In this paper, we
do not take the efficiency of the traveling of the scene graph into account because we hold all nodes
of the tree in memory and detect no perceived difference in the test. The test area is approximately
10 square kilometers, and the total data volume is approximately 2.9 GB.

We take the following steps for the test:
(1) We converted the original data into a scene graph and restored the data according to the node

structure of the spatial index. The geometry data and the texture data were organized by a coherence
organization method [26].
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(2) We set up two view point positions to evaluate the operand of each tasks during the runtime,
measured the running time of the tasks, and then used the operand and the running time to obtain a
ratio for every task. Starting from the first task, we used the ratio of the adjacent tasks to determine the
number of threads for every task in the pipeline.

(3) We used three modes to navigate in the same path and record the frames per second (FPS), the
number of objects under the view point of every extrude frame. Then, we drew graphs to compare the
results of different methods.

In Table 1, the operand of the task of interactive input (TII) is the number of instructions.
The operand of the task of visual condition calculation (TVCC) and the task of visibility calculation
(TVC) is the arithmetic computing times by the geometry of the nodes and visual box. The operand
of the task of LOD selection (TLS) is the number of operations performed in the CPU. The operand
of the task of cache management (TCM) is expressed as the number corresponding to operations
management. The operand of the task of thread management (TTM) is the loading and binding operate
times. The operand of the task of data loading (TDL) is expressed as the amount of the data that should
be loaded, and the value is the data size. The operand of the task of content-based real-time rendering
(TCBR) is the sum of the number of vertices and the number of the pixels of the texture tiles.

Table 1. Operand of Tasks. TII, Task of Interactive Input; TVCC, Task of Visual Condition Calculation;
TVC, Task of Visibility Calculation; TLS, Task of LOD Selection; TCM, Task of Cache Management; TTM,
Task of Thread Management; TDL, Task of Data Loading; and TCBR, Task of Content-Based Rendering.

TII TVCC TVC TLS TCM TTM TDL TCBR

View 1 6 864 1480 30 30 13 3360 27,600
View 2 8 1080 2686 60 60 15 6720 42,300

We obtained a quantity ratio for adjacent tasks by measuring the running time for each task.
Because the ratios of different tasks were significantly different, we set up a model to normalize them
into a unit that can be performed by threads. Table 2 shows the results.

Table 2. Process units of tasks performed by threads.

TII TVCC TVC TLS TCM TTM TDL TCBR

View 1 1 1 2 1 1 1 4 3
View 2 1 2 4 1 1 1 6 4

In this test, we used two different viewpoint positions to measure the operand and then set the
different number of threads. The task of interactive input (TII), the task of visual condition calculation
(TVCC), the task of LOD selections (TLS), the task of cache management (TCM), and the task of thread
management (TTM) were performed by one thread each. The task of visibility computation (TVC)
and the task of content-based real-time rendering (TCBR) used two threads each and the task of data
loading was run in four threads. In view 2, TTI, TLS, TCM, and TTM were in the same situation and
used only one thread, TVCC used two threads, TVC used four threads, TDL used six threads, and
TCBR used three threads. We obtained a ratio between the operands and the running time for the
task and started from the first task to set the number of threads for adjacent tasks. The number of
threads for each task may have differed in different frames. We employed a thread pool to avoid the
frequent allocation and deletion of threads for efficiency. We should note that we set up a satiable
thread for each real-time sensor steam data. In our test, one thread for the camera monitored steam
data rendering.

Figure 6 shows the real-time rendering frame rate over 30 seconds for the same roaming path
using three methods. Mode (1) is the single-threaded mode, mode (2) is the three threads mode
with one thread for data loading, drawing, and other tasks, and mode (3) is the inter-frame and
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intra-frame multi-thread synchronization mode. A significant frame rate change exists between
mode (1) and mode (2) because of the large number of visual objects under the different viewpoint
position. The frame rate of mode (2) is higher than that of mode (1), mainly due to the small impact of
loading thread to the drawing thread, which is caused by the rendering process not waiting for the
finish of the data loading process. In mode (3), the frame rate for rendering is relatively stable; here
the frame rate is set to 30 FPS. The frame rates are important for the walking-through applications.
However, the number of the drawn objects under the frame rates is more important because it
demonstrates the ability of the rendering system. The more objects that can be drawn with the higher
frame rates, the better the system is. Figure 7 lists the drawn objects during each frame for the above
three modes. The curves show the average number of drawn objects during each frame in every
second. The number of curves for the three modes is shown in different colors, with mode (1) in blue,
mode (2) in brown, and mode (3) in red.
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Figure 7 compares the number of drawn objects in different modes. The frame rate between
mode (1) and (2) changes significantly when the number of drawn objects increased rapidly, while
mode (3) maintains a stable frame rate because of the steady increase in the number of objects. As we
can see in Figure 7, at some time point (e.g., the eighth second) the number of objects drawn in mode (3)
is slightly less than that in mode (1) and mode (2). The reason for this is that by using the cache
management in the mode (3), the data volume of drawn objects reaches the maximum size of the cache,
as such, no more objects can be added into the cache, and all the objects remain stable in the cache. For
mode (1) and mode (2), it should be noted that we did not take the real-time sensor steam data into
account, because the scene drawing stops if the rendering thread is taken by the steam processing.

6. Conclusions

In this paper, the basic procedures of the real-time visualization of urban 3DGIS were first
reviewed, and the real-time visualization pipeline was analyzed. Then, the pipeline was broken down
into different stages. Furthermore, we analyzed the arithmetic computing algorithms of the tasks and
the input-output dependency between adjacent tasks in the pipeline. We first used the operand to
represent the cost of the task and measure the real-time running time to obtain the ratio of time to
operand. Then, we started from the first task of the pipeline to evaluate the process unit numbers to
every two adjacent tasks. Based on the analysis of the task parallelism in different pipeline stages, the
data parallelism characteristics in every task were summarized by studying the involved algorithms.
We used the sharing queue mode to collaborate the inter-frame tasks of the pipeline and synchronize
the balance of the intra-frame tasks. By implying a dynamic adjustment in threads, we were able
to achieve the data synchronization for inter- and intra-frame and collaboration in tasks during the
real-time visualization. A theoretical foundation for task parallel and data parallel processing modes
was built for high-performance processing in the real-time visualization of urban 3DGIS.

With the development of the widely applied virtual reality and augmented reality (VR/AR), the
real-time rendering of virtual reality scenes with a 3D environment has become a hot issue. The method
proposed in this paper can be adapted to the VR/AR visualization of urban 3DGIS. In addition, it
is also suitable for the common displays of images. It is not involved in existing VR and AR visual
computing devices, such as VR/AR glasses and other terminal equipment, which have restrictions in
cache and computer power. For the practical application of VR and AR, the rendering method and
feedback methods should be expanded further.
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