

 A Dynamic Data Structure to Efficiently Find the Points below a Line and Estimate Their Number

A Dynamic Data Structure to Efficiently Find the Points below a Line and Estimate Their Number

ISPRS Int. J. Geo-Inf. 2017, 6(3), 82; doi:10.3390/ijgi6030082

Article

A Dynamic Data Structure to Efficiently Find the Points below a Line and Estimate Their Number

Bart Kuijpers 1,* and Peter Z. Revesz 2

1

UHasselt–Hasselt University and transnational University Limburg, Databases and Theoretical Computer Science Research Group, Agoralaan, Gebouw D, Diepenbeek 3590, Belgium

2

Department of Computer Science & Engineering, University of Nebraska-Lincoln, 256 Avery Hall, 1144 T Street, Lincoln, NE 68588-0115, USA

*

Correspondence: Tel.: +32-0476-74-19-39

Academic Editor: Wolfgang Kainz

Received: 1 February 2017 / Accepted: 13 March 2017 / Published: 15 March 2017

Abstract:

A basic question in computational geometry is how to find the relationship between a set of points and a line in a real plane. In this paper, we present multidimensional data structures for N points that allow answering the following queries for any given input line: (1) estimate in [image: there is no content] time the number of points below the line; (2) return in [image: there is no content] time the [image: there is no content] points that are below the line; and (3) return in [image: there is no content] time the point that is closest to the line. We illustrate the utility of this computational question with GIS applications in air defense and traffic control.

Keywords:

spatial data structures; point location queries; nearest point queries; selectivity estimation

1. Introduction

1.1. Problem Statement and Overview of Results

Within the areas of computational geometry and spatial databases [1,2,3,4,5], a basic question is how to find, for a given set of N points in a plane, the number of points that lie below an arbitrary line. To answer efficiently a sequence of queries of this type, the aim is to find an index data structure for the given set of points such that for any arbitrary line the answer can be produced in [image: there is no content] time.

Selectivity estimation means finding the number of points or moving points that approximately satisfy various conditions. Selectivity estimation is an important problem in spatial and spatio-temporal database querying because the estimate guides the evaluation of the query [4,6,7]. Selectivity estimation for moving point objects was considered by Anderson and Revesz [8], Choi and Chung [9] and Sun et al. [10], who described different algorithms for estimating the number of moving points that will be within a specific box area or hyperbox region at a future time t.

The problem of estimating the number of points below a line is applicable to new cases of selectivity estimation in spatio-temporal or moving object database querying. If all moving points move along the x-axis, then a set of linearly moving points [image: there is no content] can be represented as the set S of static points [image: there is no content] in the static dual plane [1,2,3]. Therefore, the problem of finding the moving points that are to the left of an arbitrary moving query point of the form [image: there is no content] at time t is equivalent to finding the points in S that are below the line ℓ that crosses [image: there is no content] with slope [image: there is no content] in the dual plane.

In other applications where the set of points that are below a line needs to be returned, answering the query can be much slower. The best that one can aim for is a data structure on the N points such that we can return all the points that are below a line in [image: there is no content] time, where k is the number of points that lie below the line. Here, the notation [image: there is no content] indicates that the number of basic computation steps required is proportional to the logarithm of N and proportional to k. Obviously, writing the k relevant points to the output cannot be expected to be performed faster than in linear time (in k). However, the important remark here is that, if we ignore writing the output, the searching part of this problem takes logarithmic time (in N), which is the best time complexity that we can expect for searching.

We propose in this paper a dynamic data structure, based on AVL trees to store the configuration of the points in the plane. AVL trees, named after Adelson-Velsky and Landis [11], are binary search trees. AVL trees remain “balanced” in the sense that, for every node, the heights of the left subtree and the right subtree differ by at most one. By using AVL trees, our proposed approach becomes dynamic in the sense that adding or deleting a point in the original set of N points, results in an update cost [image: there is no content] of the AVL-tree. The cost of building the data structure, based on AVL trees is [image: there is no content], both in space and time. Another advantage of our approach is that it can be adapted to answer problem (3): given an input line, return the point that is closest to the line.

This means that, at each of its nodes, the items with key-value less than the node are stored in its left child subtree and the values larger than the key-value than the node are stored in its right child subtree. Binary search trees that store m key-values, ideally, allow to search for a given key value in time [image: there is no content]. This time complexity occurs when the binary trees are fairly balanced. Whereas many node insertion and deletion methods may result in unbalanced binary search trees (with a search complexity that may become [image: there is no content], rather than [image: there is no content]), the AVL tree method dynamically rebalances the AVL tree after insertions or deletions of nodes by applying a sequence of rotations or double rotations [11].

We end this introduction by discussing some application scenarios and related work.

1.2. Application Scenarios

There is a range of possible applications for our proposed algorithms. Below, we describe briefly two selected applications. The first is related to air defense and the other to traffic control.

Application Scenario 1:

Suppose that we have a map with the location of the houses in a metropolitan area where the wind blows from the north. Suppose also that an enemy airplane passes in a line throughout the territory and continuously drops some bio-weapons. Then, to estimate the number of people that may be in immediate danger, we would need to find the number of houses below the line that is the trajectory of the airplane and then multiply the number of houses with the average density of people per house in that metropolitan area.

Application Scenario 2:

Suppose that a police station is monitoring some segment of a highway running in the East–West direction. Suppose that the cars that travel eastward (parallel to the x-axis) are [image: there is no content]. The location of each car [image: there is no content] can be estimated as a function [image: there is no content], where [image: there is no content] is the initial location of the car and [image: there is no content] is its speed. The n cars can be represented in a static dual plane, where each [image: there is no content] is represented by the point [image: there is no content] [4]. Suppose that, at time t, some arbitrary car, for instance, car [image: there is no content], stops suddenly due to a punctured tire or some other defect. To find the number of cars that are behind [image: there is no content] and are likely affected by the accident, we need to find, in the dual plane, the number of points below the line that crosses the point [image: there is no content] and has a slope of [image: there is no content] (see Theorem 20.4.3 in [4]). A quick estimate of the number of cars that may be affected by the accident is useful to calculate the number of police officers that may be dispatched to the accident location and to issue a detour advisory for other travelers who are planning to enter the highway if the number of affected cars is above a certain threshold.

Potential Software Implementation:

Although, to our knowledge, current GIS software does not contain built-in line-points operators, they often contain some related spatial operators. For example, ST_Distance is available in PostGIS as a nearest point operator, that is, it finds from a set of points the point(s) that is (are) closest to a given point [12]. Other spatial proximity operators are also available in ArcGIS for Developers and the Oracle Spatial and Graph option for Oracle Database (Version [image: there is no content]) [13], but they are different from our proposed line-points operator [12]. Hence, there could be an opportunity to adopt our novel line-points operator in several GIS systems. For example, our own MLPQ system [14], which is designed for GIS applications and uses an extension of SQL as a query language, could easily adopt a line-points operator [image: there is no content] as a built-in operator. The [image: there is no content] operator would find the number of points k within a spatial relation [image: there is no content] that are below a line that crosses the points [image: there is no content] and [image: there is no content].

For example, assume that [image: there is no content] and [image: there is no content] are two points on the linear trajectory of the airplane in Application Scenario 1. The trajectory can be represented by the relation [image: there is no content]. Suppose also that relation [image: there is no content] are the locations of houses in the metropolitan area. Then, the number of houses that may be affected by the bio-weapon attack can be found by the following SQL query:

	SELECT
	LinePoints.k

	FROM
	Houses, LinePoints, Trajectory

	WHERE
	LinePoints.x = Houses.x AND LinePoints.y = Houses.y AND

	
	LinePoints.x1 = Trajectory.x1 AND LinePoints.y1 = Trajectory.y1 AND

	
	LinePoints.x2 = Trajectory.x2 AND LinePoints.y2 = Trajectory.y2.

1.3. Related Work

One of the problems addressed in this paper is also known as the half-plane range query problem and an efficient solution was proposed by Chazelle, Guibas and Lee in 1983 [15]. The method of these authors allows for answering the half-plane range query in [image: there is no content] time, using [image: there is no content] space and [image: there is no content] preprocessing time. Their method is based on geometric duality principles and relies on methods such as Kirkpatrick’s optimal planar point location algorithm. Although, in theory, Kirkpatrick’s algorithm achieves an optimal [image: there is no content] query time due to its remarkably clever construction, it turns out that, in practice, the presence of some large embedded constant factors in its time complexity make it less feasible. As a consequence, it is hardly used in practice. Because of this reliance, the practicality of the proposed method is questioned by these authors. In fact, more than thirty years after its publication, we see that the method of Chazelle, Guibas and Lee is hardly used in practice (for instance, in database systems) and no software implementation has been mentioned in the scientific literature or in textbooks on GIS algorithms [16]. The method proposed in this paper is not only relying on widely used data structures (such as AVL-trees) and is easier to implement but also captures ordering information on the points, relative to a line. Another difference is that we also address the nearest point to a line query.

This paper is organized as follows. Section 2 describes a solution that approximates the number of points below a line. Section 3 presents a solution that gives the exact number of points below the line. Section 4 presents a solution to the problem of finding the nearest point to a line. Finally, Section 5 gives some conclusions and open problems.

2. Approximating the Number of Points Below a Line

Let [image: there is no content] denote the set of the real numbers and let [image: there is no content] be the real plane. In this section, we consider index data structures for a set P of N points in [image: there is no content] that allow for efficiently finding an approximation of the number of points below a line. We start with a few definitions. A point [image: there is no content]dominates another point [image: there is no content] in [image: there is no content] if and only if [image: there is no content] and [image: there is no content].

Definition 1.

Below, we use the following three abbreviations:

	(1)

	
[image: there is no content] is the estimated number of points in P below a line ℓ.

	(2)

	
[image: there is no content] is the exact number of points in P below a line ℓ.

	(3)

	
[image: there is no content] is the number of points in S dominated by a point p.

The next theorem is an improvement of a complexity result on the same problem in [17].

Theorem 1.

[image: there is no content] can be found in [image: there is no content] time and [image: there is no content] space, where N is the number of points in P.

Proof.

We can have a data structure that sorts the x coordinates and a separate data structure that sorts the y coordinates of the N points. Then, the minimum and the maximum x coordinates, [image: there is no content] and [image: there is no content], and the minimum and the maximum y coordinates, [image: there is no content] and [image: there is no content], can be always found in [image: there is no content] time and [image: there is no content] space.

When ℓ is either a horizontal line [image: there is no content] or a vertical line [image: there is no content], then the problem reduces to finding [image: there is no content], where [image: there is no content] or [image: there is no content], respectively. The number [image: there is no content] can be found in [image: there is no content] time and [image: there is no content] space using the well-known ECDF-tree data structure [18]. Here, ECDF abbreviates “Empirical Cumulative Distribution Function”.

If ℓ is neither horizontal nor vertical, then divide ℓ by [image: there is no content] horizontal and [image: there is no content] vertical lines, where [image: there is no content] is any constant. Since the N points are all within a box with a lower left corner [image: there is no content] and an upper right corner [image: there is no content], the vertical and horizontal lines can divide that box into [image: there is no content] equal size smaller boxes. Figure 1 shows such a division of ℓ with [image: there is no content]. This division allows for reducing the problem of finding [image: there is no content] to finding a sequence of [image: there is no content] values as follows:

	(1)

	
Find a rectangle that contains all the points in P.

	(2)

	
Cut the part of ℓ within the rectangle into m number of equal pieces by horizontal and vertical line segments. Number the new points created by the cuts as [image: there is no content], [image: there is no content], and [image: there is no content], as shown in Figure 1.

	(3)

	
The number of points that are possibly below ℓ, based on the B points, forms an upper bound for [image: there is no content]:

[image: there is no content]

	(4)

	
The number of points that are surely below ℓ, based on the C points, forms a lower bound for [image: there is no content]:

[image: there is no content]

	(5)

	
[image: there is no content] can be approximated as the average of the above upper and lower bounds:

[image: there is no content]

The theorem follows from the [image: there is no content] space and [image: there is no content] time required by the ECDF algorithm, and the fact that the approximation in (5) needs only [image: there is no content] calls to the ECDF algorithm. ☐

Figure 1. Approximating points below line ℓ with [image: there is no content].

[image: Ijgi 06 00082 g001]

Example 1.

Figure 1 shows a set of points within a rectangle and a line that crosses the rectangle. The crossing line is cut into [image: there is no content] pieces horizontally by the line segments connecting [image: there is no content] and [image: there is no content] for [image: there is no content] and vertically by the line segments connecting [image: there is no content] and [image: there is no content] for [image: there is no content]. In Figure 1, the lower bound is 5 and the upper bound is 9, and the average of these is 7, which is exactly the number of points below the line.

In the approximation algorithm of Theorem 1, we used the constant m. It is possible to vary the constant m that is used in the approximation algorithm. We can note the following fact.

Corollary 1.

As [image: there is no content], the [image: there is no content].

Proof.

As m is increased, the triangular areas by which the lower and the upper bounds differ from the actual area below the line are increasingly smaller. Hence, the accuracy of the approximation tends to increase. In the limit, the triangular areas disappear, and the approximation will give exactly the value [image: there is no content]. ☐

Sometimes an accurate count can be guaranteed for reasonably small values of m. An example of such a guarantee based on the shortest distance of any point to the line is discussed later in Corollary 2.

Since ECDF-trees are applicable in higher dimensions, the above approximation algorithm can be extended to higher dimensions too. For example, in three dimensions, the approximation would find the number of points below a plane by using a set point dominance queries using ECDF-trees. In this case, the plane is cut using a grid parallel to the axes.

3. A Point Location Query with Respect to a Line

In this section, we present an algorithm that, given a finite set [image: there is no content] of N points in [image: there is no content], constructs a data structure [image: there is no content] of size [image: there is no content]. The data structure [image: there is no content] can be used to answer the following query in [image: there is no content] time: given as input a line ℓ in [image: there is no content], return the points of P that are below ℓ, the points of P that are on ℓ, and the points of P that are above ℓ.

The latter algorithm receives a line ℓ as input in the form of a triple [image: there is no content] of real numbers that determining ℓ by the equation [image: there is no content]. In practice, these real numbers a, b and c have to be finitely representable. We can think of them as being computable reals or rational numbers, for instance.

We would like to be able to order the values [image: there is no content], for [image: there is no content], such that it is easy to see which are less than, equal to or larger than 0. Indeed, those points [image: there is no content] of P for which [image: there is no content] are above the line ℓ, those points of P for which [image: there is no content] are on the line ℓ and those points of P for which [image: there is no content] are below the line ℓ. Therefore, ordering the values [image: there is no content], and determining the indices where the sign changes from − to 0 and then to + would allow for answering the above query in constant time (apart from writing the answer, which necessarily takes linear time). It is easy to see that the ordering of the values [image: there is no content] is independent of c.

Obviously, there are [image: there is no content] possible orderings of the elements of P, or, equivalently, of their indices. Indeed, any ordering [image: there is no content] of the elements of the set [image: there is no content] can be seen as a permutation of this set. We write the permutation where 1 is mapped to [image: there is no content]; 2 is mapped to [image: there is no content],, and N is mapped to [image: there is no content] as [image: there is no content] We denote the group of all permutations of the set [image: there is no content] by [image: there is no content]. For [image: there is no content], we can consider the subset [image: there is no content] of tuples [image: there is no content] for which

[image: there is no content]

The above inequalities can be equivalently written, independent of c, as

[image: there is no content]

(†)

The sets [image: there is no content], determined this way, are linear, semi-algebraic subsets of the two-dimensional [image: there is no content]-plane. We have already remarked that there are at most [image: there is no content] such possible sets, since there are [image: there is no content] elements in [image: there is no content]. However, as we will soon see, the number of distinct sets [image: there is no content] is bounded by [image: there is no content]. Indeed, [image: there is no content] consists of (at most) [image: there is no content] linear inequalities in a and b. These inequalities can be written as [image: there is no content], [image: there is no content]. Some of these [image: there is no content] may coincide, namely when, in the original set P, there are pairs of points that form parallel line segments. Geometrically seen, these inequalities divide the [image: there is no content]-plane in (at most) [image: there is no content] partition classes determined by the lines [image: there is no content], for [image: there is no content]. These lines all go through the origin of the [image: there is no content]-plane, and determine at most [image: there is no content] (unbounded) half-lines. These half-lines divide the plane further in [image: there is no content] (unbounded) pie-shaped slices.

We remark that it is meaningless to consider the origin [image: there is no content] of the [image: there is no content]-plane, since no line corresponds to this point.

We illustrate this by means of two examples of increasing complexity.

Example 2.

First, we take [image: there is no content] and the points of P are [image: there is no content], [image: there is no content] and [image: there is no content]. The following table gives the six possible orderings of the index set [image: there is no content] and the corresponding equations that describe the sets [image: there is no content], for [image: there is no content].

	[image: there is no content]
	[image: there is no content]

	[image: there is no content]
	[image: there is no content]

	[image: there is no content]
	[image: there is no content]

	[image: there is no content]
	[image: there is no content]

	[image: there is no content]
	[image: there is no content]

	[image: there is no content]
	[image: there is no content]

	[image: there is no content]
	[image: there is no content]

The sets [image: there is no content] are delimited by the lines [image: there is no content], [image: there is no content] and [image: there is no content] in the [image: there is no content]-plane. This is illustrated in Figure 2. We remark that the sets [image: there is no content] are topologically closed and some of the sets [image: there is no content] share a border, which is a half-line (as can be seen in in Figure 2). For example, [image: there is no content] and [image: there is no content] share the positive a-axis as a border. For all points [image: there is no content] with [image: there is no content], we have the orderings [image: there is no content] and [image: there is no content], which coincide. Indeed, [image: there is no content] and [image: there is no content] both correspond to [image: there is no content] for [image: there is no content].

Figure 2. The [image: there is no content]-plane is partitioned (apart from shared borders) in six unbounded pie-shaped slices (the sets [image: there is no content] in different shades of yellow), which are determined by the lines [image: there is no content], [image: there is no content] and [image: there is no content] (in blue).

[image: Ijgi 06 00082 g002]

In the previous example, we have six sets [image: there is no content]. Exceptionally, for [image: there is no content], we have [image: there is no content]. This is no longer true for larger values of N, as the next example illustrates.

In Example 2, we see that the set corresponding to the order [image: there is no content] and its reversed order [image: there is no content], namely, [image: there is no content] and [image: there is no content], are reflections of each other along the origin of the [image: there is no content]-plane. This holds for all [image: there is no content] in Example 2 (as indicated by the corresponding shades of yellow) and in general, as the following property explains:

Proposition 1.

If [image: there is no content], then [image: there is no content].

Proof.

Let [image: there is no content]. If [image: there is no content], then [image: there is no content] and thus [image: there is no content], which implies that [image: there is no content]. This proves one inclusion. The other inclusion has the same proof. ☐

The next, more complex, example adds one point to the set P of Example 2.

Example 3.

Now, we take [image: there is no content] and the points of P are [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content]. Property 1 shows that we only have to consider 12 of the [image: there is no content] permutations of the set [image: there is no content]. The following table gives these 12 orderings of the index set [image: there is no content] and the corresponding equations that describe the sets [image: there is no content].

	[image: there is no content]
	[image: there is no content]

	[image: there is no content]
	[image: there is no content]

	[image: there is no content]
	[image: there is no content]

	[image: there is no content]
	[image: there is no content]

	[image: there is no content]
	0≤a≤2a+b≤b→a=0≤b

	[image: there is no content]
	[image: there is no content]

	[image: there is no content]
	[image: there is no content]

	[image: there is no content]
	[image: there is no content]

	[image: there is no content]
	[image: there is no content]

	[image: there is no content]
	[image: there is no content]

	[image: there is no content]
	[image: there is no content]

	[image: there is no content]
	a≤0≤b≤2a+b→a=0≤b

	[image: there is no content]
	[image: there is no content]

Because the line through [image: there is no content] and [image: there is no content] and the line through [image: there is no content] and [image: there is no content], there are less than [image: there is no content] lines in the [image: there is no content]-plane that delimit the sets [image: there is no content]. In fact, they are five: [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] (as also can be seen in the table). Thus, here the [image: there is no content]-plane is divided in ten half lines and ten pie-shaped slices, as illustrated in Figure 3. Half of the slices are not shown, but can be obtained via Property 1. Also not shown in Figure 3 are the facts that [image: there is no content] is the non-negative b-axis and that [image: there is no content] which does not correspond to any line. Therefore, we have [image: there is no content]. These observations show that typically not all [image: there is no content] (or [image: there is no content]) sets will occur separately.

Figure 3. The [image: there is no content]-plane is partitioned (apart from shared borders) in ten unbounded pie-shaped slices (the sets [image: there is no content] in different shades of yellow), which are determined by the lines [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] (in blue). The slices above the negative a-axis are not shown, but can be obtained via Property 1.

[image: Ijgi 06 00082 g003]

Now, we illustrate the construction of the data structure [image: there is no content] for Examples 2 and 3. The structure [image: there is no content] essentially is an AVL tree. AVL trees, named after Adelson-Velsky and Landis [11], are binary search trees. This means that, at each of its nodes, the items with key-values less than the node are stored in its left child subtree and the values larger than the key-value than the node are stored in its right child subtree. Binary search trees that store m key-values, ideally, allow for searching for a given key value in time [image: there is no content]. This time complexity occurs when the binary trees are fairly balanced. Whereas many node insertion and deletion methods may result in unbalanced binary search trees (with a search complexity that may become [image: there is no content], rather than [image: there is no content]), the AVL tree method dynamically rebalances the AVL tree after insertions or deletions of nodes by applying a sequence of rotations or double rotations [11]. The number of rotations and double rotations needed to rebalance the tree is linear in the height of the tree. AVL trees remain “balanced” in the sense that, for every node, the heights of the left subtree and the right subtree differ by at most one. The height of a tree can be defined as the length of the longest path from its root to a leaf.

Example 4.

We consider two cases: [image: there is no content] and [image: there is no content]. By Property 1, the case [image: there is no content] can be reduced to the case [image: there is no content] (using reversed orderings). Therefore, essentially, the case [image: there is no content], remains to be solved. We assume [image: there is no content]. First, we order the slopes of the half-lines we find in the half-plane [image: there is no content] in the range [image: there is no content]. Here, we agree that the positive b-axis with equation [image: there is no content] is expressed as [image: there is no content]. In Example 2, we have the slopes [image: there is no content], [image: there is no content] and [image: there is no content], which give the ordering [image: there is no content]. We use these slopes as key values to build an AVL tree. For Example 2, this tree is shown in the left part of Figure 4. The corresponding data structure [image: there is no content] is shown in the right part of Figure 4. For this example, the AVL tree is perfectly balanced. The blue intervals under the leaves of the AVL tree show which parts of the interval [image: there is no content] correspond to a leaf. In this example, we have the following sequence of open-closed intervals at the leaves: [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content]. There is a tiny redundance for the case [image: there is no content], which is covered by two leaves. This only occurs when [image: there is no content] is a slope.

Figure 4. The AVL tree for the slopes [image: there is no content] (left) and the corresponding structure [image: there is no content] (right) for the set P of Example 2. The blue intervals indicate the slope set covered by a leaf.

[image: Ijgi 06 00082 g004]

The red boxes at the leaves show the ordering of (the indices of) the points in [image: there is no content], for the interval of slopes at each leaf. Each red box represents (or contains) a binary search tree on the ordering (or permutation) that it contains.

In Example 3, we have two additional slopes, namely [image: there is no content] and [image: there is no content]. This gives the ordering [image: there is no content] of the slopes. If we insert [image: there is no content] and [image: there is no content] in the AVL tree of Figure 4, we obtain the AVL tree and the structure [image: there is no content] for Example 3, as shown in Figure 5. In this example, the AVL tree is almost balanced. The height of the left subtree of the root is one higher than that of the right subtree.

Figure 5. The AVL tree for the slopes [image: there is no content] (left) and the corresponding structure [image: there is no content] (right) for the set P of Example 3. The blue intervals indicate the slope set covered by a leaf.

[image: Ijgi 06 00082 g005]

We remark that the height of the AVL is logarithmic in the number of its nodes. Since there are at most [image: there is no content] slopes, we have a height of [image: there is no content]. Therefore, we need [image: there is no content] time to find the leaf corresponding to the slope of a given line.

Now, we describe the lower lower part of the structure [image: there is no content], which is represented by the red boxes in Figure 4 and Figure 5. To determine the permutation of the left-most, we pick an [image: there is no content] and b such that [image: there is no content] is strictly smaller than the first slope, which is [image: there is no content]. For instance, we can take [image: there is no content] and [image: there is no content] and remark that any other choice such that [image: there is no content] will give the same permutation. Then, we have to order [image: there is no content], for [image: there is no content], for [image: there is no content] and [image: there is no content]. This gives the ordering (or permutation) [image: there is no content]. For the next leaf to the right of this leftmost leaf, we do not need to redo the complete ordering process. Only points [image: there is no content] and [image: there is no content] for which [image: there is no content] can switch order when passing the slope [image: there is no content]. In this example, we see that the slope [image: there is no content] is caused by [image: there is no content] and [image: there is no content] and, indeed, 1 and 4 switch places in the permutation [image: there is no content] giving [image: there is no content] for the next leaf. We remark that the permutation information in the “red boxes” can be stored in a binary AVL tree itself.

The search tree of Figure 5 can now be used to answer the half-plane range query. For instance, if the line ℓ with equation [image: there is no content] is given, we find the permutation [image: there is no content] at the leaf that corresponds to the interval [image: there is no content] in which the slope [image: there is no content] is located. To see which of [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] are below ℓ, we compute [image: there is no content] for [image: there is no content] (in that order) as long as this value remains strictly below [image: there is no content]. In this case, only [image: there is no content] is found to be below ℓ.

We now show the following theorem that generalizes Examples 2, 3 and 4. The proof will follow the ideas outlined in the examples.

Theorem 2.

Given a set [image: there is no content] of N points in [image: there is no content], a data structure [image: there is no content] of size [image: there is no content] can be constructed in time [image: there is no content] such that for any input line ℓ in [image: there is no content], given by an equation [image: there is no content], it is possible to determine from [image: there is no content] in [image: there is no content] time which of the N points are below, above, and on the line ℓ.

The data structure can be updated in [image: there is no content] time when a point is added to P or deleted from P.

Before we prove this theorem, we remark that the complexity of determining from [image: there is no content], which, of the N points, are below, above, and on the line ℓ takes [image: there is no content] time. This does not include writing the answer when this is required. Obviously, writing this ordering necessarily may take linear time. However, effectively listing these points may not be necessary if the answer is allowed to be a pointer in a search tree and the actual answer consists of “all the points that precede this point”. This is possible because the permutation of points itself can be put into a binary (AVL) tree. Now, we give the proof of the theorem.

Proof.

Given a set [image: there is no content] of N points in [image: there is no content], we first determine the slopes in the [image: there is no content]-plane of the lines [image: there is no content], for [image: there is no content]. There are at most [image: there is no content] such slopes, as some may coincide. This takes [image: there is no content] time and space.

Now, as we have illustrated in Example 4, we concentrate on the half-plane, determined by [image: there is no content]. To deal with the case [image: there is no content], we can use Property 1. At this point, we can build the upper part of [image: there is no content] by constructing an AVL tree on the slopes (in the way we have illustrated in Example 4). Since the cost of inserting a node in an AVL tree with n nodes is [image: there is no content], the cost of building an AVL tree of n nodes, by inserting these n nodes one after the other, is [image: there is no content] and the tree takes [image: there is no content] space. Applied to our setting, we have at most [image: there is no content] slopes, so building the AVL tree on these slopes takes [image: there is no content] time and [image: there is no content] space. Building the AVL tree produces, as a side effect, an ordering of the slopes, if we look at the leaves of the tree from left to right. This way, we also obtain the interval information, given by the blue intervals in Figure 4 and Figure 5.

After the AVL tree is built, we need to determine the order of (the indices of) the points of P at each of the leaves of the tree. These orders are illustrated by the permutations in the “red boxes” in Figure 4 and Figure 5. Let the slopes that occur in the AVL tree be [image: there is no content], with [image: there is no content] By taking some arbitrary [image: there is no content] and b such that [image: there is no content] and ordering [image: there is no content], for [image: there is no content], we obtain the permutation that is in the leftmost leaf of the AVL tree. We can store this permutation (in the red box) as an AVL tree itself. It takes [image: there is no content] time and [image: there is no content] space to build this smaller AVL tree to store the ordering. For the next leaves (going from left to right in the tree), as we cross some slope [image: there is no content], only the order of indices i and j switch, compared to the previous leaf, if

[image: there is no content]

Indeed if, for instance [image: there is no content] for [image: there is no content], then we have [image: there is no content] for [image: there is no content]. This implies that, going from left to right through the leaves in the AVL tree, we can update the permutations in linear time in N.

Since the AVL tree has [image: there is no content] leaves, the total time to construct the structure [image: there is no content] is [image: there is no content]. We have the same space bound. We remark that the total height of the structure [image: there is no content] that we obtain is [image: there is no content].

The query time complexity is the following. On input line ℓ, given by the equation [image: there is no content], it takes [image: there is no content] time to determine the leaf of the AVL tree that contains the interval in which the slope [image: there is no content] is located. Indeed, the height of the AVL tree is logarithmic in the number of its nodes, which is [image: there is no content]. Let us assume that this leaf contains the permutation [image: there is no content] (in its red box). To output the points that are below ℓ, we write [image: there is no content] to the output for [image: there is no content] as long as [image: there is no content]. In the worse case, the output contains all points of P. Obviously, this writing process takes linear time in the size of the output.

Finally, we discuss updating the AVL tree when a point is added to P or a point is deleted from P. Adding or deleting a point can cause the introduction or removal of at most N slopes. Adding or deleting N slopes in an AVL tree takes [image: there is no content] time. Finally, the permutations in the leaves need to be updated. We remark that, since the permutation lists are themselves stored as AVL trees, then deleting a point from P results in deleting one leaf from the AVL tree in the red boxes. Similarly, adding a point to P results in adding one leaf to the small AVL trees. This has an update cost of [image: there is no content]. The total update time is therefore [image: there is no content] This concludes the proof. ☐

4. The Nearest Point to a Line Query

Theorem 3.

Given a set [image: there is no content] of N points in [image: there is no content], a data structure [image: there is no content] of size [image: there is no content] can be constructed in time [image: there is no content] such that, for any input line ℓ in [image: there is no content], given by an equation [image: there is no content], it is possible to determine, from [image: there is no content] in [image: there is no content] time, which of the N points of P is closest to (or furthest from) the line ℓ.

Proof.

If we are given any line described by the equation [image: there is no content] and the point [image: there is no content], then the shortest distance between that line and the point is given by the expression

[image: there is no content]

Therefore, the techniques and data structure described in Section 3 can be adjusted to pre-compute for a given set [image: there is no content] of N points in [image: there is no content] a data structure [image: there is no content] of size [image: there is no content].

In particular, [image: there is no content] can be computed in time [image: there is no content] such that, for any given line ℓ in [image: there is no content] with equation [image: there is no content] it is possible to determine from [image: there is no content] in [image: there is no content] time which of the N points is closest to the line ℓ. In fact, [image: there is no content] is only a minor modification of [image: there is no content]. For instance, to find the closest point to ℓ, we use [image: there is no content] to find the first point of P that is below ℓ and the first point of P that is above ℓ. The orderings in the lower tier trees of [image: there is no content] can be used for this. Then, we decide which of these two points is closest to ℓ and the result is the closest point of P to ℓ.

To find the furthest point of P from ℓ, we again use [image: there is no content] and look at the beginning and ending points of the order we find in the upper tier of [image: there is no content]. Again, we decide which of the two is furthest and we return this point as an answer. ☐

Finding the closest distance of any point in P to ℓ is also useful in finding accurately the number of points below ℓ.

Corollary 2.

Let [image: there is no content] be the closest distance of any point in P to ℓ. Let θ be the slope of ℓ. Then, [image: there is no content] for any

m>maxsinθxmax−xmindmin,cosθymax−ymindmin.

Proof.

Clearly, the approximation algorithm in Section 2 is accurate if the height of the extra triangles of the lower bound and the upper bounds is less than [image: there is no content] because then these extra triangles do not contain any point of P. As shown in Figure 6, that height limit can be guaranteed if each triangle has a length a along the x-axis with [image: there is no content] and a height b along the y-axis with [image: there is no content]. We know that

[image: there is no content]

and

[image: there is no content]

Figure 6. A partial view of a division that yields below ℓ triangles with [image: there is no content] height and sides a and b parallel to the x- and the y-axis, respectively.

[image: Ijgi 06 00082 g006]

The former condition and [image: there is no content] imply that

[image: there is no content]

Similarly, the second condition and [image: there is no content] imply that

[image: there is no content]

Finally, the last two displayed inequalities imply the condition of the theorem. ☐

5. Conclusions

One open problem is to determine whether the techniques described in Section 2 and Section 3 can be generalized to arbitrary dimension d. It is possible to see that, for N given points in d dimensions, of the form [image: there is no content], we will have [image: there is no content] hyperplanes of the form [image: there is no content] that divide [image: there is no content] in at most [image: there is no content] sectors. However, the data structure construction needs to be extended to efficiently search these sectors.

As we mentioned in the introduction, selection estimation means, in the case of moving points, the problem of finding the number of moving points that are within an area at a specified time t. In contrast, the MaxCount problem asks to estimate the maximum number of moving points that are ever in a specified area as well as the time when the maximum occurs. The MaxCount problem was investigated in the case when the area is a rectangle by Anderson and Revesz [8]. It remains an open problem to find the MaxCount when the area considered is the area below a line.

Acknowledgments

In this paper, Section 2 is based on the preliminary conference paper by Revesz [17], while Section 3 and Section 4 contain completely new results.

Author Contributions

Both Bart Kuijpers and Peter Revesz contributed equally to Section 3 and Section 4, whereas Section 2 relies on earlier work by Peter Revesz. Both authors contributed equally to the writing of the paper.

Conflicts of Interest

The authors declare no conflict of interest.

References

	1.
De Berg, M.; Cheong, O.; van Kreveld, M.; Overmars, M. Computational Geometry: Algorithms and Applications, 3rd ed.; Springer: Berlin, Germany, 2008. [Google Scholar]

	2.
Pach, J.; Agarwal, P.K. Combinatorial Geometry; John Wiley and Sons: Hoboken, NJ, USA, 1995. [Google Scholar]

	3.
Preparata, F.P.; Shamos, M.I. Computational Geometry: An Introduction; Springer: Berlin, Germany, 1985. [Google Scholar]

	4.
Revesz, P.Z. Introduction to Databases: From Biological to Spatio-Temporal; Springer: Berlin, Germany, 2010. [Google Scholar]

	5.
Samet, H. Foundations of Multidimensional and Metric Data Structures; Morgan Kaufmann: Burlington, MA, USA, 2006. [Google Scholar]

	6.
Güting, R.; Schneider, M. Moving Objects Databases; Morgan Kaufmann: Burlington, MA, USA, 2005. [Google Scholar]

	7.
Rigaux, P.; Scholl, M.; Agnés, V. Introduction to Spatial Databases: Applications to GIS; Morgan Kaufmann: Burlington, MA, USA, 2002. [Google Scholar]

	8.
Anderson, S.; Revesz, P.Z. Efficient MaxCount and threshold operators of moving objects. Geoinformatica 2009, 13, 355–396. [Google Scholar] [CrossRef]

	9.
Choi, Y.J.; Chung, C.W. Selectivity estimation for spatio-temporal queries to moving objects. In Proceedings of the 2002 ACM SIGMOD International Conference on Management of Data, Madison, WI, USA, 4–6 June 2002; ACM Press: New York, NY, USA, 2002; pp. 440–451. [Google Scholar]

	10.
Sun, J.; Tao, Y.; Papadias, D.; Kollios, G. Spatio-temporal join selectivity. Inf. Syst. 2006, 31, 793–813. [Google Scholar] [CrossRef]

	11.
Adelson-Velsky, G.; Landis, E. An algorithm for the organization of information. Soviet Math. Doklady 1962, 3, 1259–1263. [Google Scholar]

	12.
Obe, R.O.; Hsu, L.S. PostGIS in Action; Manning Publishing: Shelter Island, NY, USA, 2011. [Google Scholar]

	13.
Perry, M.; Estrada, A.; Das, S.; Banerjee, J. Developing GeoSPARQL Applications with Oracle Spatial and Graph. In Proceedings of the 1st Joint International Workshop on Semantic Sensor Networks and Terra Cognita (SSN-TC 2015) and the 4th International Workshop on Ordering and Reasoning (OrdRing 2015) co-located with the 14th International Semantic Web Conference (ISWC 2015), Bethlehem, PA, USA, 11–12 October 2015; Kyzirakos, K., Henson, C.A., Perry, M., Varanka, D., Grütter, R., Calbimonte, J., Celino, I., Valle, E.D., Dell’Aglio, D., Krötzsch, M., et al., Eds.; Volume 1488, pp. 57–61.

	14.
Revesz, P.; Kanjamala, P.; Li, Y.; Liu, Y.; Wang, Y. The MLPQ/GIS constraint database system. In Proceedings of the ACM-SIGMOD International Conference on Management of Data, Dallas, TX, USA, 16–18 May 2000; ACM Press: New York, NY, USA, 2000; p. 601. [Google Scholar]

	15.
Chazelle, B.; Guibas, L.; Lee, D. The Power of Geometric Duality. BIT 1985, 25, 76–90. [Google Scholar] [CrossRef]

	16.
Xiao, N. GIS Algorithms; SAGE Publishing: New York, NY, USA, 2015. [Google Scholar]

	17.
Revesz, P.Z. Efficient rectangle indexing algorithms based on point dominance. In Proceedings of the 12th International Symposium on Temporal Representation and Reasoning, Burlington, VT, USA, 23–25 June 2005; pp. 210–212.

	18.
Bentley, J.L. Multidimensional Binary Search Trees Used for Associative Searching. Commun. ACM 1975, 18, 509–517. [Google Scholar] [CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

nav.xhtml

 ijgi-06-00082

 		
 ijgi-06-00082

media/file8.jpg
(o0, —2,-1] (-1,0 ©.1]

media/file11.png
A

—— i ————— == -] - —— = - - -

I
I
I
I
I
L
i
I
I
I
I
I
I
I
——m e L

media/file6.jpg

media/file1.png

media/file10.jpg

media/file7.png
|(1,2,3)| |(1,3,2)|
(0, 1] (1, +o<]

(_007 O]

{+00}

media/file9.png
(0)[(1,3,2, O} [(1.3,2,4)

(1, 40 {400}

(2,4,1,3))(2,1. 4,32, 1.3, 4||1 2.3 4|

(=00, —2] (=2,-1] (=1,0]

media/file5.png
SR |

A(2,1,3,4)

(27N, 3)
A(2,4,1\3) b= —a
b= —2a

media/file3.png

media/file4.jpg
b=a

A(iy3;2,4)

media/file0.jpg

media/file2.jpg
A(341,2)

a=0

A(1;3

A(1,2;:

b=a

b=0

A(3:2,1)

A2,

3)

Y

