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Abstract: Image interpretation is a major topic in the remote sensing community. With the increasing
acquisition of high spatial resolution (HSR) remotely sensed images, incorporating geographic
object-based image analysis (GEOBIA) is becoming an important sub-discipline for improving
remote sensing applications. The idea of integrating the human ability to understand images
inspires research related to introducing expert knowledge into image object–based interpretation.
The relevant work involved three parts: (1) identification and formalization of domain knowledge;
(2) image segmentation and feature extraction; and (3) matching image objects with geographic
concepts. This paper presents a novel way that combines multi-scaled segmented image objects with
geographic concepts to express context in an ontology-guided image interpretation. Spectral features
and geometric features of a single object are extracted after segmentation and topological relationships
are also used in the interpretation. Web ontology language–query language (OWL-QL) formalize
domain knowledge. Then the interpretation matching procedure is implemented by the OWL-QL
query-answering. Compared with a supervised classification, which does not consider context, the
proposed method validates two HSR images of coastal areas in China. Both the number of interpreted
classes increased (19 classes over 10 classes in Case 1 and 12 classes over seven in Case 2), and the
overall accuracy improved (0.77 over 0.55 in Case 1 and 0.86 over 0.65 in Case 2). The additional
context of the image objects improved accuracy during image classification. The proposed approach
shows the pivotal role of ontology for knowledge-guided interpretation.

Keywords: GEOBIA; ontology; multi-scale image objects; context

1. Introduction

Geographic object-based image analysis (GEOBIA) is recognized as an evolving paradigm in
the remote sensing image-processing domain [1]. It consists of image segmentation and subsequent
analysis of the image object. In past decades, many algorithms have been proposed for obtaining
outstanding segmentation results while endeavoring to achieve optimal segment and potential real
image object interpretation [2,3]. The GEOBIA paradigm continues to show its efficacy in remote
sensing image analysis by providing tools that emulate human perception and combine an analyst’s
experience with meaningful image objects [4]. Few works have focused on object-based image
interpretation. Obtaining subsequent information has generally relied on fuzzy- and/or role-based
classification [5], which is also the main approach applied in the commercial software eCognition [6].
With increasing acquisition of large volumes of high spatial resolution (HSR) remote sensing images,
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content-based modeling for image scene recognition is becoming more important and relevant.
Knowledge representation techniques play a pivotal role in the future evolution of remote sensing [7].

Image interpretation can be described as the semantic extraction of an image [8]. It consists of
obtaining useful spatial and thematic information on image objects using human knowledge and
experience [9,10]. Ontology is a popular knowledge representation technology in information science.
Ontology is a formal, explicit specification of a shared conceptualization [11], which formally names
and defines the classes, properties, and interrelationships of entities in a particular domain. It requires
constructing natural language semantics in a formalized logical expression that can be processed by
a computer. Recently, the role of ontology in the interpretation of remote sensing has been highlighted;
Andrés et al. [12] used spectral rules formalized in an ontology to identify the Brazilian Amazon area.
In addition to spectral features and geometric features, Forestier et al. [13] added the descriptions
of neighbor objects in order to interpret a coastal image. Luo et al. [14] used texture to classify land
cover. Meanwhile, objects in urban settings have prominent geometric features, so these areas have
received additional attention [8,15,16]. The difference between low-level features extracted from images
and high-level geographic meaning from human cognition, known as the semantic gap, is the core
problem in knowledge-guided interpretation. From the knowledge side, it is the expert’s work to
explore the features of a geographic concept. The other side is extraction and expression of image
features. Linking more image features with expert knowledge will improve interpretation. The features
of single image objects (e.g., spectral features, geometric features) have been used in previous studies.
For improvement, additional features among image objects must be taken into consideration, such as
the spatial pattern and context.

Here, our objective is to develop an ontology-based image object interpretation. This paper
presents a novel method that combines multi-scaled segmented image objects with a geographic
concept definition to express the context for better interpretation. The proposed approach is introduced
in Sections 2.1–2.5. First, image segmentation work is performed using eCognition software, and
the spectral features and geometric features of each segment are extracted. The hierarchical structure
obtained from multi-scaled segmentation serves as the indirect expression of context. Besides spectral
features, geometric features, and topological relationships are used. Ontology stores the geographic
terms and their definitions in web ontology language–query language (OWL-QL). For efficiency, the
match between concepts and objects is implemented by OWL-QL query-answering. Case studies
utilizing this technique are illustrated in Section 3 along with results, assessment and discussion.
Conclusions follow in Section 4.

2. Methodology

2.1. Ontology-Guided Image Interpretation for Image Object

A new ontology-guided approach for geographic object-based image interpretation is proposed
for HSR images (Figure 1). The approach consists of three parts. The first part is image segmentation
and features extraction, generating multi-scaled image objects, which are then evaluated by supervised
image segmentation assessment showing the differences between segmented image objects and
geographic objects of interest. The spectral and geometric features are calculated for each obtained
image object. Instead of calculating in advance, the topological relationships and context are visited.
The interpretation matching procedure queries a geographic concept to obtain corresponding image
objects supported by the OWL-QL query-answering procedure.

Second, the knowledge of relevant geographic concepts is identified and then formalized in
an ontology. OWL-QL, a sublanguage of OWL for conducting a query-answering dialogue among
ontologies [17], builds upon this ontology. By separating the conceptual knowledge from the factual
knowledge, it applies to an ontology that has a large amount of factual knowledge. Spectral features,
geometric features, and topological relationships as object property terms directly appear within the
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ontology. With these features, combining the multi-scaled image objects defines geographic concepts.
It is explained in detail in Section 2.4.2.ISPRS Int. J. Geo-Inf. 2017, 6, 105 3 of 17 
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The last part of this approach is the interpretation matching procedure, also called a classifier.
Benefiting from OWL-QL, the factual knowledge can be separated from the conceptual knowledge for
efficiency. The conjunctive query communicates between the two types of knowledge. The interpretation
starts with a query of a geographic concept to obtain the type of image objects. Then, based on the
ontology, the query is rewritten to a set of queries. They are derived from two parts: the definition of the
queried geographic concept and the reasoned related knowledge. For instance, there is a query of the
class of Inward Flowing River that is ontologically defined as a kind of river that does not flow into the
sea. By the rewriting, the query can be extended to a query of River and a query of Not Flowing Into The
Sea. Then the extension continues, adding a query of the Sea and a query of what objects do Not Flowing
Into It, until the related concepts are exhaustively searched. In the rewriting, the reasoner works to
take the implicit knowledge into consideration. Thus, a conceptual query through the geographic
ontology gains knowledge to a set of queries. The interpretation ends with the set of queries answered
by factual knowledge storage (e.g., database), obtaining the corresponding image objects.

2.2. Multi-Scaled Segmentation and Evaluation

Image segmentation is a fundamental step in GEOBIA. In segmentation, an image is divided into
sets of contiguous pixels as image objects that are spectrally homogeneous inside and heterogeneous
outside [18]. The degree of homogeneity determines the scale of image objects. Image segmentation,
as an ill-posed problem, requires input parameters to be tuned by an expert, usually following
a trial-and-error process [19] to obtain the optimal segmentation. In a widely-used segmentation, it is
common to select a set of parameters to fit the geographic objects of interest, which is usually slightly
over-segmented in practice.

Image segmentation influences the quality of the subsequent interpretation, because a segmented
image object is the basic unit of analysis. Supervised image segmentation assessment measures the
differences between the reference image object and the segmented image object. According to the
geographic objects of interest, the researcher delineates the reference objects. Cheng et al. [20] deriving
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from the object-fate analysis method, divided the segmented objects that intersect a reference object
into three types: good objects, expanding objects, and invading objects. The good object is completely
within the reference object. The intersecting area of the expanding object and reference object accounts
for more than 50% of the area of the expanding object, while the intersecting area of the invading object
is less than 50%. Good and expanding objects merge as the matched objects of the reference object.
In this study, the differences are measured from three perspectives: quantity, area, and position.

Two quantity evaluations introduced here are by Schöpfer and Lang [21]: offspring loyalty (OL)
and interference (I).

OL =
ngood

ngood + nexp
(1)

I =
ni

nall
(2)

where ngood, nexp, ni, and nall represent the number of good objects, expanding objects, invading
objects, and all intersecting segmented objects, respectively.

Area evaluations are shown in Table 1. The Area Fitness Index (AFI) was proposed by Lucieer
and Stein [22], and the remainder from Cheng et al. [20].

The Position Discrepancy Index (PDI) describes the average distance between the reference object
and its matched image objects [20]. Overall PDI is the average of the PDI.

PDI =
1

N + M

(
N

∑
k=1

√
(X(k)− Xr)

2 + (Y(k)−Yr)
2 +

M

∑
l=1

√
(X(l)− Xr)

2 + (Y(l)−Yr)
2

)
(3)

PDIoverall =
1
n

n

∑
i=1

PDI(i) (4)

where N and M are the number of good objects and expanding objects, respectively (the two are both
matched objects), (X(k), Y(k)) is the centroid of the k-th good object, (X(l), Y(l)) is the centroid of the l-th
expanding object, and (Xr, Yr) is the centroid of the reference object.

Table 1. Area evaluation in the supervised assessment of image segmentation.

Measurement Definition Description

Area Fitness Index (AFI) Ar−ALargest Image Object
Ar

When AFI > 0, over segmentation;
When AFI < 0, under segmentation

Omission Error (OE)
ni
∑

j=1
{Ai(j)∩Ar}

Ar

Describes the over-segmentation.
An OE closer to zero means less

over-segmentation.

Commission Error (CE)
nexp
∑

k=1
{Ae(k)−(Ae(k)∩Ar)}

Ar

Describes the under-segmentation.
A CE closer to zero means less

under-segmentation.

OEoverall

n
∑

i=1
(OE(i)×Ar(i))

n
∑

i=1
Ar(i)

The weighted average of OE.

CEoverall

n
∑

i=1
(CE(i)×Ar(i))

n
∑

i=1
Ar(i)

The weighted average of CE.

Overall Area Discrepancy Index
(ADIoverall)

√
OEoverall

2 + CEoverall
2

The overall of over- and under-
segmentation. When ADI is zero,
the segmentation is exactly the

objects of interest.

Note: Ar is the area of the reference object, and ALargest Image Object is the area of the largest segmented object in the
intersecting objects of one reference object. Ai(j) is the area of the i-th invading object, Ae(k) is the area of the k-th
expanding object. In addition, n is the number of reference objects.
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2.3. Feature Extraction

Features are the bridge between facts and concepts. Facts are generalized into concepts through
features, by which concepts classify facts. The geographic concepts are defined using the features
of image objects for filling the semantic gap. Assuming that the knowledge is credible, the ontology
guided interpretation becomes more capable, as image features bridge more knowledge.

In this study, three types of features define the geographic concept: features of a single image
object, features between two image objects, and context. We first consider the features of a single
image object, such as spectral features, geometric features, and texture. They are usually regarded as
attributes, including qualitative and quantitative values. Spectral features (Figure 2) are used to recognize
substances (water, vegetation, soil or sealed ground) as inherited from pixel-based interpretation methods.
Geometric features (Figure 3) can contribute to the interpretation of additional information. For example,
water can be a pond, river or lake according to the size and shape [23]. Topological relationships are
important spatial relationships between two image objects. Because image objects in a segmentation
of the same scale are seamless and non-overlapping polygons, topological relationships are reduced
to adjacency. Between the segmentations of different scales, topological relationships are adjacent,
contained or within. Context is the key for further improvement of interpretation. The meaning of
an object is not just from itself, but also from the surroundings. The topological relationships contribute
to this context. As for context involving multiple image objects, we express it via the hierarchy within
multi-scaled image objects.
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In this study, the image objects are stored as polygons in ESRI Shapefile. The features of a single
image object have a one-to-one relation to its image object. In this step, only the spectral features
and geometric features are extracted and stored as attributes. The interpretation procedure queries
topological relationships and context in real time.
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2.4. Geographical Ontology for a Coastal Area

2.4.1. Ontology

Knowledge representation is aimed at constructing semantics in a computer readable manner and
then processing it by programs. Ontology is a knowledge representation based on description logic.
It is a formal naming and definition of the classes, properties, instances, and interrelationships of the
entities for a particular domain. All descriptions can be connected to form a semantic graph that can
be serialized using various formats, e.g., XML, turtle, N3 [19]. At present, OWL is a popular ontology
language based on XML and standardized by W3C [24]. Ontology becomes powerful with the reasoner
(e.g., HermiT, Pellet, FaCT++), which is used to check the logic consistency in the knowledge base
and infer the implicit knowledge from the knowledge base. It highlights the capacity of ontology in
knowledge management and knowledge discovery, which benefits a broad range of domains.

Ontology construction is complex and faced with two main challenges. One is concept
identification and definition. It is the reason the technology that is named after the philosophical term
‘Ontology’. The other is the actual construction of the knowledge base [8]. In the geographic domain,
it is an especially puzzling problem to identify concepts. Most geographic objects have qualitative
descriptions instead of quantitative definitions. The same term may refer to something similar but
show different features in different places. Additionally, the boundaries of natural geographic objects
are often indeterminate. It is necessary to clarify the definition of terms in detail under a specific
background. Therefore, knowledge formalized in geographic ontology is highly dependent on a specific
application. For construction from natural language to formalized logical expression, the problem is
general in knowledge engineering—formalizing the exact intended semantics and maintaining logic
consistency. It forces the researcher to be the domain expert and the knowledge engineer at the same
time. The test of logic consistency can rely on the reasoner, but semantics errors are often insidious.

2.4.2. Concept Definition Working with Multi-Scaled Image Objects

In ontology-guided interpretation of image objects, concept definition has to work with the
image objects, even from the segmentation step. Humans create concepts to recognize reality by
generalizing the features of an object and creating a definition. The image object acts as a medium
in the interpretation: It is segmented consistently with the intended object. Through its features, the
geographic concept interprets the image object as the corresponding geographic object. Both image
segmentation and concept definition require an expert involved, so it is the expert’s work to make
them cooperate. In this approach, we extend the cooperation to multi-scaled image objects for the
expression of context.

The cooperation between the concept definition and the multi-scaled image objects is illustrated
in Figure 4. For instance, Figure 4a is an image object from the level 2 segmentation in Figure 4b.
It represents a typical seaside reclamation region that has several artificial ponds with banks by the
sea. Previous methods usually segment it in one scale (as the yellow line shows corresponding the
level 3 segmentation in Figure 4b) and then use spectral features to classify water and bare land, along
with geometric features to further identify water as ponds (area and shape index) and bare land as
roads (shape index). However, the arrangement and combination of image objects showing regional
features are ignored. Context is key for better interpretation. Considering the surroundings, roads
beside the artificial ponds can be recognized as pond banks. Inside the region, the artificial ponds and
banks account for most of the area, and can be identified as a region of cultivation ponds. The ponds
and banks within the region have further interpretation as cultivation ponds and banks respectively.

This approach proposes three ways of context supported by the topological relationships:
(1) context from the surroundings (its neighbors); (2) context from the components (its sub-image
objects); and (3) context from the region (its super-image objects). This method treats contiguous image
objects that share spectral homogeneity at larger scale as associated objects. They become one object
in a larger scale segmentation. Through the spatial relationship, contain and within, the sub-image
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objects are combined to form context showing regional features. The super-object holds the scope
of region. In other words, the super-object is interpreted by its own features and interior details are
provided by the sub-objects, and in turn, add information to the sub-object’s context. From bottom
to top and returning to the bottom, a single image object is identified not only by itself (spectral and
geometric features) but also by its context.
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2.5. OWL-QL Query and Anwser

Some regard the reasoner as a special classifier, because of the ability to infer implicit knowledge.
Reasoning is typically multi-exponential or even undecidable. Theoretically, a large number of
conclusions are drawn from the ontology, but only some are needed in practice. In the case of remote
sensing image interpretation from instances (image objects) to classes (geographic concepts), the large
number of instances makes reasoning time consuming. OWL-QL, a sublanguage of OWL, supports
query-answering within the ontology, and reasoning is performed in polynomial time [25] applied to
the situation. Following the method of Krötzsch [25], there are three steps to complete the OWL-QL
query-answering (Figure 5).

a The user specifies a query in the form of a conjunctive query, for instance, the query
WaterInReclamationPond(x) to retrieve this kind of image objects.

b Using ontology that only contains concept descriptions, the query is rewritten into a set of queries
still in the form of a conjunctive query, which means the query is extended by the ontology
according to inference rules. This process is called rewriting-based reasoning.

c Rewritten queries are answered using the database or ontology that only stores the instances and
its properties.

This framework takes concepts and instances apart to reduce the time complexity both when
preforming queries and reasoning. Another advantage is that the features are not necessarily
extracted in advance, especially for features that have no one-to-one relation to its image object,
such as topological relationships or context. They are visited when answering the related queries.
OWL-QL is a lightweight language that sacrifices some expressiveness in comparison with OWL 2.
Here, query-answering is based on REQUIEM (REsolution-based QUery rewrIting for Expressive
Models) [26], a prototypical implementation of a query rewriting algorithm [27].
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3. Case Study

3.1. Data

To illustrate using the proposed approach for advancing image object interpretation, experiments
were carried out on two images of coastal districts in China (Figure 6). Four spectral bands of images
were included: blue (Band 1), green (Band 2), red (Band 3), and near-infrared (Band 4).
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The two example image scenes, chosen for their prominent features and context, are composed
mainly of water, bare land, mudflats, seaside reclamation, greenhouses, artificial structures, and fields.
Seaside reclamation ponds are common in coastal areas, for various sea uses, such as aquaculture
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or bay salt. The reclamation ponds have prominent features. From the photo of District 1 shown in
Figure 7, reclamation ponds are arranged neatly adjacent to the sea or river. Due to their shallow depth,
mudflats or bare land appear in the middle or at the edge of the ponds. The banks of the reclamation
ponds are composed of bare land, occasionally covered with vegetation.
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3.2. Experiments and Discussion

The study started with image segmentation producing image objects on four scales. The commercial
software eCognition conducted the multiresolution segmentation algorithm with four sets of parameters
differing in scale. The choice of parameters depends on the four-scaled objects of interest: regions of sea
and land (Figures 8a and 9a); large regions, such as water, mudflats, reclamation, and fields (Figures 8b
and 9b); basic geographic objects of interest (Figures 8c and 9c); and over-segmented image objects for
refined classification (Figures 8d and 9d). The image objects of the smallest scale can be regarded as the
final classification units. Therefore, the image objects of Figures 8d and 9d were put into the supervised
assessment of image segmentation.
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The supervised image segmentation assessment cannot represent the overall accuracy. Samples
were selected to estimate segmentation quality by measuring the differences between the reference
objects and the segmented objects. The bare land, greenhouse, water pond, vegetation, and mudflats
are the objects of interest, so 10 reference objects were delineated for two images (Figures 10 and 11).
The difference indices of quantity, area, and position (defined in Section 2.2) were calculated. There are
some similarities in the two segmentation assessment results (Tables 2 and 3); all values of I are
more than 0.5, and most values for OL are zero. The number of invading objects accounts for most
of this result, and there are a few good objects. However, the low values of OE and CE show that
the segmentation error is small and slightly over-segmented as a whole (all values of AFI are lower
and higher than zero). This situation may be caused by the delineation of the reference objects.
The object boundaries are presented by gradual mixing pixels so that precise delineation decisions
are rare. The segmentation result is optimal when both ADIoverall and PDIoverall are at the minimum
simultaneously [28]. This means the areas of commission and omission are small and the matched image
objects are close to the reference image object. However, such a case rarely occurs. Area discrepancy
information is more important than position discrepancy information for segmentation assessment [28].
The values of the two regions’ ADIoverall are 0.05 and 0.08. The segmentation result is valid and can be
used for the subsequent process.
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Table 3. Supervised assessment results of Case 2 (d) segmentation.

Reference Object Description ngood nexpanding ninvading OL I AFI OE CE PDI

0 Water 0 2 7 0 0.78 0.12 0.03 0.02 112.07
1 Water 0 6 8 0 0.57 0.71 0.02 0.03 62.56
2 Water 4 12 8 0.25 0.33 0.86 0.02 0.02 88.15
3 Bare land 0 3 8 0 0.73 0.47 0.08 0.00 39.97
4 Water 0 3 5 0 0.63 0.17 0.02 0.03 66.58
5 Bare land 0 1 19 0 0.95 0.19 0.95 0.04 176.97
6 Bare land 0 1 4 0 0.80 0.08 0.08 0.05 18.79
7 Structure 0 2 10 0 0.83 0.50 0.21 0.10 51.25
8 Bare land 0 2 7 0 0.78 0.47 0.04 0.11 27.39
9 Vegetation 0 3 5 0 0.63 0.53 0.03 0.11 35.73

Overall 0.07 0.03 67.94
Overall ADI 0.08

The proposed approach interpreted the image objects in the two cases (Figures 12a, 13a and 14a).
For accuracy, image objects were delineated and assigned types as reference interpretations (Figures 12c
and 14c), and then they were formed as error matrices in pixels (Figures 13a and 15a). The overall
accuracy and kappa were computed showing the errors including segmentation and interpretation.
In order to show the capacity of the proposed approach, the supervised classification interpreted
the image objects for comparison (Figures 12b and 14b). The eCognition software performed the
supervised classification with the spectral features (mean values of Bands and MaxDifference) and
geometric features (area, length, rectangular fit, roundness, and density). It also helped to show the
role of context, because the supervised classification analyzes the features of single image objects,
treating the image objects independently. Figures 13b and 15b shows the accuracy assessment.

In Case 1, the proposed approach identified 19 classes and the overall accuracy was 0.77 with
a kappa of 0.73. Most of the area is well identified; the water-related concepts and greenhouse were
clearly classified, because they have internal homogeneity and a distinct border. The mudflat as a whole
shows the correct interpretation, but the mud land and bare land within the mudflat are muddled.
In the reference interpretation, it is hard to distinguish mud land and bare land, especially in the
transitional region. This situation also appears in the mud land and bare land that are within the
reclamation ponds. Other errors are mainly from mixed pixels, which can be caused by segmentation,
interpretation, and reference interpretation.

The supervised classification in Case 1 resulted in 10 classes with an overall accuracy of 0.55 and
a kappa of 0.49. Two kinds of water are roughly separated—pond water and another large area of
water. This is due to the spectral differences of water quality and area. The image objects near the
shore, of what should be the large area of water, were wrongly identified as pond water for the same
reason. Here, a more appropriate way to name the two types of water is Clean Water and Shallow Water
With A Mud Bed. This case illustrates that spectral features that recognize the substances and geometric
features can advance classification.

In Case 2, the proposed method obtained an interpretation that has 12 classes with an overall
accuracy of 0.86 and a kappa of 0.79. The water region and reclamation were well interpreted; the result
shows richer details than the reference interpretation in the regions of vegetation and bare land. As they
are mixed, which led to errors in delineating image objects in the reference interpretation, several
main roads were identified but misclassified. The sealed or unsealed roads were wrongly interpreted
because flawed spectral rules cannot distinguish between them. Fragments of the roads were wrongly
interpreted as bare land, an error similarly caused by mixed pixels.
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Figure 13. Chord diagram of the error matrix in Case 1: (a) between the reference and interpretation
of the proposed method; (b) between the reference and interpretation of the supervised classification.
The ribbons on the circle represent the classes of reference interpretation whose length is the number
of pixels. The arches indicate the correct classification, and chords indicate incorrect classification
(the legend in the diagram is the same as in Figure 12).
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The interpretation using supervised classification has an overall accuracy of 0.65 and a kappa of
0.51 with a total of seven classes identified. Here, the class in white refers to image objects with high
reflectance and an elongated shape, including the unsealed roads, the sealed roads, and the banks
of the reclamation ponds. These image objects cannot be classified further. Similarly, the supervised
classification performs poorly in the interpretation of ponds. First, the category defined as pond means
that a pond of water should be of the same kind. Second, regarding image objects independently
ignores the fact that they provide context to each other.

Generally, the two cases were interpreted better using the proposed approach compared to
supervised classification. In Case 1, with the proposed approach, the number of classes and the overall
accuracy increased to nine and 0.22, respectively. In Case 2, the increases were five and 0.21, respectively.
The reason why supervised classification performed poorly is due to intended classification-type
meanings containing context that cannot be analyzed by supervised classification. The context is that
the neighbors, the components, and the large regions together give each other meanings. This is
an important way for humans to recognize reality. The two cases highlight the role of context for the
interpretation improvement of more conceptual information. In summary, the proposed approach
provides a deeper understanding of the image.

4. Conclusions

This study implemented an ontology-based remote sensing image interpretation, presenting
a novel way to use context with spectral features, spatial features, and topological relationships.
Two HSR images of coastal areas were interpreted by the proposed approach, with supervised
classification serving as a contrast. Error matrices were computed to evaluate the results. The number
of classes increased and the total accuracy improved in both regions.

In the proposed approach, ontology played a powerful role in semantics formalization, making
the knowledge expert guide the interpretation directly. This provides an opportunity to analyze images
like humans. There is huge potential to develop ontology-based methods in remote sensing. The core
problem with knowledge-guided interpretation is the semantic gap, a problem solved by expert.
One solution is to define geographic concepts using image features. Geographic concepts must be
clearly defined, and at the same time, the feature extraction is crucial, especially developing feature
expressions that can connect to the high-level concept semantics. Context provides the geographic
concepts in the interpretation a higher level in the cognitive perspective. In the proposed approach,
the results show the number of interpreted classes increased and the total accuracy improved by
comparison to supervised classification. This suggests that the approach is an effective way to express
context by combining the geographic concepts definition with the multi-scaled image object.

There are limitations to the proposed approach. Using the model for multi-scaled image objects
to express context is based on the assumption that the context provider is a segmented image object.
That means the context provider is only the region’s spectrally homogeneous inside and heterogeneous
outside. Like all ontology-based image interpretation methods, it depends on a specific application.
These dependencies exist throughout each step. Therefore, future research points to independency
and universality as good directions to explore.
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