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Abstract: This paper presents a classification approach based on attribute learning for high spatial
resolution Synthetic Aperture Radar (SAR) images. To explore the representative and discriminative
attributes of SAR images, first, an iterative unsupervised algorithm is designed to cluster in the
low-level feature space, where the maximum edge response and the ratio of mean-to-variance are
included; a cross-validation step is applied to prevent overfitting. Second, the most discriminative
clustering centers are sorted out to construct an attribute dictionary. By resorting to the attribute
dictionary, a representation vector describing certain categories in the SAR image can be generated,
which in turn is used to perform the classifying task. The experiments conducted on TerraSAR-X
images indicate that those learned attributes have strong visual semantics, which are characterized
by bright and dark spots, stripes, or their combinations. The classification method based on these
learned attributes achieves better results.

Keywords: Synthetic Aperture Radar (SAR); attribute learning; discriminative clustering;
mid-level feature

1. Introduction

Synthetic Aperture Radar (SAR) is characterized by day-and-night and all-weather imaging
ability in remote sensing; moreover, SAR images contain rich information on the imaged
area, i.e., the dielectric and geometrical characteristics of the observed object are relevant to the
backscattering [1]. Therefore, SAR plays an increasingly important role in various applications,
such as urban planning, environmental monitoring, geoscience research, etc. In recent years, with
improvements of SAR systems in terms of spatial resolution, high resolution SAR images can provide
more detailed and precise information on an observed scene; for this reason, the application of SAR
data is highly popular in earth observation [2]. Meanwhile, it also creates challenges in SAR image
classification because of the more sophisticated shapes, structures and other details of the target.
Consequently, it would be highly desirable to interpret SAR images based on a multi-layer model
with clear semantic attributes.

Over the last two decades, several methods have been proposed for SAR image interpretation.
Roughly speaking, these methods can be categorized into, but not limited to, statistical-based,
texture-based and model-based methods. Statistical-based methods mainly relied on the fact
that SAR images are characterized by statistical properties. Various statistical models have been
proposed, e.g., Lognormal, Rayleigh, Fisher distribution [3], G0 [4], etc. Texture-based approaches
include the Gray-Level Co-occurrence Matrix (GLCM) [5], Gabor filter [6], sparse coding of wavelet
polarization textons [7], etc. Model-based methods, e.g., Markov Random Fields (MRFs) [8],
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Conditional Random Fields [9], Bayesian Network (BN) [10], are widely used for image analysis.
In addition, with improvements in spatial resolution, several works have considered spatial features,
e.g., morphological profiles, attribute profiles [11–13]. Recently, the Bag-of-Word (BoW) model has
been introduced for SAR image classification [14,15], which is inspired by the texton representation
of an image, and this approach is based on the discriminative low-level features. The multi-layer
model is a useful framework for SAR image classification tasks in the case of complex scenes [16].
However, high-level features extracted by the multi-layer model often lack semantics, and it is an
intractable problem to directly establish a correspondence between the physical mechanisms of a
SAR image and the semantics of the features at a high level.

Recently, attribute learning has received increasing attention in the computer vision
community [17,18], and its effectiveness has been demonstrated in various applications. For example,
image retrieval based on weak attributes was proposed in [19], color attributes were applied to object
detection [20]; in [21], between-class attributes were utilized to object classification when training and
test classes are disjoint. However, the attribute of the SAR image, by contrast, is quite different from
the one in optical image because of the coherent imagery mechanism in SAR. Consequently, there are
two problems waiting to be solved in the interpretation of the SAR image. The first issue is how to
explore the elemental attribute for coherent imagery. On the other hand, the features extracted by
the multi-layer model often lack semantic attributes, namely the semantic gap that exists between the
extracted features and interpretation; therefore, explainable feature learning by the multi-layer model
is another problem for understanding SAR images.

With the spatial resolution improvement in high-resolution SAR, the objects of interest are no
longer limited within several pixels, and more complex and rich information is provided, such as the
structures, shapes and other details. As shown in Figure 1, different objects in this SAR image, which
was acquired by TerraSAR-X, exhibit evidently visual semantics, i.e., bright and dark single spots,
dense spots, a linear stripe, or their combination. In this paper, the attributes of the SAR image are
referred to as these visual semantics.

Figure 1. Correspondence between different objects in Synthetic Aperture Radar (SAR) image
and their ground truth. SAR image is characterized by bright and dark spots, stripe, or various
combinations of them; different objects exhibit distinct visual semantics.

In this paper, a classification method based attribute learning for SAR images is presented.
The main contribution is that we explore the learning attributes of SAR images. In order to
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learn the discriminative attributes, an unsupervised clustering algorithm [22] is applied to find
clustering centers in the space of low-level features, including the ratio of mean-to-variance and
the maximum ratio of means in four different directions of an patch, which is sampled at multiple
scales from the input image; then, the most discriminative clusters are sorted out to form an attribute
dictionary. During the procedure for learning those attributes, cross-validation is applied at each
step to prevent overfitting, and the most discriminative clusters are ranked based on the scores
from Support Vector Machine (SVM) [23]. Specifically, these learned attributes possess semantic
properties, which is demonstrated by the experimental results, and the classification method shows
promising performance.

2. Attribute Learning

The input image is first partitioned into several patches with multiscale; then, low-level features,
including maximum edge response and the ratio of mean-to-variance, are extracted for each patch;
the last step is iterative clustering in the feature space, and the discriminative and representative
features are sorted out to construct an attribute dictionary.

2.1. Low-Level Feature Extraction

Because of the presence of speckle noise in SAR imaging, such low-level features, which are
robust to the impact of speckles, are desirable in SAR image representation. Here, ratio-based
features, namely, the maximum edge response and the ratio of mean-to-variance, are selected for
low-level image representation.

The edge response [24] is defined as the ratio of mean values in two non-overlap neighborhoods
of a patch; to detect all potential edges, the edge response should be computed in all directions
in the patch. Here, four elemental directions are considered, which are shown in Figure 2,
i.e., 0◦, 45◦, 90◦ and 135◦, and the maximum edge response is used to describe the edge of the local
patch. The maximum edge response rm is defined as

rm = max (ri) , i = 0, . . . , 3. (1)

where ri denotes the edge response in ith direction, and ri is given by [25]

ri = 1−min

(
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1
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2
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where ui
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2 are the average of pixel values in two neighborhoods.
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Figure 2. Four elemental directions are selected for edge extraction in an image patch. (a) image patch,
(b) 0◦, (c) 45◦, (d) 90◦, and (e) 135◦.

For the ratio of mean-to-variance rmv, which is a statistical feature for a patch, it is defined by

rmv =
u2

σ
. (3)

where u and σ denote the mean and variance of the sampled patch.
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Both rm and rmv are used to represent a patch, and therefore, the extracted feature vector q with
two elements, is given by

q = (rm, rmv)
T . (4)

where (·)T represents the transpose operation.

2.2. Attribute Learning

The goal of this paper is to exploit a set of representative and discriminative mid-level features,
which are expected to describe the attributes of an SAR image. In other words, the correspondence
between these features and the attributes should be bridged. To explore and discover the underlying
relationships between them, unsupervised clustering algorithms are needed for this task.

A large number of clustering methods, e.g., k-means [26], can be used to deal with a standard
unsupervised clustering problem. However, as noted in [22], because of the low-level distance
metric adopted by these clustering methods, e.g., L1, Euclidean, Cross-correlation, these methods
often result in poor performance in clustering tasks with mid-level features. With the discriminative
requirement of the desirable attributes, in this paper, an iterative learning step, as illustrated in
Figure 3, is employed for this requirement. This procedure is implemented in Algorithm 1, and each
step is summarized as follows.

Figure 3. Framework of attribute learning. Attributes are learned by iteratively repeating clustering
and classification procedure.

Algorithm 1 Attribute learning
Input: Training set T , validation set V , assistant setA
Output: Attributes
Step

1: While: not convergence do
2: Exchange: T and V
3: Cluster on T , cluster center k = n/4,

remove cluster centers with less than 3 members
4: Train corresponding classifiers onA with positive examples from step 3
5: Classify on V , top 5 members are sorted out for each new cluster
6: Swap (T ,V)
7: Repeat step 3 to 5
8: if members are not changed in each cluster center
9: end while
10: return Attributes



ISPRS Int. J. Geo-Inf. 2017, 6, 111 5 of 10

The input full scene is divided into two equal but non-overlaping subsets, i.e., the training
subset T and validation subset V . Another required datasetA, called the assistant set, is formed by
collecting images from the same SAR system. For all images in the training set T , first, n patches
are sampled at multiple scales. For each image, the patch size ranges from the local region,
e.g., 7× 7 pixel, to global size, and an overlap sampling strategy, namely, stride s = 3 pixels, is applied
to cover the entire image [15]. Then, low-level features are extracted for each patch, including the
maximum edge response and the ratio of mean-to-variance; next, standard k-means is employed to
cluster in the low-level feature space, where the clustering center is k = n/4 and where n is the
number of patches in dataset T . Considering the representative requirement, cluster centers with
less than three members are removed, and m clusters remain.

The next step is to train a linear SVM classifier for each cluster generated in the first step,
where the positive examples are the members within each cluster, whereas the negative examples
come from the assistant dataset A. Then, the trained classifiers are applied to perform classification
on the cross-validation subset V , and those labeled samples are re-clustered to form new cluster
centers. Note that the members of each cluster center only come from the top p = 5 samples with
higher classified scores. Parameters for attribute learning are summarized in Table 1.

Table 1. Parameters for attribute learning.

Parameter Index Setting
patch size from 7× 7 pixels to global size with 3 pixels shift

stride 3 pixels
number of sampled patches n

initial cluster center k = n/4
members forming final cluster center p = 5

When the new clusters are constructed, the training set T and validation set V are exchanged;
then, the above clustering and classification steps are iteratively repeated, and those clusters that were
fired less than 2 times are removed. The procedure described above is iterated until convergence,
i.e., the members within each cluster do not change. Note that some low-level features are removed
during this procedure since they are not representative and discriminative.

2.3. Attribute Dictionary Construction

The attribute dictionary consists of the most distinctive attributes, namely, the cluster centers
with maximum separation. To construct such an attribute dictionary an SVM classifier is first
employed on the clustering centers, which have been generated during the attribute learning step,
and new clusters are generated; Then, the classified scores are assigned to these new clusters, where
the classified scores are computed by summing up the scores of the top r (where r > p ) members
within the new cluster based on the confidence of SVM classification. Finally, the top K clusters are
selected to construct the attribute dictionary D = [d1, d2, . . . , dK], where dk(k = 1, . . . , K) is the kth
selected cluster center. Once we have built this attribute dictionary, the ith patch, sampled from the
input image and represented by feature qi, can be represented by a dictionary-based feature vector
vi = [v1, v2, . . . , vK]; the kth element vk is given by

vk =

1, if k = arg min
i

∥∥qi − dj
∥∥2, j = 1, . . . , K

0, otherwise.
(5)

For all patches from an input SAR image, such a feature vector can be obtained by Equation (5).
As a consequence, the input SAR image can be described by a statistical histogram h = [h1, h2, . . . , hK],
and h is the sum-pooling of vi|i=1,2,...,n, where n is the number of sampled patches, and the kth element
hk in h is the sum of the kthe elements in vi|i=1,2,...,n.
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3. Classification with Attributes

As illustrated in Figure 4, the classifying framework is composed of three steps, namely: the
low-level feature extraction, attribute detection, and classification steps.

Figure 4. Framework of SAR image classification based on attributes. The first step is low-level
features extraction; then, the attributes that appeared in the test image are detected, and the frequency
of the detected attributes is described by a statistic histogram; finally, a linear SVM classifier is used
to perform classification.

The first step is low-level feature extraction for the input SAR image; several patches are first
sampled at multiple scales from the input image; then, the low-level features can be extracted by
computing the maximum edge response and the ratio of mean-to-variance; these extracted features
are the candidates to be detected for the representation of the input image.

The second step is attribute detection. The attributes for the test image can be sorted out by
referring to the attribute dictionary, where the metric is based on the nearest neighbor. Note that
these detected attributes correspond to the multi-scale patches sampled from the test image. This is
equivalent to detecting visual words for the image.

The last step is the implementation of classification. When the attributes have been sorted out,
a statistical histogram describing the attributes frequency can be computed as a final descriptor; then,
a simple linear SVM is applied to perform classification.

4. Experiment

4.1. Data Set

To evaluate the performance of the proposed method, a data set is collected. This full scene
was acquired by TerraSAR-X with single polarization (VV channel) from an area in Guangdong
Province, China on 24 May 2008. The full scene is composed of 7 categories as shown in Figure 5,
including forest, river, hill, farmland, industrial area, urban region and others. Each category contains
160 images with a size of 64 × 64 pixels and a pixel spacing of about 1.25 meters. The dataset T
and V for model training are formed by sampling 100 images in each category, and the remaining
images are used to test. The assistant dataset A is formed by a collection of images from the same
TerraSAR-X system.
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(a) Geo-information (b) Original image (c) Ground truth

Figure 5. (a–c) Experimental SAR image acquired by TerraSAR-X in Guangdong, China.

4.2. Parameter Setting

There are 350 images in each dataset T and V , and 2000 images in the assistant dataset A.
The minimum patch size used to extract low-level features is 7× 7 pixels with a stride of 7 pixels,
and the maximum size is as large as the entire image size; those patches are generated by sampling
the input image at 19 multiple scales. During the step of initial clustering, the cluster center is
k = n/4, where n is the number of patches in dataset T ; the member of cluster thought to be
fired is based on the SVM score, which is set above −1. The total number of the attributes sorted
out to form the attribute dictionary, is 3396, and the top 1000 discriminative attributes are used for
image representation.

4.3. Results and Analysis

The most discriminative 5 patches for each category are shown in Figure 6. Here, the detected
patches from (a) to (g) correspond to the categories in Figure 5.

As noted, the discriminative patches among categories are quite different; e.g., the patches in (b)
are characterized by dense spots, the patches in (e) by stripe, and the patches in (f) are a combination
of a single spot and stripe. Moreover, there is remarkable resemblance among the discriminative
patches within each category, e.g., the characterization of dense spots in (a) and linear bright stripe
in (e). This demonstrates that the learned attributes are representative and discriminative since the
interactive algorithm, including initial clustering, classifying and re-clustering step, is used during the
attribute learning. The clustering step will sort out the frequently occurring cluster centers, namely,
the representative attributes, while the classification step will ensure that these selected attributes are
quite discriminative from the rest.

To evaluate the performance of the proposed method, five state-of-the-art methods are chosen for
comparison, including GLCM [5], Gabor [6], GMRF [27], Particle Filter Sample Texton (PFST) [28] and
BoW-MV [25]; the settings for each method are described as follows. There are 4 extracted statistical
features for GLCM, i.e., contrast, correlation, energy and inverse different moment. Gabor filters are
implemented on 8 orientations and 3 linear scales, and the mean and variance of each sub band form
the Gabor texture feature. The GMRF texture features are generated by estimating the 4-level GMRG
model with 12 parameters. For the PFST, the patch size is 5× 5 pixels; there are 8 key points and
10 texton per class. The cell for local feature extraction in BoW-MV is 7× 7 pixels.
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Figure 6. Five detected patches for each category. The detected patches from (a) to (g) correspond to
the categories in Figure 5; those patches among different categories exhibit distinct visual properties,
whereas five patches within each category demonstrate remarkable resemblance.

Table 2 shows the classification results; here, AL, the abbreviation of Attribute Learning, denotes
the proposed method. Besides the classification accuracy for each class and average accuracy (A.A.),
the Kappa coefficients (Kappa) and Kappa confidence intervals (Kappa C.I.) [29] are also used for
comparison. The average accuracy of the proposed method is slightly better than other approaches;
for example, compared with the state-of-the-art method PFST, the Kappa confidence interval, 0.83 to
0.89, is more confident, and the average accuracy and Kappa coefficients are improved by 7.5% and
0.06%, respectively. Moreover, the classification accuracy of the proposed approach is obviously
improved on a region with such rich structure information, such as the industrial and hill area; this is
because the edge detector and the ratio of mean-to-variance are extracted as low-level features.

Table 2. Performance comparison in terms of accuracy, average accuracy, Kappa coefficient and
associated confidence interval.

Class/Method GLCM Gabor GMRF PFST BoW-MV AL
Forest 78.33 53.33 86.67 79.00 80.12 92.37
Hill 78.33 28.33 68.33 81.00 39.13 81.45
Industrial area 55.00 50.00 46.67 63.00 59.01 78.66
Farmland 90.00 80.00 98.33 99.00 83.23 96.34
River 100 95.00 100 79 92.55 98.60
Urban area 70.00 30.00 68.33 100 75.78 92.66
Others 61.67 68.33 71.67 77.00 72.67 72.88
A.A. 76.19 57.86 77.14 82.57 72.61 89.27
Kappa 0.72 0.51 0.73 0.80 0.67 0.86
Kappa C.I. [0.67,0.77] [0.45,0.56] [0.69,0.78] [0.79,0.80] [0.66,0.67] [0.83,0.89]

5. Conclusions

This paper has presented a classification method based on attribute learning for high spatial
resolution SAR images. The key contribution is that attributes for SAR images have been extracted,
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which are characterized by bright and dark spots, stripes, or various combinations of them. In order
to learn these attributes, an iterative procedure was designed, including unsupervised clustering
step, classification training step, and a cross-validation for preventing over-fitting. The experiments
conducted on TerraSAR-X data demonstrate that the extracted attributes are discriminative and
representative, and the classification method, based on the learned attributes, achieved better
accuracy, especially on regions with rich structure information. However, the proposed method is not
rotation-invariant; further research is required to address this issue for performance improvement.
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