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Abstract: Web Feature Service (WFS) is a widely used spatial web service standard issued by the
Open Geospatial Consortium (OGC). In a heterogeneous GIS application, a user can issue a query
that relates two or more spatial datasets at different WFS servers. Multi-way spatial joins of WFSs are
very expensive in terms of computation and transmission because of the time-consuming interactions
between the servers and the client. In this paper, we examine the problems of multi-way spatial joins
of WFSs, and we present a client-side optimization approach to generate good execution plans for
such queries. The spatial semi-join and area partitioning-based methods are combined to prune away
non-candidate objects in processing binary spatial joins, and the filtering rate is used as an index to
determine the execution strategy for each sub-area. Two partitioning methods were tested, and the
experimental results showed that both are effective if a proper threshold to stop the partitioning is
chosen. In processing multi-way spatial joins of WFSs, the filtering rate is used as an indicator to
determine the ordering of the binary joins. The optimization method is obviously superior to the
other two methods when there are adequate spatial objects involved in the join query, or when more
datasets are involved in the join query.
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1. Introduction

Spatial information at present is widely utilized in many decision-making processes.
Many application domains, such as emergency and disaster management, necessitate the analysis
of spatial data that are geographically distributed [1]. In recent years, the OGC (Open Geospatial
Consortium) has released a series of OpenGIS Implementation Specifications that serve as one of the
solutions to spatial data interoperability and sharing. As one of the geospatial web service standards,
Web Feature Service (WFS) [2,3] provides transactions on and access to geographic information over
the HTTP protocol at the feature and feature property level in a manner that is independent of the
underlying data store. The WFS standard now has been implemented in a number of mainstream GIS
webservers, such as ArcGIS Server, Deegree and Geoserver, among others. Progress in this aspect of
the GIS industry makes it possible to build GIS applications that integrate spatial data managed by
different GIS platforms, from different departments/agencies [4]. The well-known open-source project,
OpenLayers (http://openlayers.org) has provided some modules that support access to WFSs and
dynamic maps. There have been some WebGIS applications that use WFSs as a type of data sources,
such as Land and Resources Management Systems [5], Disaster Response System [6,7] and Logistics
Information Systems [8]. Obviously, WFS has become very promising in the integrated application of
spatial data [9].
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In heterogeneous spatial data applications, the answers to some queries may often involve
integrating and analyzing data from a number of services [10–12]. For example, the solution to the
query “which schools are less than 1 km from a police station?” could require processing a spatial join
between two WFSs if the dataset “school” and “police station” are provided by two data providers.
Because spatial data are encoded in geography markup language (GML) when transferred between
a WFS server and its client, generating a GML document on the server and parsing it on the client
is expensive in terms of the computation and transmission costs. In traditional spatial database
management systems (DBMSs) [13], even with the help of spatial index techniques, it is very expensive
to process spatial joins, in terms of both CPU and I/O cost. Comparatively, it would be more time
consuming to process multi-way spatial joins (MSJ) of WFSs due to the expensive interactions between
the servers and their clients, especially when clients have no access to the spatial indices on the servers.
Therefore, it is necessary to find some better methods to reduce the overhead for this type of spatial
join query. Multi-way spatial joins of WFSs can be seen as a type of special distributed spatial join,
and therefore, to a certain extent, the existing optimization methods for the latter will be of help in
searching for solutions for this issue. To accelerate the response of client applications, there have been
a number of server-side optimization methods, such as creating a spatial index for datasets that are
frequently accessed or reducing the redundant GML elements in GML documents by optimizing the
definitions of GML application schemas of the datasets [9]. From the client’s point of view, a quicker
response to the users can be expected not only by optimization on the servers accessed but also by
the optimization strategies utilized on the client side itself. Currently, very few research studies have
been conducted on optimizing this type of spatial join on the client side, and existing research on MSJ
has largely focused on generating optimal execution plans for traditional centralized or distributed
spatial DBMSs [13–16]. In our previous work, we have attempted to reduce the transmission cost of
spatial joins of two WFSs [17,18]. In this research, we aimed at developing a client-side optimization
approach to generate an optimal execution plan for MSJ of WFSs.

2. Multi-Way SPATIAL Join of Web Feature Services

In this section we firstly give a formal definition of the distributed multi-way spatial join,
and introduce the interaction mode between WFSs and their client. Then we introduce the related
research on MSJ in traditional spatial DBMSs. Last, some issues on processing MSJs of WFSs are
introduced and discussed.

2.1. Open Geospatial Consortium (OGC) Web Feature Service

The international standard of Web Feature Service specifies the behaviour of a service that
provides transactions on and access to geographic features in a manner that is independent of the
underlying data store [3]. A WFS must respond to a client’s request according to the implementation
specification. As a self-descriptive agent, a WFS supports a GetCapabilities operation and a
DescribeFeatureType operation. The GetCapabilities operation generates a service metadata document,
and the DescribeFeatureType operation returns a schema description of the feature types offered
by a WFS instance; with the metadata served by the two operations, the client can discover what it
provides and know how to access the spatial data from the WFS server. The GetFeature operation
allows a client to retrieve spatial features or values of feature properties from the data store of the
WFS. In a GetFeature request, there is a parameter called “resultType.” The WFS can respond to this
request in one of two ways according to the value of the resultType parameter. If the resultType is
set to “results,” the service will return a complete document that contains all the features that satisfy
the query expressions; otherwise, if it is set to “hits,” the service simply returns the total number of
selected features.

The cost of a WFS request and its response involves at least the following aspects: (1) the client
sends the query request to the server; (2) the server performs a query operation to obtain the qualified
spatial objects; (3) the server transforms the query result into GML format; (4) the server transfers the
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GML document to the client; and (5) the client receives the GML document and parses it. We used a
dataset called tl_2015_us_ rails, one of the 2015 TIGER/Line provided by the United States Census
Bureau, to determine the time costs of these steps. In this experiment, ten portions of tl_2015_us_ rails
with different data sizes were selected and encoded into XML format on the server before being
transmitted to the client side and parsed. More information about our experiment will be introduced
in Section 4. Table 1 shows the time costs of the above steps. In Table 1, DS_SHF is the data size in
shapefile format; DS_XML is the data size in XML format; ENCODE_T is the time cost of the request
and query operation and encoding the results into XML format; PARSE_T is the time cost of parsing
the responded XML document; and TOTAL is the time cost of the whole process.

Table 1. Time costs of the different steps of ten portions of tl_2015_us_ rails with different data sizes.

No. DS_SHF (MB) DS_XML (KB) ENCODE_T (s) PARSE_T (s) TRANS_T (s) TOTAL (s)

1 1 2472 0.82 1.14 0.66 2.62
2 3 7476 2.44 3.69 1.37 7.5
3 5 12,932 4.42 6.23 2.56 13.21
4 7 17,835 5.95 8.76 4.08 18.79
5 9 22,902 7.54 11.07 5.43 24.04
6 11 28,343 9.3 13.75 6.88 29.93
7 13 33,749 13.08 17.79 9.1 39.97
8 15 38,293 15.1 19.92 11.07 46.09
9 17 44,420 17 23.75 12.32 53.07
10 19 49,157 20.03 26.87 13.53 60.43

Table 1 shows that the time costs of these steps are approximately proportional to the original data
sizes in the shapefile format. TRANS_T was not dominant because in this experiment, the client and
the server were connected by a local area network, with a sustained data transfer rate of approximately
30 Mbps. It can be confirmed that TRANS_T would increase if the experiment was conducted under
the circumstances of the Internet. Comparatively speaking, a request with the parameter resultType
being set to “hits” is less susceptible to the data transfer rate because it only requires transferring the
number of selected features. Accordingly, it needs around 1/20 of the time cost of the corresponding
query that returns all the qualified objects in XML format; most time is spent on searching for and
counting these objects in the server’s database. In this study, we used this type of query to estimate
spatial distributions of joined datasets.

2.2. Multi-Way Spatial Join

The multi-way spatial join implicates an arbitrary number of spatial datasets [13]. Formally,
a multi-way spatial join can be depicted as follows. Given that R is a collection of datasets,
R = {R1, R2, ..., RN}, i = 1, 2, ..., N, with Ri the ith dataset in R, for an arbitrary pair of datasets
Ri and Rj, the join query between them can be defined as aij = Ri BC

θij

Rj, where θij is the spatial

predicate that should be held between Ri and Rj. A multi-way spatial join Q can be viewed as an
undirected graph Q = Q(R, E), where the nodes correspond to the datasets, and the edges to the
join predicates. Let η(aij) be an arbitrary element in the adjacency matrix of the query graph; then,
η(aij) = 1 denotes that there is a spatial join between the datasets Ri and Rj. Otherwise, if η(aij) = 0,
Ri and Rj are not joined.

In traditional spatial DBMSs, spatial index techniques are widely used in spatial join processing.
Several non-index methods have also been proposed for binary spatial join processing, such as Spatial
Hash Join [19], Partition-Based Spatial–Merge Join [20], Scalable Weeping-Based Spatial Join [21],
and Iterative Spatial Join [22]. The methods for processing MSJs can be grouped into two categories.
The first method is to search for tuples satisfying the query Q from datasets all at once, such as
synchronous traversal (ST) [23]. To avoid an exhaustive search or false hits, these methods require the
joined datasets to be indexed [13]. The second way is to decompose the whole query into a sequence
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of binary joins, which are performed with the aforementioned methods in a cascading manner to find
the final solutions. Usually dynamic programming is used to determine the optimal execution plan,
i.e., to determine the ordering of the binary spatial joins.

2.3. Issues in Spatial Join Processing of Multiple Web Feature Services (WFSs)

Compared to conventional spatial DBMSs, the overhead of a distributed spatial join consists of
not only the computation cost, but also the transmission cost that arises from data exchange between
different computation nodes. Existing research on distributed multi-way spatial join largely focuses
on how to reduce the transmission cost by pruning away those objects that cannot be present in the
query’s final solution (non-candidate objects). The spatial semi-join-based algorithm [24] is one of
those methods in common use.

Processing an MSJ of WFSs is more complicated and demanding than processing that of
distributed spatial DBMSs. First, according to the WFS specification, a WFS can only respond to
a client’s request, and thus, the clients cannot access the internal data structures and spatial indexes
deployed on the WFS servers, which implies that most existing methods used in distributed spatial
DBMSs, cannot optimize the spatial joins of the WFSs. Second, WFS servers cannot communicate
directly with one another, and therefore, a client must act as a mediator when data exchange between
services is needed, which makes it more expensive than in the context of distributed spatial DBMSs.

To give an example of this process, we take the spatial semi-join. Suppose that R1 and R2 are two
spatial datasets to be joined in a spatial DBMS, and they are deployed on Site A and Site B. To obtain
the join result on Site A, a spatial semi-join can expressed as follows [24]: (1) Send MBR(R1) to Site B,
where MBR(R1) is the maximum boundary rectangles of the objects in R1. (2) Join MBR(R1) with R2,
and obtain the qualified objects in R2, which is denoted as R2′. (3) Send R2′ to Site A, and perform a
refinement to obtain the final solution. Comparatively, a spatial join of two WFSs is quite different
because the join result should be generated on the client side. Assuming that R1 and R2 are provided
by Service A and Service B, respectively, as shown in Figure 1, one approach to perform this spatial
semi-join can be described as follows: (1) The client sends the query expression to Service A. (2) Service
A sends spatial objects in R1 (denoted by R1′) that satisfy the query condition to the client. (3) The client
sends the approximate representation of R1′, MBR(R1′), to Service B. (4) A spatial join of R1′ and
R2 is performed on Site B, the candidate objects of R2 are sent to the client, denoted as R2′, and the
refinement is performed at the client site.
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Figure 1. Spatial semi-join between two Web Feature Services (WFSs).

With the above steps, some objects of R2 would be pruned away, thus reducing the transmission
cost. Here, this approach is denoted as Semi_join(R1, R2), and placing R1 first means that the spatial
objects on Service A are retrieved first. Obviously, the query can start from Service B and prune away
spatial objects of R1, denoted as Semi_join(R2, R1), similarly. In fact, a spatial semi-join is not always
effective because in some situations, it cannot prune away enough non-candidate objects of the join
result to enhance the performance, and sometimes, it is better to directly retrieve all of the objects from
Service A and B, denoted as Direct_join(R1, R2). Let r1 and r2 be the average data sizes of the spatial
objects in R1 and R2, let mbr be the data size of a minimum boundary rectangle (MBR), and let N1
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and N2 be the numbers of features in R1 and R2; then, the transmission cost of Direct_join(R1, R2) is
estimated as r1 × N1 + r2 × N2. Because an MBR can be represented as its left-top and right-bottom
vertexes, mbr is set to 2 here. Similarly, the data size of a spatial object is measured as the number of
vertexes that it is composed of. Assuming that in Figure 1 the number of objects in R2′ is N2′, then the
total transmission cost of Semi_join(R1, R2) can be estimated as r1 × N1 + r2 × N2′ + mbr × N1. Thus,
Semi_join(R1, R2) is effective in reducing the transmission cost only if r2 × N2′ + mbr × N1 < r2 × N2.
Here, a brief introduction about whether spatial semi-join should be used or not is presented, and a
more detailed discussion can be found in [17,18].

In [18], an index called the filtering rate is proposed to estimate to what degree a spatial semi-join
can prune away non-candidate objects. Assuming that Semi_join(R1, R2) is performed as in Figure 1,
the number of filtered objects will be N2−N2′, and the filtering rate can be expressed as in Equation
(1).

FR =
∣∣N2− N2′

∣∣/(N1 + N2) (1)

Correspondingly, if Semi_join(R2, R1) is performed, then FR = |N1− N1′|/(N1 + N2).
Because we are inclined to choose the method that can prune away more non-candidate objects,
the practical filtering rate can be defined as in Equation (2).

FR = max
((

N1− N1′
)
/(N1 + N2),

(
N2− N2′

)
/(N1 + N2)

)
(2)

In fact, with regard to N1′ and N2′ beforehand, their approximate values are estimated in the sense
of probabilities. Assuming that the spatial objects in N1 and N2 were evenly distributed, the number
of intersecting pairs P between the MBRs of R1 objects and those of R2 objects can be estimated by the
following equation [25,26]:

P = N1× N2×min
(

1,
(

hR1 + hR2

))
×min(1, (wR1 + wR2)) (3)

where wR1, wR2, hR1, and h2 are the normalized average widths and heights of spatial objects in
R1 and R2, respectively, which can be calculated by the sampling method. N1′ and N2′ can be estimated
as min(N1, P) and min(N2, P), respectively.

For a spatial join query in which both joined datasets have a large number of spatial objects,
simply performing Semi_join(R1, R2) or Semi_join(R2, R1) cannot accelerate the query. In most cases,
spatial objects in a dataset are not uniformly distributed; there are sometimes many objects over an area
and only a few in the others. If there exists such skewness in a spatial distribution of the two joined
datasets, then a partitioning-based strategy will be of great help in reducing the transmission cost.
Its basic idea is to partition the whole query area into a certain number of sub-areas, and then, for each
sub-area i, to choose the approach with the least cost, thus the whole cost is decreased. The combination
of the spatial semi-join and the area partitioning-based method makes this approach sensitive to the
skewness in the spatial distribution of two datasets in the sub-areas, and therefore, it is effective even
when there is no spatial skewness in the spatial distribution of the joined datasets, as viewed from the
whole query area.

For processing the MSJs, perhaps a straightforward approach is to perform binary joins in a
certain order, with the aforementioned method used to prune away the non-candidate objects. In fact,
similar to processing the MSJs in spatial DBMSs, the ordering of those binary joins can greatly affect
the performance. Furthermore, the orderings for the MSJs of WFSs could be more important because
it would affect not only the transmission cost but also the cost of encoding spatial objects into GML
documents and rebuilding them by parsing the GML documents. In general, the problem of choosing
the best order is NP-complete [27]. Some heuristic methods have been proposed for choosing optimal
order, such as [28]. In this paper, we use the filtering rate as an indicator for determining which binary
join should be performed earlier when searching for a good execution plan.
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3. The Optimization Algorithm for a Multi-Way Spatial Join of WFSs

As discussed above, MSJ processing is composed of two elements: processing binary spatial joins
and searching for an optimal or sub-optimal execution plan for the whole query, i.e., the ordering of
cascading binary spatial joins. In this section, the basic framework for processing binary spatial joins of
WFSs is presented by combining the spatial semi-join and partitioning-based methods. Furthermore,
we study the properties of the query graph, and we propose a heuristic method that quickly determines
good plans by using the filtering rate as an indicator.

3.1. Optimizing Binary Spatial Join of Web Feature Services

As mentioned in Section 2.3, due to the inaccessibility of the spatial indices on WFS servers
when processing the spatial joins of WFSs, in this research, the basic idea of the spatial semi-join is
combined with partitioning-based methods to prune away non-candidate objects. Generally, there are
two types of partitioning methods, i.e., regular grid partitioning and recursive partitioning. Regular
grid partitioning partitions the query area into M × N regular cells, while each cell contains spatial
objects that fall into its extent. Another kind of partitioning method is recursive partitioning. KD-tree
partitioning [29] and quadtree partitioning are two recursive partitioning methods. These methods
successively partition the entire query area into sub-areas. If in any of these sub-areas the number of
spatial objects in either of the datasets is no more than a threshold T, then that sub-area is stored and
no further subdivision is necessary.

Although there are many partitioning methods, for simplicity, we introduce a hybrid method
of regular grid partitioning and the spatial semi-join to exemplify the use of this type of method for
processing binary spatial join of two WFSs. It should be noted that the number of objects contained
in the query area or crossing the boundary, i.e., N1 and N2, are not known at the client side at the
beginning, and they are retrieved from the corresponding server by using a “GetFeature” request
with the parameter “resultType” being set to “hits,” as introduced in Section 2.1. In the beginning,
for each server the client sends a “GetFeature” request to obtain N1 and N2. If both N1 and N2 are
far larger than the preset threshold T, the query area is partitioned into M × N regular sub-areas.
Let MN = max(N1,N2)/T; it is partitioned in such a way that H/W ≈ N/M and M × N ≈ MN,
where W and H are the width and height of the query area respectively. Then, the client sends requests
to the two servers to obtain N1i and N2i, i = 1, 2, . . . , M × N. Similar to the definitions of N1 and N2,
N1i and N2i are the numbers of R1 objects and R2 objects contained in the ith sub-area or crossing its
boundary. For those sub-areas with a dense distribution of spatial objects of both datasets, i.e., both N1i

and N2i are far larger than the threshold T, a further partitioning could be necessary and performed
according to the above method. Different from the recursive partitioning method, the partitioning
can be limited to no more than two stages. Figure 2 exemplifies the two-stage partitioning. After the
partitioning process, for each sub-area, the filtering rate FRi is calculated with Equation (4) [18].

FRi = max
(

N1i − N1′i
N1i + N2i

,
N2i − N2′i
N1i + N2i

)
(4)

where N1′i is the estimated number of candidate objects in the dataset R1 if Semi_join(R2, R1)i is
performed for the ith sub-area. Vice versa, N2′i is the estimated number of candidate objects in the
dataset R2 if Semi_join (R1, R2)i is performed for the ith sub-area. These two quantities are estimated
with the selectivity estimation method introduced in [25]. Obviously, if FRi is close to zero, then the
spatial semi-join is not suitable for this sub-area, Direct_join (R1, R2)i is chosen instead, and FRi is set
to zero. The total filtering rate of the entire spatial join can be expressed as Equation (5).

FR =
∑ max

(
N1i − N1′i, N2i − N2′i

)
N1 + N2

(5)
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Two issues should be accounted for in the execution process. One issue is to attempt to reduce
the unnecessary requests to the servers as it may increase the execution cost. The other issue is to
avoid some objects being repetitively downloaded from WFS servers. Therefore, the homogeneous
areas (those to be processed by the same method) are merged into a larger area, and as a result,
the times for the interactions between the client and servers will decrease to minimize the time cost.
As shown in Figure 2, the sub-areas are classified into three groups according to their execution
methods: (a) Semi_join(R2, R1)i, depicted with black cells; (b) Semi_join(R1, R2)i, depicted with
white cells; and (c) Direct_join(R1, R2)i, depicted with diagonal cells. Our processing strategy can be
expressed in the following three steps:
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Figure 2. Partitioning and merging the sub-areas with same execution approaches.

(1) Merge the white and diagonal sub-areas into a larger area, and send its boundary to Server A
to download R1 objects contained in or crossing this boundary. Merge the black and diagonal
sub-areas into a larger area, and send its boundary to Server B to download R2 objects contained
in or crossing this boundary.

(2) For the white sub-areas, a spatial semi-join is performed on Server B, and the candidate objects of
the dataset R2 are sent to the client. For the black sub-areas, a spatial semi-join is performed on
Server A and the candidate objects of the dataset R1 are sent to the client.

(3) The immediate datasets are refined on the client side to obtain the final solutions of the spatial join.

The above processing strategy works on the assumption that both datasets must be transmitted to
the client. Another situation is that one of the two joined datasets has been transmitted to the client,
and only the non-candidate objects of the other dataset must be pruned away. Assuming that there is a
three-way join R1./R2./R3, after R1./R2 has been completed, R2′ is cached in the client site, and the
remaining R2′./R3 can be performed as follows: Merge sub-areas with dense distribution of R2′ objects
into a larger area, and download the objects of R3 in this area. Merge the other sub-areas, and send
the maximum boundary rectangles (MBRs) of the R2′ objects in the merged area to the server of R3;
after performing a spatial semi-join, the qualified objects of R3 dataset in this area are sent to the client.
The set of all of the downloaded R3 objects is denoted by R3′. Last, the objects in R1′, R2′ and R3′ can
be tested to find the solutions to the join R1./R2./R3 with conventional algorithms.

3.2. Optimizing the Multi-Way Spatial Joins of Web Feature Services

Different from binary spatial join processing, the main concern of multi-way join optimization is to
search for an optimal or sub-optimal execution plan that has a certain ordering of binary joins, to prune
away as many non-candidate objects as possible. As in distributed spatial DBMSs, information about
the datasets, such as spatial indexes, is much cheaper to access, and therefore an optimal plan is easier
to achieve by employing some complicated optimization methods. When processing MSJs on a client
computer, such information is impossible or costly to achieve. Therefore, methods such as dynamic
programming are not feasible in processing queries of WFSs, and we must use a more straightforward
and cheaper method.
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Perhaps the most important task here is to determine what type of joins should be performed
earlier. Consider the join graph shown in Figure 3: there are four datasets, A, B, C and D, and three
join operations between the adjacent two datasets. If the join of datasets B and C has a high filtering
rate, as shown in Figure 3a, let B′ and C′ be the distinct objects in the solution of B./C. Then, it can be
obtained that |B′|<<|B| and/or |C′|<<|C|, where |B|, |B′|, |C| and |C′| are the numbers of objects of B,
B′, C and C′ respectively. If |B′|<<|B|, then the transmission cost of the following joinB′./A will be
greatly reduced in consequence. In contrast, if the execution plan in Figure 3b is chosen, then A./B
is performed first, and many objects in A and B would be downloaded to the client site; however,
most of them are not qualified for the join A./B./C, which means that they cannot be present in the
solutions of the whole join. Therefore, it is better to perform a join that has a higher filtering rate earlier.
On the other hand, for a given binary join, if both datasets have far fewer features than the other
datasets in the adjacent joins, such a join can also be performed early because its execution would
likely not decrease the performance of the whole query.

Based on the above ideas, our optimization algorithm mainly consists of three steps, as follows:

(1) Estimate the filtering rates for all of the binary joins in the query graph with Equation (2).
(2) Perform the join with the highest priority (usually determined by the filtering rate). After that,

recalculate the filtering rate of the other binary joins with respect to the above two joined datasets,
if necessary.

(3) Repeatedly perform step (2) until all of the candidate objects of the related datasets have been
downloaded to the client site.

The pseudo-code in Algorithm 1 shows a brief idea of how a multi-way spatial join is processed.
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Algorithm 1: Processing multi-way spatial joins

Multiway-SpatialJoin(Datasets){
Foreach (Relation(i, j) in RelationSets) { /*Compute filtering rates for every binary join */

S(i, j)=ComputeFilteringRate (Datasets[i], Datasets[j]);
}
While (RelationSets 6=∅){ /*Stop if RelationSets is empty*/

Find the binary join with them maximum filtering rate S(n, m) or the Relation(n, m) that both datasets
have a very small number of features;

SpatialJoin(Datasets[n], Datasets[m]); /*Join Datasets[n] and Datasets[m]*/
Update(Datasets[n], Datasets[m]); /* Substitute Datasets[n] and Datasets[m] with the immediate

solution of the previous join*/
Remove( Relation(n, m) ); /*Remove Relation(n, m) from RelationSets */
Update the filtering rates of the other joins that Datasets[n] and Datasets[m] participate in;

}
}

The above method performs binary joins in a sequential order. When there are adequate
computational resources, some complex queries can be broken down into a certain number of parts
that can be performed in parallel to speed up the whole join. Assuming in Figure 4 C./D a very low
filtering rate, performing it ahead is no help for pruning away non-candidate objects of the adjacent
joins, such as D./E and D./F. The query graph can thus be broken down into two parts, A./C./B and
E./D./F. Moreover, they are subject to the abovementioned steps. Because parallel processing is not
our concern in this paper, we do not experiment with the method shown in Figure 4.

4. Experiment Analysis

To verify the feasibility of our optimization methods, a mock-up WFS server program and a client
program were developed with Visual Studio 2008 C# and ArcGIS Engine9.3. The server program is
an ASP.Net web service which handles the query requests. And in the background, query processing
is performed by calling the programming interfaces provided by ArcGIS Engine9.3. On each server
computer, the server program is deployed to an IIS7.0 server. The client program is a Windows
application, which provides the following functionalities: (1) parse response documents, especially
the spatial objects represented in XML format, which are parsed and stored into ESRI shape files,
and (2) perform binary spatial joins and/or multi-way spatial joins by using our strategies, with the
support of ArcGIS Engine SDK. With these programs, experiments in three stages are performed.
The focus of the first stage is to testify the binary spatial join strategy introduced in Section 3.1, and that
of the second stage is to determine whether our method for processing MSJ is feasible or not. The last
stage aims at simulating how the proposed method behaves when the servers and the clients are
connected with different connection speeds.

4.1. Test of Binary Spatial Join

In this experiment, three computers were used to act as Server A, Server B and the client. Server A
and Server B were equipped with Intel(R) Xeon(CPU) W355@3.07 GHz, 4G RAM. The client was
equipped with Pentium(R) Dual-Core CPU T4400@2.2 GHz. All the computers used Win7 Sp1 as their
operating systems. Two datasets of 2015 TIGER/Line [30] provided by the United States Census Bureau,
called tl_2015_us_uac10 and tl_2015_us_place, were chosen as joined datasets. They were deployed
at Server A and Server B, respectively. Three processing strategies were implemented and deployed
on the client site: (1) to directly download and join all of the objects of the datasets in the query area,
which was used as the performance baseline, abbreviated as “DDJ” in the following; (2) to process the
binary spatial joins with regular grid partitioning, as described in Section 3.1; and (3) to process the
binary spatial joins with recursive partitioning.
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In our experiments, eight testing areas in the extents of the spatial datasets were selected as areas
to be tested, and for each area a certain number of spatial joins were performed with the above three
strategies using a randomly selected query window of 300 km × 300 km. In Section 3.1, it has been
stated that a threshold T is used to determine whether an area should be partitioned or not. Here,
a set of thresholds (T = 10, 20, 30, 40, 50, 60, 70, 80, 90) is used, as shown in Figure 5. For each query
window, a spatial join was performed with the three strategies using all thresholds; in other words, it is
performed 9 + 9 + 1 = 19 times. Figure 5 shows the execution time required when different thresholds
are used, and the object numbers of both datasets and the estimated FRs are also provided.ISPRS Int. J. Geo-Inf. 2017, 6, 123  10 of 17 
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Figure 5. Comparison of the two partitioning methods in terms of the performance.
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As shown in Figure 5, comparatively, recursive partitioning outperforms regular grid partitioning.
However, the effectiveness of the optimization methods is affected by many factors, such as the
geometric complexity of the spatial objects, their spatial distribution and the partitioning threshold T.
When the spatial objects are evenly distributed in two-dimensional space, the filter rate is relatively
low and there is not much difference in performance between the methods. Figure 5a illustrates this
case. While the spatial objects are not evenly distributed, and the filter rate is relatively high, such as
the join shown in Figure 5e, recursive partitioning strikingly outperforms regular grid partitioning.
The performance is also greatly affected by the partitioning threshold T. If T is too large, then the
partitioning method is not sensitive to the spatial skewness, and the performance could hardly be
improved. In contract, if T is too small, then unnecessary partitioning will incur too much overhead.
The best T for a certain join is determined by the abovementioned factors, and in fact it is impossible to
determine it for a certain join. According to our experience, it ranges from approximately 30 to 60.

To further validate our hypothesis, another 92 windows are used to conduct the abovementioned
experiment, except that only three partitioning thresholds (T = 30, 50, 100) are used here. Thus far,
the experimental result of 100 windows is collected. According to the number of objects involved in
a spatial join (denoted as NS), the 100 windows were classified into seven groups, listed as follows:
NS∈[1, 100], six windows; NS∈[101, 300], 21 windows; NS∈[301, 500], 25 windows; NS∈[501, 1000],
18 windows; NS∈[1001, 2000], 16 windows; NS∈[2001, 3000], eight windows; and NS∈[3001, 6000],
six windows. Let X be the ratio of the execution time of DDJ to that of the optimization method; then,
the effectiveness of the proposed method can be classified as follows: X ≥ 1.5, notable performance
improvement; 1.5 > X > 1.0, slight performance improvement; and X ≤ 1.0, futile. Tables 2 and 3 show
that the performance improved by using the two partitioning methods.

Table 2. Performance improvement by using regular grid partitioning.

T = 30 T = 50 T = 100 Average

X ≥ 1.5 45.0% 60.0% 42.0% 49.0%
1.5 > X > 1.0 32.0% 20.0% 35.0% 29.0%

X ≤ 1.0 23.0% 20.0% 23.0% 22.0%

Table 3. Performance improvement by using recursive partitioning.

T = 30 T = 50 T = 100 Average

X ≥ 1.5 53.0% 70.0% 51.0% 58.0%
1.5 > X >1.0 24.0% 8.0% 26.0% 19.3%

X ≤ 1.0 23.0% 22.0% 23.0% 22.7%

As shown in Tables 2 and 3, the optimization method is futile for approximately 20−23 windows.
Still we find that more windows are proven to achieve a notable improvement in performance when
T is set to 50. When T = 50 and recursive partitioning is used, all six joins of NS∈[1, 100] cannot
be improved, which accounts for 27.3% of the futile tests. When NS∈[1, 500], 13 joins cannot be
improved, which accounts for 59.1% of the futile tests. This finding arises because there is no room for
improvement in performance when there are only a few objects to be joined. When NS∈[101, 2000],
the notable improved joins account for 84.3% of all of the 70 joins that are notably improved; when
NS∈[2000, 6000], 11 of 14 joins are notably improved. It can be concluded that the optimization method
is more effective with the increasing number of spatial objects involved. Nevertheless, there could be
some reasons that recursive partitioning outperforms regular grid partitioning slightly based on this
experimental result: (1) The query areas chosen are square, while regular grid partitioning is expected
to work better when the query areas are rectangular; (2) A query area is partitioned into M × N ≈MN
sub-areas in the first stage of regular grid partitioning, and perhaps, M × N ≈MN/α should be used
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instead to avoid excessing partitioning, where α is a parameter that is set to a number larger than 1,
e.g., 1.5 or 2.

To sum up, the combination of spatial semi-join and area partitioning will incur some additional
overheads to search for suitable methods for the sub-areas. If there are adequate non-candidate
objects being pruned away, this type of method will improve the performance. Moreover, the proposed
strategy has been designed to avoid over-partitioning in order to prevent serious performance decrease.
Comparatively speaking, the DDJ method does not attempt to prune away non-candidate objects,
and it does not require the cost on the above procedures, but it is the best choice only for the spatial
joins that have most of the objects in the query areas present in the final results.

4.2. Test of Multi-Way Spatial Join

In the second stage, three methods are compared in terms of the time cost: (1) the optimization
method, denoted as M1; (2) the method that performing binary joins in the initial order, denoted as M2;
and (3) the DDJ method, denoted as M3 and used as a performance baseline. Our experiments of
multi-way spatial joins involve five datasets from Census 2015 TIGER/Line Shapefiles. Their spatial
extent ranges from a longitude of −124.5◦ to −67.9◦ and from a latitude of 23.9◦ to 49.1◦. Table 4 gives
a brief description of the spatial datasets.

With these datasets, three types of spatial joins, [primary roads] ./ [uac10] ./ [place], [primary
roads] ./ [uac10] ./ [place] ./ [rails], and [primary roads] ./ [uac10] ./ [place] ./ [rails] ./ [school],
are performed in our experiment. As spatial intersect is the most commonly used spatial predicate,
we chose it as the spatial predicate in our experiments. The spatial extent of all of the datasets is
uniformly partitioned into 8 × 18 grids, and those with a relatively intensive spatial distribution
of spatial objects were selected to perform our experiments. The size of the query window is
300 km × 300 km. For every multi-way spatial join, the number of spatial objects in its query area,
the number of tuples in its solution, and the execution times of the three methods are recorded. In our
experiments, 75 grids are used as our experimental areas, and the time costs of three types of spatial
joins are shown in Figure 6. In Figure 6a–c, the vertical axis represents the time cost, and the horizontal
axis shows the identity numbers of the 75 grids, which are sorted in ascending order according to
the number of objects of the joined datasets in the query area. Moreover, the time costs of the three
methods are compared in Table 5.

Table 4. The datasets used in our experiments.

Dataset Name Geometric Type Number of Objects Data Size (kb)

primary roads polyline 12,101 40,061
uac10 polygon 3976 108,422
place polygon 29,130 167,240
rails polyline 180,739 64,872

school polygon 6846 171,507

Table 5. Comparison of M1 and M2 with M3.

Types Number of Objects
Notably Improved Slightly Improved Futile

M1 M2 M1 M2 M1 M2

Three-way [54,1349] 7 3 54 47 14 25
Four-way [196,4131] 18 0 48 59 9 16
Five-way [234,4271] 20 1 50 69 5 5
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In the magnification window of Figure 6a, for 10 of 20 queries, the time cost of M1 is slightly higher
than that of M3, mainly for the reason that there are only a few spatial objects in the query windows,
ranging from approximately 100 to 200 in this case. Comparatively, for the queries shown in Figure 6b,c,
the number of the involved objects ranges from approximately 700 to 1400. Because searching for the
optimal execution plan incurs some additional costs caused by the pre-processing procedures, such as
computing the spatial distributions of the objects, when there are not enough objects to be filtered,
M3 will perform slightly better than M1. However, when the number of datasets increases, M1 is
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obviously superior to M3. The experimental results show that in most cases our optimization method
can reduce the non-candidate objects effectively, which will minimize the (CPU+I/O) time cost and
the transmission cost at the same time, to compensate for the time cost of interactions between the
servers and the client, thus enhancing the performance in processing multi-way spatial joins. Moreover,
from Figure 6 and Table 5, it is clear that M2 is superior to M3, but overall, M1 is the best method.
When the initial order is the optimal approach, M2 is obviously the best choice because it does not
have to search for the optimal order.

4.3. Test with Different Connection Speeds

The above experiments are conducted on a LAN with a transfer speed up to 100 Mbps.
However, in a WAN scenario, a client may be connected to the servers with different bandwidths
and latencies, so it is difficult to ensure such a high sustained data transfer rate. To examine the
performance of the proposed method in that scenario, we conducted an experiment under the
circumstances that the servers and the client are connected with different connection speeds, as shown
in Tables 6 and 7. The speeds were limited by changing the configuration of the router. In this
experiment, twelve 300 km × 300 km query areas are randomly selected to perform the four-way
spatial join introduced in Section 4.2, under the circumstances that the servers and the client are
connected with different connection speeds. The number of the involved objects in a query area
ranges from approximately 640 to 3800. Table 6 shows the time costs of the optimization method and
the DDJ method. Derived from Table 6, Table 7 shows the ratios of the time costs of M1 versus M2.
From Tables 6 and 7, the time costs of both M1 and M3 increase as the connection speed decreases.
Meanwhile M3 is relatively susceptible to the connection speed, and M1 outperforms M3 to a greater
or lesser degree. This experimental result implies that the optimization method is more practical when
the servers and the clients are connected with a low transfer speed.

Table 6. Time costs of M1 and M3 under the circumstances of different connection speeds.

Speed Unlimited 4 Mbps 2 Mbps 1 Mbps 0.5 Mbps

NO. M1 M3 M1 M3 M1 M3 M1 M3 M1 M3

1 13.02 14.86 13.39 15.56 13.37 17.42 14.23 20.84 19.72 31.37
1 17.12 22.12 19.86 28.52 24.39 36.89 32.37 48.74 45.98 71.24
2 22.45 31.32 29.07 44.08 45.58 65.19 72.03 102.02 94.74 138.92
3 24.66 30.75 32.64 43.75 48.15 61.74 61.64 78.82 85.14 118.32
4 42.97 53.59 50.06 67.02 63.53 87.08 90.84 138.07 158.08 239.42
5 33.05 49.61 41.49 62.52 54.23 83.92 78.48 124.71 117.97 188.49
6 30.65 38.12 45.76 58.62 65.62 85.57 90.27 128.3 147.02 210.15
7 31.06 43.93 45.6 62.98 57.74 80.67 74.86 107.37 104.72 150.37
8 20.16 27.11 23.54 33.25 30.38 45.06 42.56 61.68 60.92 93.35
9 12.19 12.48 12.97 13.8 15.17 15.88 17.51 18.4 20.22 22.4
10 16.87 18.67 16.68 21.22 19.6 25.91 23.05 31.49 30.36 41.05
11 26.19 35.49 40.44 56.27 50.74 78.84 82.53 117.6 118.63 170.3

Table 7. The ratios of the time costs of M1 versus M3 when connected with different connection speeds.

No. Unlimited 4 Mbps 2 Mbps 1 Mbps 0.5 Mbps

1 1.14 1.16 1.30 1.46 1.59
2 1.29 1.44 1.51 1.51 1.55
3 1.40 1.52 1.43 1.42 1.47
4 1.25 1.34 1.28 1.28 1.39
5 1.25 1.34 1.37 1.52 1.51
6 1.50 1.51 1.55 1.59 1.60
7 1.24 1.28 1.30 1.42 1.43
8 1.41 1.38 1.40 1.43 1.44
9 1.34 1.41 1.48 1.45 1.53
10 1.02 1.06 1.05 1.05 1.11
11 1.11 1.27 1.32 1.37 1.35
12 1.36 1.39 1.55 1.42 1.44
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5. Discussion

Processing a multi-way spatial join is very complicated. In distributed spatial database
management systems (DBMSs), although the performance of this type of join can be improved by
some faster algorithms and optimization techniques, there are still very few existing studies that
address multi-way spatial join (MSJ) of Web Feature Services (WFSs). The optimization of MSJ of WFSs
introduced in this paper involves two issues: (1) to search for methods of pruning away non-candidate
objects for binary spatial joins and (2) to search for an optimal or sub-optimal order of binary joins
decomposed from a complicated join. Our approaches for processing binary spatial join are developed
by combining spatial semi-join and partitioning-based methods. Additionally, the filtering rate is
utilized to search for the execution order of the binary spatial joins that are decomposed from a
complex query.

The estimated filtering rate means the potential to improve the performance by using spatial
semi-join. In practice, some types of geographical phenomena are strongly related in spatial
distributions, e.g., there are always some grocery stores near an elementary school in some countries.
Because the probability that a grocery store is located near an elementary school is high, a query
“find all the elementary schools within 50 m of a grocery store” has very little potential to prune away
non-candidate objects by spatial semi-join. In other words, the spatial semi-join is largely ineffective for
those strongly related datasets. However, in many cases, spatial objects are not uniformly distributed
and spatially strongly related; therefore, adequate filtering rates are expected to be achieved and
the spatial semi-join can be used as an effective method to prune away non-candidate objects for
MSJ of WFSs. The accuracy of estimating the filtering rate is heavily affected by the complexity
of the geometric representation of spatial objects. Our method for estimating the filtering rate is
deduced from the selectivity estimation of the spatial joins. Most of the current methods on selectivity
estimation determine the selectivity based on the probability of a spatial intersection of the maximum
boundary rectangles of the spatial objects. Errors are impossible to avoid in estimating the filtering
rate, and sometimes, the estimating errors are unacceptable. Statistically, these methods do work well
for polygon objects but sometimes not for polyline objects.

Another factor that affects the performance is the selection of the partitioning methods.
For datasets with a uniform spatial distribution, there is very little difference between the two
partitioning methods in terms of the performance. For those datasets that have a skewed spatial
distribution, a query area is divided into fewer sub-areas by recursive partitioning than regular grid
partitioning, and thus, in this case, less interaction between the client and the servers is required to
find the spatial distributions of the joined datasets by using recursive partitioning. The partitioning
threshold T is also an important performance factor; in this paper, it is recommended to be set at
approximately 50. The number of spatial objects in the two joined datasets is also a factor in the
potential for performance improvement. When there is only a small number of objects, partitioning
does not occur in the query processing, and it does not help to improve performance. The combination
of a partitioning method and spatial semi-join is more effective when more spatial objects in two
datasets are joined.

In this paper we have developed a method for determining the order of binary spatial joins
decomposed from a complex query. This method attempts to perform the binary joins with
high filtering rates in the beginning, to reduce the inputs of the subsequent binary joins. Because
generating the best execution plans could incur too expensive an overhead, our method aims to
determine sub-optimal plans. When compared with the simple methods (M2 and M3 in Section 4.2),
the disadvantages of the proposed method can be concluded as follows. First, more requests are
required to determine the distribution of objects, which may bring up some additional pressures on the
servers. Second, in some cases, such as when the true filtering rates are too low, or the original order is
actually the best order, it is fruitless to search for an optimal execution plan. Third, as transmission cost
is not dominant in a high speed network, this method is less effective in this situation. Fourth, the client
program needs to be elaborately designed. However, with the filtering effect of the spatial predicates,



ISPRS Int. J. Geo-Inf. 2017, 6, 123 16 of 17

when more datasets are involved in an MSJ, there is more potential to improve the performance by
pruning away non-candidate objects. As in most cases, less objects need to be encoded into GML format
at the server side and decoded at the client side; computational overheads are subsequently reduced on
both sides, and the response time of the client will be shortened. In summary, our experimental result
shows that the optimization method outperforms the other two methods in processing multi-way
spatial joins.
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