
 International Journal of

Geo-Information

Article

Upscaling of Surface Soil Moisture Using a Deep
Learning Model with VIIRS RDR

Dongying Zhang †, Wen Zhang †, Wei Huang, Zhiming Hong and Lingkui Meng *

School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China;
zhangdongying@whu.edu.cn (D.Z.); wen_zhang@whu.edu.cn (W.Z.); huangwei2913@gmail.com (W.H.);
simonhong@whu.edu.cn (Z.H.)
* Correspondence: lkmeng@whu.edu.cn; Tel.: +86-159-2706-6565
† These authors contributed equally to the work.

Academic Editor: Wolfgang Kainz
Received: 7 March 2017; Accepted: 25 April 2017; Published: 27 April 2017

Abstract: In current upscaling of in situ surface soil moisture practices, commonly used novel
statistical or machine learning-based regression models combined with remote sensing data show
some advantages in accurately capturing the satellite footprint scale of specific local or regional
surface soil moisture. However, the performance of most models is largely determined by the size
of the training data and the limited generalization ability to accomplish correlation extraction in
regression models, which are unsuitable for larger scale practices. In this paper, a deep learning
model was proposed to estimate soil moisture on a national scale. The deep learning model has
the advantage of representing nonlinearities and modeling complex relationships from large-scale
data. To illustrate the deep learning model for soil moisture estimation, the croplands of China
were selected as the study area, and four years of Visible Infrared Imaging Radiometer Suite (VIIRS)
raw data records (RDR) were used as input parameters, then the models were trained and soil
moisture estimates were obtained. Results demonstrate that the estimated models captured the
complex relationship between the remote sensing variables and in situ surface soil moisture with an
adjusted coefficient of determination of R2 = 0.9875 and a root mean square error (RMSE) of 0.0084
in China. These results were more accurate than the Soil Moisture Active Passive (SMAP) active
radar soil moisture products and the Global Land data assimilation system (GLDAS) 0–10 cm depth
soil moisture data. Our study suggests that deep learning model have potential for operational
applications of upscaling in situ surface soil moisture data at the national scale.

Keywords: VIIRS; deep learning; surface soil moisture

1. Introduction

Soil moisture is a crucial variable in controlling the hydrologic cycle between the land surface
and the atmosphere through vegetation evaporation and transpiration [1–4]. Accurate soil moisture
estimation at a site is of great importance in modeling the surface hydrologic circle and climate change.
Direct observations of ground measurements provide surface soil moisture with high accuracy and
scalable frequency at the points measured. However, the most obvious limitations of the ground
soil moisture measurements are their spatial discontinuity at specific locations [5], and, therefore,
point-based or ground station measurements do not represent the spatial distribution since soil
moisture varies spatiotemporally [6]. For the requirement of soil moisture estimation at a large
scale (i.e., national scale), satellite remote sensing (RS) measurements are the preferred operational
option. RS has shown great promise in providing improved spatial and temporal coverage of soil
moisture measurements [7]. The main difficulties lie in how to accurately estimate the surface soil
moisture. An effective method to enhance the accuracy of soil moisture estimates is to upscale in

ISPRS Int. J. Geo-Inf. 2017, 6, 130; doi:10.3390/ijgi6050130 www.mdpi.com/journal/ijgi

http://www.mdpi.com/journal/ijgi
http://www.mdpi.com
http://www.mdpi.com/journal/ijgi


ISPRS Int. J. Geo-Inf. 2017, 6, 130 2 of 20

situ soil moisture measurements using RS measurements via statistical regression models. However,
conventional statistical regression models have difficulties in extracting complex correlations between
large-scale RS data and in situ soil moisture.

There are three types of upscaling methods. One type is land surface model based upscaling
approach, which merges in situ soil moisture measurements with predictions of a land surface model.
Cai et al. [8] used a hyper-resolution land surface model (HydroBlocks) to upscale in situ soil moisture
measurements for the SMAP Validation Experiment 2015. Such models can accurately upscale in situ
soil moisture measurements at the field-scale, depending on plenty of parameterizing ground data [9].
Therefore, the model-based method might not be suitable for large-scale applications of soil moisture
upscaling with few ground-based parameters.

The second type uses traditional statistical regression methods to upscale in situ measurements
with optical/IR RS indices or active/passive RS land surface parameters. Using polynomial regression
statistics based on Universal Triangle methods Wang et al. [10,11] upscaled in situ soil moisture
measurements using MODIS-based land surface temperature (LST) and normalized difference
vegetation index (NDVI) data to map daily soil moisture products at 1 km resolution. By implementing
a geostatistical algorithm, such as block kriging, researchers can compute the spatial semivariogram of
surface soil moisture measurements at different stations in a local area and compute the surface soil
moisture across the whole area [12,13]. Qin et al. [9,14] found that a Bayesian linear regression-based
model performs better than the ordinary least square linear regression-based or the block kriging-based
models when upscaling in situ soil moisture data with MODIS-based apparent thermal inertia (ATI)
data. Based on the strategy of temporal stability and the high frequency of in situ soil moisture
observations [15], stations with temporally continuous measurements have been selected to build a
linear regression model based on in situ soil moisture data. However, the complexity and nonlinearity
of the relationships makes it impossible to obtain large-scale estimates using traditional statistical
regression methods.

The third type of approach involves using machine learning methods, such as support vector
regression (SVR), and artificial neural networks (ANN). These methods can usually achieve more
accurate soil moisture estimates than traditional statistical regression method because they can better
model nonlinear relationships without special mathematic equations or assumptions about the data
distribution based on larger-scale soil samples. Sajjad et al. [16] have found that an SVR-based model
performed better than an ANN-based model when upscaling in situ soil moisture at 12 km resolution
with resampled TRMM backscatter and resampled AVHRR NDVI data. However, constructing a stable
regression relationship between these RS variables and in situ data remains challenging because it is
difficult to extract the complicated nonlinearities from large training datasets. Recently, deep learning
networks have been introduced to learn useful representations from large unlabeled datasets and has
been applied for classification and regression in many fields [17,18]. When applied to a well-known
benchmark, i.e., the recognition of handwritten digits in the Mixed National Institute of Standards and
Technology database, the best reported error rates are 1.6% for shallow neural network using randomly
initialized backpropagation and 1.4% for support vector machines (SVMs) [17]. Multicolumn deep
convolutional neural networks (CNN) were the first to achieve a near-human performance, with the
best reported error rate of 0.23% [19]. RS applications, such as land cover classification [20], feature
selection [21], and climatology prediction [22], use deep learning networks, but the use of these
methods in soil moisture estimation at the national scale using RS data remains untested. The purpose
of the present study is to investigate the possibility of using a deep neural network for upscaling of
soil moisture with large-scale datasets sampled from in situ soil moisture and RS measurements.

In this paper, we propose a deep learning method based on a deep feedforward neural network
(DFNN) to upscale in situ surface soil moisture data for cropland in China using VIIRS raw data
records (RDR). VIIRS RDR refers to the raw data from the satellite (Suomi National Polar-Orbiting
Partnership spacecraft launched on 28 October 2011) transmitted to the earth, which can be calibrated
to radiance radiance/reflectance and brightness temperatures with geolocation, namely VIIRS sensor
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data records (SDR) [23]. We can obtain real-time daily VIIRS RDR received by the meteorological
satellite direct broadcasting service system in the Ministry of Water Resources of China since 2012.
In addition, the Ministry of Water Resources of China has the unique advantage of 1997 soil moisture
ground stations and 10-day observations. Based on abundant satellite remote sensing and ground
measurements and the compelling advantages of the deep learning techniques, we upscaled soil
moisture ground measurements using VIIRS RDR to achieve a national surface soil moisture product
at 750 m resolution.

The remainder of this paper is organized into the following four sections. Section 2 describes the
data and the study area. Then, we describe the deep learning models with the input parameters and
building procedure in Section 3. Section 4 discusses the calibrated models and the adjustments in the
model training parameters and assesses the results of the model validation and the residual charts,
which are used to discuss the model variance. The paper concludes with a summary of our findings in
Section 5.

2. Study Area and Data

2.1. Study Area

The focus of our study was China’s cropland, and these were delineated from GlobeLand30 [24,25]
land use land cover (LULC) map produced in 2010. The data refers to 10 land cover types, namely
cultivated land, forest, grassland, and others. We use cultivated land of GlobeLand30 as croplands masked
from 2012 to 2015. The dataset can be found at the following link: http://www.globallandcover.com
(last access date: 2 October 2016). The cropland mask was extracted by identifying cultivated land as one
class and all nine other land cover types as a single non-cropland class. In Figure 1, the green regions
denote cropland, and the white regions represent non-cropland areas.
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2.2. Data

In addition to the GlobeLand30 2010 dataset, VIIRS SDR, in situ soil moisture measurements,
precipitation ground observations, SMAP and GLDAS data were used in this study as follows.

(1) VIIRS RDR

VIIRS RDR has five imagery bands, sixteen moderate resolution bands and one day–night band,
and, in this study, twelve moderate resolution bands were selected (See Table 1), where M1, M2, M3,
M4, M5, M6, M7, M8, M10 and M11 were used to calculate the top of atmosphere (TOA) reflectance,
and M12, M15 and M16 were used to calculate the TOA brightness temperature. These data were
collected on the 1st, 11th, and 21st day of each month from May to October during each year from
2012 to 2015. M9, M13 and M14 were not chosen for this study because most of the band radiances
would be absorbed by water vapor according to the atmospheric transmission profile [26].

Table 1. Specification of sixteen moderate resolution bands of Visible Infrared Imaging Radiometer
Suite (VIIRS) raw data records (RDR) [27].

Band Number (VIIRS) Central Wavelength (nm) Wavelength Range (nm)
Signal to Noise Ratio (SNR) or Noise
Equivalent Differential Temperature

(NEdT) (18 March 2013)

M1 412 402–422 1.72
M2 445 436–454 1.56
M3 488 478–498 1.54
M4 555 545–565 1.50
M5 672 662–682 1.30
M6 746 739–754 1.69
M7 865 846–885 1.80
M8 1240 1230–1250 2.60
M9 1378 1371–1386 2.47
M10 1610 1580–1640 1.60
M11 2250 2230–2280 2.14
M12 3700 3610–3790 0.30
M13 4050 3970–4130 0.37
M14 8550 8400–8700 0.66
M15 10763 10,260–11,260 0.43
M16 12013 11,540–12,490 0.42

(2) In situ soil moisture measurements

The croplands of China contain 1875 distributed ground stations for soil moisture observations
(see the red points in Figure 1). The Chinese Ministry of Water Resources collects soil samples from
all of the ground stations every 10 days to measure the soil moisture content in the top 10-cm soil
layer by the gravimetric method [28]. In Figure 1, the red points represent the locations of the soil
moisture sampling stations. The stations are sparse in western China and dense in the other regions.
At these stations, soil samples were collected, and the soil moisture content of the upper 10-cm soil
layer was measured gravimetrically [28]. We present the gravimetric soil moisture in percent in this
article. These in situ soil moisture measurements were performed at 08:00 a.m. Beijing Time on the 1st,
11th, and 21st day of each month from May to October during each year from 2012 to 2015.

(3) Precipitation data

China Merged Precipitation Analysis (CMPA) with hourly, 0.1◦ × 0.1◦ resolution data [29]
were collected to filter invalid soil moisture observations measured at the same date and time
(06:00 a.m.–02:00 p.m.) as the in situ soil ground measurements.

(4) SMAP and GLDAS data

We compare the upscaling estimates over China cropland with the Soil Moisture Active Passive
(SMAP) [30] active radar and Global Land data assimilation system (GLDAS) [31] soil moisture
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products to demonstrate the advantages of our model. SMAP is an orbiting observatory that measures
the amount of water in the top 5 cm (2 inches) of soil everywhere on Earth’s surface, which is designed
to measure soil moisture every 2–3 days over a three-year period. SMAP’s radar started transmitting
data on January 2015, and it stopped on 7 July 2015 when its radar sensor broke. Therefore, only
three months (May to July 2015) of SMAP radar daily soil moisture level 3 product (∼3 km resolution)
corresponding to in situ soil moisture were obtained [30].

GLDAS produces global vertical layers (0–100 cm) of daily gravimetrical soil moisture (kg/cm2)
every three hours at 25 km resolution [31]. Because the GLDAS soil moisture at 00:00 UTC matches the
time of ground measurement, we use the upper layer (0–10 cm) of the GLDAS soil moisture at 00:00
every day at the same time range as SMAP for the research area. Readers can find these datasets by
using the following link: https://search.earthdata.nasa.gov (last access date: 2 October 2016).

3. Methodology

3.1. Input Parameters of Soil Moisture Estimation Models

Short Wave Infrared (SWIR) reflectance of soil was proven to be sensitive to the surface soil
moisture. Lobell and Anser [32] describe the relationship between the soil moisture and soil reflectance
using the in situ soil moisture. For a given value of soil porosity, all of the bands of soil reflectance
have a strong absorbing effect on soil moisture, especially in SWIR regions where the wavelength of
soil reflectance band is approximately 1300 nm, 1900 nm and 2200 nm.

Corresponding to these regions, M7, M8, M10 and M11 are the four VIIRS solar reflectance bands
(SRB). Those bands are defined as input parameters of MODEL I. Because visible/near infrared bands
between 350 nm and 1000 nm are also correlated with surface soil moisture, they can also absorb
surface soil moisture. M1, M2, M3, M4, M5, M6, M7, M8, M10 and M11 are used as input parameters
of MODEL II. In addition, land surface temperature (LST) also has a linear relationship with surface
soil moisture [33], which is the function of Thermal Emissive Bands (TEB). Therefore, M12, M15 and
M16 are employed as input parameters of MODEL III.

MODEL I: Y = f (RM7, RM8, RM10, RM11)

MODEL II: Y = f (RM1, RM2, RM3, RM4, RM5, RM6, RM7, RM8, RM10, RM11)

MODEL III: Y = f (RM1, RM2, RM3, RM4, RM5, RM6, RM7, RM8, RM10, RM11, TM12, TM15, TM16)

The model input calculation procedure includes the following steps (1)–(6), as shown in Figure 2.

(1) Convert VIIRS RDR to VIIRS SDR

Thirteen bands of VIIRS RDR are used in this study, including the raw data of ten SRB (M1, M2,
M3, M4, M5, M6, M7, M8, M10, and M11) and three TEB (M12, M15 and M16). To convert RDR to
the radiance of SRB and TEB, we used Community Satellite Processing Package (CSPP), SDR Version
2.2 Patch. Readers can find the package by using the following link: http://cimss.ssec.wisc.edu/
cspp/npp_sdr_v2.2.3.shtml (last access date: 2 July 2016). This approach calculates the geolocation
information and converts the data from raw counts to radiance.

(2) Convert SRB radiance and TEB radiance to TOA reflectance and brightness temperature, respectively.

To remove the Bow-tie effect at the edge of the single scene of VIIRS SDR, we performed geometric
correction to derive the correct radiance using the geolocation file. In addition, the TOA reflectance
was calculated by Equation (1), where L represents SRB radiance and EarthSun_dist denotes the
distance between the earth and sun, which can be calculated using the current date. Band mean solar
irradiance (BMSI) and solar zenith angle (SZA) are SRB constants which can be adapted from the
header file of VIIRS SDR. The brightness temperature was calculated by Equation (2), where k denotes
the Boltzmann constant, which is equal to 1.3846 × 10−23 J/K; h refers to Planck’s constant, which is

https://search.earthdata.nasa.gov
http://cimss.ssec.wisc.edu/cspp/npp_sdr_v2.2.3.shtml
http://cimss.ssec.wisc.edu/cspp/npp_sdr_v2.2.3.shtml
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equal to 6.6262 × 10−34 J·s; c represents the speed of light, which is equal to 3 × 108 m/s; λ refers to
wavelength of a certain VIIRS TEB; and L denotes to the pixel value of VIIRS TEB radiance.

R =
L·π·EarthSun_dist2

BMSI· cos(SZA· π
180 )

(1)

T =
hc

λk ln
(

1 + 2hc2

Lλ5

) (2)

(3) Cloud removal of single scenes of VIIRS image

To remove cloud, we employed the Fmask method [34] using both VIIRS TOA reflectance and
brightness temperature since Fmask version 3.3 is proven to be an effective package for detecting
cloud pixels in Landsat series, VIIRS SDR product and Sentinel 2 level 1 product efficiently and
accurately [35].

(4) Daily mosaic of single scenes of TOA reflectance or brightness temperature

We mosaicked single scenes of TOA reflectance or brightness temperature with non-cloud pixels
over the whole area of China. During the process, the pixel values of the overlapping regions were
averaged for each pixel.

(5) Removal of non-cropland pixels

Since soil moisture is meaningful for sites at croplands in the research area, we removed
non-cropland pixels such as water and urban areas. We used GlobeLand30 to exclude pixels with nine
different land cover types differing from cropland.

(6) Data grouping for model calibration and validation

First, soil moisture measurements at 1875 ground stations were confined to the valid range of
0 to 100 and invalid measurements were screened out. Then, a total of 68,342 items of soil moisture
measurements were kept by a no precipitation filter, ensuring the measuring time period of selected
soil moisture measurements had no precipitation. In situ soil moisture measurements were linked
with the calculated TOA reflectance or brightness temperature at the same location and time, which
ensures that the three measurements were kept only if all of the data are valid. A total of 9789 pairs
of samples were obtained by overlapping in situ soil measurements and TOA reflectance of VIIRS
SWIR bands (M7, M8, M10, and M11); a total of 8096 pairs of samples were obtained by overlapping
in situ soil measurements and TOA reflectance of VIIRS SWIR and Visible bands (M1, M2, M3, M4,
M5, M6, M7, M8, M10, and M11); and a total of 6428 pairs of samples were obtained by overlapping
in situ soil measurements and TOA reflectance of VIIRS SWIR and Visible bands (M1, M2, M3, M4,
M5, M6, M7, M8, M10, M11, M12, M15, and M16). Finally, the valid soil samples were randomly split
into model calibration (one-tenth of the samples) and validation datasets (nine-tenths of the samples).
The datasets of each year (2012–2015) were split in the same way. The model calibration datasets were
used as the input parameters of the deep learning model, while the model validation datasets were
used to validate the calibrated models. The soil moisture estimation samples taken for training were
independent of those taken for validation.
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3.2. Model Building Using Deep Learning

Deep feedforward neural network (DFNN) was used because it is an established supervised tool
that can produce a regression task to extract deep features among a large number of variables and
enable high predictive accuracy. The H2O implementation of deep learning was used in this study,
which is based on a DFNN that is trained with gradient descent using error back propagation. Readers
can find the H2O R package 3.0 edition by using the following link: https://github.com/h2oai/h2o-3
(last access date: 22 December 2016).

We built deep learning-based models including one input layer with two types of explanatory
variables (VIIRS TOA reflectance and brightness temperature), one response variable (in situ soil
moisture), one output layer (estimated soil moisture), and multiple hidden layers. The procedure of
model building, as shown in Figure 3, includes the following steps.

https://github.com/h2oai/h2o-3
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(1) Tuning the model’s training parameters

The H2O deep learning model has more than 70 parameters [36]. To reduce the complexity
of the H2O deep learning model, we adopted the recommended default values for the majority of
model parameters, such as L1 = 0.2, L2 = 0.2, momentum_start = 0.5, input_dropout_ratio = 0.2,
hidden_dropout_ratios = 0.5, and others, where L1, L2 and dropout are effective regularization
techniques to prevent model overfitting. In addition, the default rectifier linear was used as the
activation function. The H2O deep learning model enables the following constraining parameters:
(1) the number of hidden layers; (2) the number of hidden units in each hidden layer, i.e., neurons;
and (3) the number of iterations over the training samples, i.e., epochs. To address the optimal values,
a grid search algorithm [37,38] was employed. For each model, the number of hidden layers started at 3
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and ended at 11, neurons started at 100 and ended at 500, and epochs started at 1000 and ended at 3500.
Then, after each iteration, the number of hidden layers, neurons and epochs would be increased by
1100 and 100, respectively. When the minimum MSE value and maximum R2 are obtained, the optimal
parameters are determined.

(2) Model calibration using DFNN

By tuning hidden layers, neurons and epochs, three groups of models can be calibrated when the
highest R2 and lowest MSE value occurs. The output of the calibration includes the calibrated models
(model category, weights, biases, statues of neuron layers, etc.), the estimated soil moisture, and the
optimized training parameters (hidden layers, neurons and epochs).

(3) Model validation using in situ soil moisture

The number of validating samples was approximately one tenth of total samples. All samples
were independent of the training samples. To measure model variance and to further explore model
performance, we performed residual analysis on estimated soil moisture and in situ soil moisture
using residual scatter plots, residual frequency histograms, and residual cumulative percent plots.
The residual scatter plots were employed to identify probable outliers under a conditional probability
of 99.7%. Based on this confidence level, Jarque–Bera tests [39] were performed on the residual data to
evaluate the normality of the models. Accompanied by residual frequency histograms and residual
cumulative percent plots, the Jarque–Bera test uses the hypothesis that the data are normally distributed
at the significance level of 0.3%. When the probability is lower than 0.003, the null hypothesis can
be rejected and the data are normally distributed, and vice versa. Additionally, the Jarque–Bera test
results can be used to determine whether the residual data have the skewness and kurtosis patterns
that match those of a normal distribution.

4. Results and Discussion

4.1. Model Calibration Using DFNN

By tuning the number of hidden layers, neurons and epochs, we obtained R2 and MSE for the
three models, as shown in Tables 2–4, respectively. For Model I, we first used 10 hidden layers and
500 neurons. When the number of epochs was less than 1000, low R2 value occurred; when the
number of epochs was increased to 2000, the results had a significant agreement, with R2 = 0.9746
and MSE = 0.0003. This finding demonstrates that a large number of epochs enables complex model
learning pattern recognition and better prediction results in this situation. For nine hidden layers
and 500 neurons, when the number of epochs was not equal to 1000, the results showed extreme
instability and a poor correlation. When the number of epochs was equal to 3500, the results showed a
significant agreement, with R2 = 0.9786 and MSE = 0.0003. Hence, even relatively shallow layers led to
good estimations. For Model II, we first used 10 hidden layers and 500 neurons. When the number
of epochs was less than or equal to 1000, low R2 value occurred; when the number of epochs was
increased to 1300, the results had a significant goodness of fit, with R2 = 0.9169 and MSE = 0.0005.
For nine hidden layers and 400 neurons, when the number of epochs varied from 1000 to 1300, the
results showed relatively poor correlation. For eight hidden layers, the results showed that a shallower
layer DFNN can achieve better agreement of minimum MSE = 0.00009 and maximum R2 = 0.9851,
compared to relatively deeper layers in this situation. For Model III, when we used nine hidden layers
and 400 neurons, the coefficients of determination of the model were relatively stronger than those
when 10 hidden layers and 500 neurons were used. When the number of epochs was equal to 1300,
the results showed a strong correlation, with R2 = 0.9215 and MSE = 0.0005. For 8 hidden layers
and 500 neurons, the result reached the highest goodness of fit, with minimum MSE = 0.00009 and
maximum R2 = 0.9851 when the number of epochs was equal to 3500.
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Table 2. Parameters and Results of Model I.

Hidden Layers Neurons Epochs Samples Time (s) R2 MSE

11 500 1000 8789 2922 0.3564 0.0107
11 300 1000 8789 4828 0.7543 0.0066
10 500 2000 8789 4995 0.9746 0.0003
10 500 1500 8789 7956 0.9301 0.0007
10 500 1000 8789 6771 0.8601 0.0008
9 500 3500 8789 3318 0.9786 0.0002
9 500 1500 8789 2895 0.8565 0.0008
9 300 1000 8789 2321 0.7115 0.0015
8 500 3500 8789 1250 0.3141 0.0453

Table 3. Parameters and Results of Model II.

Hidden Layers Neurons Epochs Samples Time (s) R2 MSE

10 500 1300 7396 3645 0.9169 0.0005
10 500 1200 7396 2874 0.8778 0.0008
10 500 1000 7396 2571 0.7334 0.0011
9 400 1300 7396 3016 0.6142 0.0065
9 400 1200 7396 2268 0.8303 0.0011
9 400 1000 7396 1728 0.7492 0.0016
8 500 3600 7396 3350 0.5141 0.0153
8 500 3500 7396 3032 0.9851 0.00009
8 500 3000 7396 2921 0.7115 0.0015

Table 4. Parameters and Results of Model III.

Hidden Layers Neurons Epochs Samples Time (s) R2 MSE

10 500 1200 5928 2426 0.6232 0.0019
10 500 1100 5928 2295 0.8365 0.0008
10 500 1000 5928 1828 0.6764 0.0026
9 400 1500 5928 1421 0.8115 0.0006
9 400 1300 5928 1287 0.9215 0.0005
9 400 1000 5928 977 0.8601 0.0008
8 500 3600 5928 3392 0.7142 0.0051
8 500 3500 5928 3250 0.9875 0.00007
8 500 3000 5928 2921 0.8036 0.0007

4.2. Model Validation Using In Situ soil Moisture

The optimal versions of Model I (highlighted in Table 2) were validated using 1000 pairs of
validation samples. As shown in Figure 4, the adjusted coefficients of determination were greater than
0.95, demonstrating that Model I was able to capture more than 95% of variability in measured soil
moisture data. The model using 10 hidden layers was more stable compared to that using nine hidden
layers for RMSE was reduced from 0.0282 to 0.0131. The optimal versions of Model II (highlighted in
Table 3) were validated using 700 pairs of validation samples. The validation results were R2 > 0.89
and RMSE < 0.03. While the adjusted coefficients of determination of the model validation results were
lower than those of the model calibration results, one possible reason is that the relatively small sample
size may have resulted in more instability for DFNN in the model calibration process. The optimal
versions of Model III (highlighted in Table 4) were validated using 500 pairs of samples. Similar to
Models I and II, the results demonstrated Model III could explain most of variability in measured
soil moisture.
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The models using eight hidden layers generated better results than those using more hidden layers.
By comparing the three groups of models, we observed that deep neural hidden layers are not suitable
for relatively small-scale datasets containing 5900 to 7300 samples. At the same time, the iterative
operations in the model training of Model II and III were more computationally intensive than that of
Model I. This is mainly because Models II and III have higher dimensions of input parameters than
Model I. In addition, using Model III is better if the size of the training data are relatively small due to
the multi-sensor remote sensing data. In contrast, we suggest using Model I to estimate soil moisture
when the size of soil samples is relatively large with only visible remote sensing data.
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4.3. Residual Analysis

Figure 5 shows the residual scatter plots of the models, the x-axis represents the in situ soil
moisture value of samples and y-axis represents the residual value between model estimated and in
situ measured soil moisture. The red points were probable outliers that were identified using confidence
intervals with a conditional probability of 99.7%. Based on this confidence level, the Jarque–Bera test
was performed on the residual data to evaluate the normality of the models.
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As shown in Figure 6, statistical significance of each model is less than 0.003, and the skewness is
close to 0. This result demonstrates that the residual data of all models obeyed normal distribution.
Specifically, for the optimal versions of Model I, the kurtosis of the model using 10 hidden layers is
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larger than that of the model using nine hidden layers, while the skewness of two models is opposite.
The results indicated that the models with more hidden layers have greater statistical significance and
more stable performance compared to those with less hidden layers for Model I. This conclusion was
further confirmed by the probable outliers shown in Figure 5, and the number of probable outliers
of the model using 10 hidden layers was greater than that of the model using nine hidden layers.
The same conclusion can be drawn for the optimal versions of Model III. Conversely, for the optimal
versions of Model II, the kurtosis of the model using eight hidden layers is larger than that of the
model using 10 hidden layers, while the skewness of the two models is opposite to the kurtosis. One
possible reason is that the large number of epochs (3500) could have resulted in overlearning problems
and instability in the network’s generalization capability [40].
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4.4. Comparison with SMAP and GLDAS Soil Moisture Product

To further investigate the performance of the H2O model estimates, we employed the soil moisture
product of SMAP and GLDAS to compare with the upscaling results estimated by MODEL III (8 hidden
layers). Based on the dates of the in situ soil moisture measurements, we selected the three types of
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soil moisture estimates on six individual days (11 May 2015, 21 May 2015, 1 June 2015, 11 June 2015,
21 June 2015 and 1 July 2015). The 2–3-day revisit period causes large data gaps in the SMAP daily soil
moisture product. Therefore, we mosaicked three SMAP soil moisture images for each revisit period to
represent the six days. In detail, images on 10–12 May were mosaicked to represent 11 May; 19–21 May
were mosaicked to represent 21 May; 30 and 31 May and 1 June were mosaicked to represent 1 June
2015; 10–12 June were mosaicked to represent 11 June; 19–21 June were mosaicked to represent 21 June;
and 29 and 30 June and 1 July were mosaicked to represent 1 July. We obtained 594, 629, 552, 605, 584,
and 553 pairs of soil samples, respectively, for the six single days, and each pair includes the H2O
model-based soil moisture estimate, SMAP radar-based soil moisture estimate, GLDAS soil moisture
estimate and in situ soil moisture for the same day and location. Then, we used R2, RMSE and p-value
to validate three types of soil moisture estimates against in situ soil moisture measurements, as shown
in Figure 7 and Table 5.
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moisture measurements on 11 May, 21 May and 1 June 2015. (b) Comparison of the performance of
three types of soil moisture estimates and in situ soil moisture measurements on 11 June, 21 June and
1 July 2015.

In Figure 7, where the panels on the left show the 1:1 scatter plots of three types of soil
moisture estimates compared to in situ soil moisture measurements. The panels on the right are the
corresponding distribution histograms of the soil samples on the six days. The H2O models performed
better for soil moisture estimation than SMAP radar product and GLDAS product. The distribution
pattern of their soil samples displayed the same trend. At the same time, the majority of the SMAP soil
moisture values have a range of 0.15–0.25, indicating a systematic over-estimation problem compared
to the in situ soil moisture measurements. One possible reason is that the measurement unit of the
SMAP soil moisture is cm3/cm3 (water volume divided by water and soil volume), which differs from
that of in situ soil moisture, i.e., g/g (water weight divided by water and soil weight). Theoretically,
the volume water percentage is equal to the result of the gravimetric soil moisture multiplied by
the density of water and soil. Strictly speaking, the density of the water and soil is greater than 1;
as a result, the majority of the SMAP soil moisture results are greater than the in situ soil moisture
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measurements. For GLDAS, the points plot closer to the 1:1 line than those of the SMAP but farther
than those of H2O, in accordance with the correlation results shown in Table 5.

Table 5. Comparison of the performance of three types of soil moisture estimates.

Samples R2 p-Value RMSE (%)

11 May 2015

H2O 594 0.8798 <0.05 0.0213
GLDAS 594 0.1638 <0.05 0.0975
SMAP 594 0.0609 <0.05 0.1174

21 May 2015

H2O 629 0.8671 <0.05 0.0211
GLDAS 629 0.2950 <0.05 0.0840
SMAP 629 0.0491 <0.05 0.0940

1 June 2015

H2O 552 0.8578 <0.05 0.0228
GLDAS 552 0.2524 <0.05 0.0595
SMAP 552 0.0370 <0.05 0.0959

11 June 2015

H2O 605 0.9080 <0.05 0.0198
GLDAS 605 0.3518 <0.05 0.0891
SMAP 605 0.0333 <0.05 0.1029

21 June 2015

H2O 584 0.8233 <0.05 0.0281
GLDAS 584 0.2726 <0.05 0.0811
SMAP 584 0.0078 <0.05 0.1186

1 July 2015

H2O 553 0.9193 <0.05 0.0217
GLDAS 553 0.3298 <0.05 0.0900
SMAP 553 0.0784 <0.05 0.1274

The H2O model fitted the in situ soil moisture best at the 0.05 level (p < 0.05) and estimated
soil moisture most accurately (RMSE is minimal) among the three types of soil moisture products.
For GLDAS, the scaling effect created a more serious spatial mismatch problem: the point-based
ground soil sample cannot represent all of the land cover in a GLDAS soil moisture pixel. The GLDAS
soil moisture product has a resolution of 25 km and is far coarser than the VIIRS resolution of 750 m
and the SMAP radar resolution of 3 km. In addition, the GLDAS soil moisture product averages the
soil moisture values from 00:00 to 03:00 UTC due to a 3-h lag with respect to the ground measuring
time (00:00 UTC). This difference could lead to uncertainty and error in the soil moisture estimation
due to possible evapotranspiration by corn or irrigation occurring during the lag period. Similarly,
a larger time difference between the SMAP overpass (06:00 UTC) and the in situ soil moisture could
lead to greater uncertainty and error in soil moisture estimation compared to GLDAS.

The SMAP radar appears to be worse at capturing the variance in ground measured soil moisture
than GLDAS. This is mainly due to the different value ranges between SMAP volumetric soil moisture
and in situ measured gravimetric soil moisture. In addition, SMAP radar-based soil moisture estimates
are less accurate (RMSE is the maximal) than GLDAS soil moisture estimates. This may have
caused by two factors, one is the low signal-to-noise ratio of SAMP radar due to radio frequency
interference [41,42]. The other is that SMAP can only measuring the top 5 cm depth of soil surface
layer without sampling 0–100 cm in depth like GLDAS. The H2O model-based soil moisture estimation
maps have a resolution of 750 m and are finer than the GLDAS resolution of 25 km and the SMAP
radar resolution of 3 km. As Figure 8 shows, H2O model based soil moisture estimates represent more



ISPRS Int. J. Geo-Inf. 2017, 6, 130 17 of 20

details spatially than other two products. Nonetheless, it is not perfect, due to a missing data problem
associated with cloud removal.
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5. Conclusions

This paper proposed a deep learning model-based method for upscaling in situ soil moisture
using VIIRS RDR to address the challenging problem of surface soil moisture estimation at the national
scale. Three groups of models were built using VIIRS SWIR, Visible/SWIR, and Visible/SWIR/TIR
data. The results showed high accuracy with 0.8917 < R2 < 0.9813 and 0.0118 < RMSE < 0.0294, thereby
confirming the effectiveness of the deep learning model. The results also showed that models using
eight hidden layers should be employed when the size of the training samples is relatively small and
the dimension of the input variables is relatively large (multi-sensor). For the upscaling of the in situ
soil moisture to the national scale, we suggest using a model with eight hidden layers, 500 neurons per
hidden layer, and 3500 epochs per hidden layer. We observed that the effectiveness of these models
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depended on the model parameters and the size of the input training dataset. To make the models
more operational, further work is necessary. Our approach produces surface soil moisture estimated
for cropland in China that are more accurate than the SMAP radar soil moisture products and GLDAS
0–10 cm depth soil moisture products. However, the soil moisture map has data gaps due to clouds in
image data. Still, the deep learning models provided a practical way to upscale the soil moisture to a
national scale. We believe that they can be applied more comprehensively when more remote sensing
sensors such as radar are involved.
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