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Abstract: Image quality assessment plays an important role in image processing applications. In many
image applications, e.g., image denoising, deblurring, and fusion, a reference image is rarely available
for comparison with the enhanced image. Thus, the quality of enhanced images must be evaluated
blindly without references. In recent years, many no-reference image quality metrics (IQMs) have
been proposed for assessing digital image quality. In this paper, we first review 21 commonly
employed no-reference IQMs. Second, we apply these measures to Quickbird images with three
different types of general content (urban, rural, and harbor) subjected to three types of degradation
(average filtering, Gaussian white noise, and linear motion degradation), each with 40 degradation
levels. We evaluate the robustness of the IQMs based on the criteria of prediction accuracy, prediction
monotonicity, and prediction consistency. Then, we perform factor analysis on those IQMs deemed
robust, and cluster them into several components. We then select the IQM with the highest loading
coefficient as the representative IQM for that component. Experimental results suggest that different
measures perform differently for images with different contents and subjected to different types
of degradation. Generally, the degradation method has a stronger effect than the image content
on the evaluation results of an IQM. The same IQM can provide opposite dependences on the
level of degradation for different degradation types, and an IQM that performed well with one
type of degradation may not perform well with another type. The training-based measures are not
appropriate for remote sensing images because the results are highly dependent on the samples
employed for training. Only seven of the 21 IQMs were found to fulfill the requirements of robustness.
Edge intensity (EI) and just noticeable distortion (JND) are suggested for evaluating the quality of
images subjected to average filter degradation. EI, blind image quality assessment through anisotropy
(BIQAA), and mean metric (MM) are suggested for evaluating the quality of images subjected to
Gaussian white noise degradation. Laplacian derivative (LD), JND, and standard deviation (SD) are
suggested for evaluating the quality of images subjected to linear motion. Finally, EI is suggested for
evaluating the quality of an image subjected to an unknown type of degradation.

Keywords: image quality assessment; no reference; quality measures; statistical evaluation

1. Introduction

The quality of digital images can be degraded during acquisition, transmission, storage,
and reconstruction by various sources of degradation, such as distortion of the spatial resolution,
motion blur, and transmission noise [1]. Identifying the distortion and quantifying its impact on
image quality is essential for various applications such as for monitoring image quality in quality
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control systems and for optimizing the output of image processing algorithms [2]. The development of
effective image quality assessment is therefore necessary for these purposes [3,4].

Because human beings are generally the end user in most image processing applications, the most
reliable means of assessing image quality is by subjective evaluation. A subjective image quality
metric (IQM) can be computed by preparing test images, selecting an appropriate number of human
observers, and obtaining their opinion based on specified criteria and conditions. Widely used
subjective IQMs are mean opinion score (MOS) and difference MOS (DMOS) [5]. However, subjective
IQMs require the services of multiple human observers, and are thus expensive, time-consuming,
and impractical for real-time implementation. Moreover, the subjective test results depend on a number
of factors that are difficult to quantify, such as the background and motivation of observers [6,7].
As a result, the development of objective IQMs is presently receiving increasing attention. The goal
is to design objective IQMs that quantify the image quality automatically and yield reliable results
that are well correlated with subjective assessments [8]. In general, objective IQMs can be classified
into three categories according to the extent to which a reference image is required: full-reference (FR),
reduced-reference (RR), and no-reference (NR). In an objective FR IQM, a reference image is required
to assess the quality of the test image by comparing the extent of similarity or difference between
the test image and the reference image. Objective FR IQM include the classical mean squared error
(MSE), peak signal to noise ratio (PSNR), and the recently introduced structural similarity (SSIM) [9].
In an objective RR IQM, some extracted features of a reference image are required to assess the quality
of a test image. Objective RR IQM include a number of IQMs such as reference reduced image quality
assessment (RRIQA) [10] and C4 [11]. In an objective NR IQM, the statistical metric is calculated from
the distorted image itself. Objective NR IQM include a number of IQMs such as entropy, gradient,
and standard deviation [12]. In contrast to FR or RR IQM, an NR IQM to some extent calculates
the quality of the test image directly according to particular criteria, rather than assessing its fidelity
or similarity to the reference image. Moreover, in many image applications, e.g., image denoising,
deblurring, and fusion, a reference image is rarely available for comparison with the enhanced image.
Thus, the image quality must be evaluated in the absence of a reference image [13–16].

Although a number of new objective IQMs have been developed in the past few decades,
the majority of these require the original undistorted image as a reference [17]. The development
of objective NR IQMs is a relatively new topic in the field of image processing, and, in more recent
years, a large number of NR metrics have been proposed for evaluating image quality. However,
most NR metrics have been designed for gray or color images, and whether they are suitable for
multi-spectral remote sensing images is still unknown. In this paper, we first review 21 commonly
employed objective NR metrics. Then, we apply these measures to Quickbird images with three
different contents (urban, rural, and harbor) using three types of degradation (average filtering,
Gaussian white noise, and linear motion degradation), each with 40 degradation levels. We then
investigate the robustness of the individual IQMs based on the criteria of prediction accuracy, prediction
monotonicity, and prediction consistency. Finally, we analyze those NR metrics deemed robust,
and determine representative NR metrics suitable for evaluating remote sensing images with different
types of degradation.

2. Commonly Employed No-Reference Image Quality Metrics: An Overview

This section presents an overview of commonly employed objective NR IQMs proposed in
recent years. These include several categories, i.e., distortion specific metrics, training-based metrics,
and metrics based on natural scene statistics.

• Auto correlation (AC): Derived from the auto-correlation function. The AC metric uses the
difference between auto-correlation values at two different distances along the horizontal and
vertical directions, respectively. If an image is blurred or the edges are smoothed, the correlation
between neighboring pixels becomes high.
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• Average gradient (AG): Reflects the contrast and the clarity of the image. It can be used to measure
the spatial resolution of a test image, where a larger AG indicates better spatial resolution [18].

• Blind image quality index (BIQI): A two-step framework based on natural scene statistics.
Once trained, the framework requires no knowledge of the distortion process, and the framework
is modular, in that it can be extended to any number of distortions [19].

• Blind image quality assessment through anisotropy (BIQAA): Measures the averaged anisotropy
of an image by means of a pixel-wise directional entropy. A pixel-wise directional entropy
is obtained by measuring the variance of the expected Rényi entropy and the normalized
pseudo-Wigner distribution of the image for a set of predefined directions. BIQAA is capable of
distinguishing the presence of noise in images [20].

• Blind image integrity notator using discrete cosine transform (DCT) statistics (BLIINDS-II): Relies
on Bayesian model to predicate image quality scores given certain extracted features. The features
are based on natural scene statistics model of the image DCT coefficients [21].

• Blur metric (BM): Based on the discrimination between different levels of blur perceptible on the
same image [22].

• Blind/referenceless image spatial quality evaluator (BRISQE): A distortion-generic blind image
quality assessment model based on natural scene statistics, which operates in the spatial domain.
Scene statistics of locally normalized luminance coefficients are employed to quantify possible
losses of naturalness in the image due to the presence of distortions, thereby leading to a holistic
measure of quality [23].

• Cumulative probability of blur detection (CPBD): Based on the cumulative probability of blur
detection, which is used to classify the visual quality of images into a finite number of quality
classes [24].

• Distortion measure (DM): Computes the deviation of frequency distortion from an allpass
response of unity gain, and then the deviation is weighted by a model of the frequency response
of the human visual system and integrated over the visible frequencies [25].

• Edge intensity (EI): Calculated by the gradient of the Sobel filtered edge image.
• Entropy metric (EM): Measures the information content of an image. If the probability of

occurrence of each gray level is low, the entropy is high, and vice versa [26].
• Block-based fast image sharpness (FISH): Computed by taking the root mean square of the 1%

largest values of the local sharpness indices. FISH is based on wavelet transforms for estimating
both global and local image sharpness [27].

• Just noticeable blur metric (JNBM): Integrates the concept of just noticeable blur into a probability
summation model that is able to predict the relative amount of blurriness in images with different
contents [3].

• Just noticeable distortion (JND): Integrates spatial masking factors with the nonlinear additivity
model for masking. The JND estimator applies to all color components and accounts for the
compound impact of luminance masking, texture masking and temporal masking [28,29].

• Kurtosis metric (KM): Kurtosis is a statistical measure of the degree of sharpness or flatness of
a distribution (i.e., average slope and energy concentration). The KM increases with increasing
depth of focus [30,31].

• Laplacian derivative (LD): Includes the first-order (gradient) and second-order (Laplacian)
derivative metrics. These metrics act as a high-pass filter in the frequency domain. Image sharpness
increases with increasing LD.

• Mean metric (MM): Calculated as the mean pixel value of the image, which indicates its average
brightness level. For equivalent scenery, image brightness increases with increasing MM.

• Naturalness image quality evaluator (NIQE): A quality-aware collection of statistical features
based on a simple and successful space domain natural scene statistic model. These features are
derived from a corpus of natural, undistorted images [32].
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• Quality aware clustering (QAC): Distorted images are partitioned into overlapping patches,
and a percentile pooling strategy is used to estimate the local quality of each patch. Then,
a centroid for each quality level is learned by quality aware clustering. These centroids are then
used as a codebook to infer the quality of each patch in a given image, and a perceptual quality
score can be obtained subsequently for the entire image [33].

• Standard deviation (SD): Calculated as the square root of the image variance. SD reflects the
contrast of the image, where the image contrast increases with increasing SD.

• Skewness metric (SM): Skewness is a statistical measure of the direction and extent to which
a dataset deviates from a distribution. For a standard normal distribution, high skewness indicates
asymmetry of the data. In this case, the data contains a greater amount of information.

3. Test Images and Degradation Methods

This section describes the initial testing images and the degradation methods used to apply
a particular level of image degradation for evaluating the performance of the objective NR IQMs
presented in Section 2.

3.1. Test Images

A Quickbird image was obtained from IGARSS 2012. The image was acquired on 11 November 2007,
and covers the city of San Francisco, CA, USA. The spatial resolution of the multi-spectral image is
2.4 m. We selected the 12 subset images shown in Figure 1a–l with uniform sizes of 256 × 256 pixels.
The test images can be classified into three categories: Figure 1a–d urban areas; Figure 1e–g rural areas;
and Figure 1h–l harbor areas.
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3.2. Degradation Methods

The methods employed to simulate the distortion of the test images are introduced as follows.

(a) Average filter degradation

Average filtering replaces each pixel value in an image with the average value of its neighbors
and itself. Average filtering is a kind of convolution filter. Like other convolution filters, it is based on
a kernel, which represents the shape and size of the neighborhood to be sampled when calculating
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the average. In this paper, the kernel is a square matrix with an edge dimension ranging from 1 to
40 pixels in increments of 1. Average filtering provides image distortion that is representative of spatial
resolution degradation.

To allow for a visual interpretation of the relative effects on image quality obtained after the
application of average filter degradation in terms of monotonicity, we present Figure 1a subjected to
average filter degradation for kernels with an edge dimension ranging from 5 to 40 pixels in increments
of 5, as shown in Figure 2.
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We note from Figure 2 that the image quality obviously decreased with increasing kernel size.
Visually, the differences in the image degradation between level 5 and level 20 are much greater
than between level 25 and level 40, where the latter levels present only relatively slight differences.
These images show that the average filter degradation has a decreasing effect on image quality with
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We note from Figure 3 that the image quality obviously decreased with increasing variance of
Gaussian white noise. The street in Figure 1a is heavily blurred by the noise with variance larger than
0.005. The building and trees are mixed when the variance of the noise reaches 0.0125. These images
show that the Gaussian white noise has a decreasing effect on image quality with an increasing variance
of noise.

(c) Linear motion degradation

The images were convolved with a filter that simulates the linear motion of a camera moving by
m pixels at an angle of n degrees counterclockwise from the horizontal direction to the right. In this
paper, n is set to 45◦ and m ranges from 1 to 40 pixels in increments of 1.

We present Figure 1a subjected to linear motion degradation with pixels at an angle of 45◦ ranging
from 5 to 40 in increments of 5, as shown in Figure 4.
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Figure 4. Linear motion degradation for the image in Figure 1a.

We note from the Figure 4 that the image quality obviously decreased with increasing length size.
It is difficult to distinguish land covers when pixel length reaches length size of 25. Similar to the
results of average filter degradation, the differences in the image degradation between length size of
5 and 20 are much greater than between length size of 25 and 40, where the latter length sizes present
only relatively slight differences.

4. Statistical Analysis of Evaluation Results

Owing to the 40 levels for each of the three classes of distortion investigated, 120 degraded images
are obtained for each original image. Therefore, a total of 1440 (12 × 120) images were employed as
samples for evaluation. As discussed in a past study [6], a good IQM must provide good prediction
accuracy, prediction monotonicity, and prediction consistency. The prediction accuracy was determined
by one-way analysis of variance (ANOVA) test, the prediction monotonicity was determined by the
scatter plot of the degradation level and the IQM values, and the prediction consistency was determined
by the Pearson linear correlation coefficient. The IQMs passed the three tests were determined to be
robust. As the redundancy may exists, the robust IQMs were then classified into various components
(or clusters) using factor analysis (FA), and the IQM with the highest loading coefficient was selected
as the representative metric for each component.
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4.1. Robustness of No-Reference Image Quality Metrics for Remote Sensing Images

4.1.1. Prediction Accuracy

An objective IQM that provides good prediction accuracy is unaffected by image content. As such,
the evaluation results of an IQM should be similar for equivalent degradation levels, regardless of the
image content. One-way ANOVA was employed to evaluate the prediction accuracy. One-way ANOVA
weighs a hypothesis that each sample is drawn from the same underlying probability distribution
against an alternative hypothesis that underlying probability distributions are not the same for all
samples. The hypotheses for the comparison of independent groups are

H0 : µ1 = µ2 = ... = µk; H1 : µi 6= µj, (1)

where H0 denotes that the mean values of all groups are equal, and H1 denotes that the mean values of
two or more groups are not equal. The null hypothesis indicates that no significant difference exists
between the sample means. A high value for the F test indicates that the null hypothesis is rejected.
Thus, any test results with an F test value larger than critical value would be significant, and the null
hypothesis is rejected. This is used to determine whether the variation in the scores of IQMs arises
predominantly from image degradation or from the image content. The metrics that are sensitive to
image content are not suitable for objective image quality assessment.

4.1.2. Prediction Monotonicity

To be consistent with visual inspection, an IQM should demonstrate a monotonic dependence on
the level of degradation of an image and exhibit small variations for different images with equivalent
levels of degradation [34]. A scatter plot is used to test the prediction monotonicity.

4.1.3. Prediction Consistency

The evaluation results of an IQM are judged according to how well the results correlate with the
degradation level. The Pearson linear correlation coefficient (PLCC) is employed to quantitatively
measure the correlation between image degradation levels and the results of NR metrics. The PLCC is
defined as

PLCC =
∑N

i=1
(

Level(i)− Levelavg
)(

NR(i)− NRavg
)√

∑
(

Level(i)− Levelavg
)2

∑
(

NR(i)− NRavg
)2

, (2)

where Level(i) is the degradation level of the ith image, Levelavg is the average degradation level of all
images, NR(i) is the evaluation results of an NR metric for the ith image, and NRavg is the average
evaluation results of an NR metric for all images.

4.2. Cluster Analysis of Robust Image Quality Metrics

As there may exist redundancy in robust IQMs, factor analysis (FA) based on principal component
analysis (PCA) was employed to group similar IQMs into fewer factors. To verify the appropriateness
of FA for this study, the Kaiser–Meyer–Olkin (KMO) measurement of sample adequacy and Bartlett’s
test of sphericity were performed on the correlation matrix of IQMs. When the KMO was greater
than 0.5, the sample was considered adequate for FA [35,36]. Bartlett’s test of sphericity tests the null
hypothesis that the correlation matrix is an identity matrix. When this null hypothesis is rejected, the FA
is appropriate for clustering robust IQMs. Each IQM is assumed to depend on a linear combination of
the common factors, and the coefficients are known as loadings. Rotation was used to reorient the factor
loadings so that the factors were more interpretable. The simplest case of rotation was an orthogonal
rotation (varimax) in which the angle between the reference axes of factors was maintained at 90◦.
This type of rotation was used with PCA. We performed FA on the metrics deemed robust for the
different types of image degradation considered.
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5. Results and Discussion

5.1. Results of Robustness Analysis

5.1.1. Prediction Accuracy

The results of one-way ANOVA testing for 21 IQMs based on 40 degradation levels for each type
of degradation applied to the 12 sample images are listed in Table 1. The abbreviations used in Table 1
are defined in Section 2.

Table 1. One-way ANOVA test results for different types of degradation.

Average Gaussian Motion

AC 36.37 38.2 36.67
AG 36.47 89.2 13.46

BIQAA 24.82 7.13 0.5
BIQI 13.34 112.48 3.54

BLIINDS-II 7.62 47.11 0.6
BM 32.8 37.53 34.63

BRISQE 63.34 123.48 14.42
CPBD 36.78 28.42 31.03

DM 3.7 5.41 3.68
EI 40.37 66.11 11.15

EM 2.49 0.59 1.21
FISH 1246.83 517.63 26.63

JNBM 16.11 6.6 4.78
JND 4.85 13.48 5.01
KM 3.17 7.67 1.14
LD 33.9 63.29 33.9

MM 3.84 5.47 3.84
NIQE 57.37 42.77 18.21
QAC 35.04 29.49 32.21
SD 5.65 31.38 5.14
SM 8.66 16.59 5.59

The critical value of the F test for each IQM in Table 1 is 1.427. The values in grey in Table 1
therefore do not reject the null hypothesis, and, thus, the corresponding IQMs were affected by image
content more than by the image degradation level. For average filter degradation, all of the IQMs were
robust for different image contents. For Gaussian noise degradation, the results of EM were affected by
image content. For linear motion degradation, the results of BIQAA, BLIINDS-II, EM, and KM were
affected by image content. The metrics that are sensitive to image content are not suitable for image
quality assessment.

5.1.2. Prediction Monotonicity

The scatter plot results for the 21 IQMs based on 40 degradation levels for each type of degradation
applied to the 12 sample images are presented and discussed in this subsection.

(a) Average filter degradation

The scatter plots for the 21 IQMs based on the 40 levels of average filter degradation applied to
the 12 sample images are presented in Figure 5.
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.

For the Decreasing group, the evaluation results sharply decreased over the first 10 degradation
levels, and changed little for the remaining 30 degradation levels, which are consistent with a visual
inspection of Figure 2. For the Increasing group, the evaluation results were negatively correlated with
the degradation levels. For the Fluctuating group, BIQI, BLIINDS-II, BRISEQ, CPBD, JNBM, and QAC
were trained for a specific digital image dataset, which produced fluctuating evaluation results for
different image contents. Therefore, it can be concluded that the results of the training-based IQMs are
highly dependent on the training samples employed, and cannot be directly applied for the image
quality evaluation of remote sensing images. For the other IQMs in this group, BM was proposed based
on subjective tests and psychophysics functions and was limited to the specific images. KM measures
the depth of focus, while Quickbird images are obtained with a uniform depth of focus. SM measures
the asymmetry of the data, which is not a suitable metric for remote sensing images. The Unchanging
group provided equivalent evaluations for all images regardless of the degradation level. DM was
designed to measure the effect of frequency distortion, and is therefore not sensitive to average filter
degradation. MM measures the mean pixel value of the image, which is unaffected by average filter
operations, such that the results of MM remained unchanged with increasing degradation.

(b) Gaussian white noise degradation

The scatter plots for the 21 IQMs based on the 40 levels of Gaussian white noise degradation
applied to the 12 sample images are presented in Figure 6.
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The IQMs were classified into three groups according to their degree of monotonicity, as Decreasing,
Increasing, and Fluctuating. The three groups are given as follows:

Decreasing : AC, BIQAA, BM, KM, SM
Increasing : AG, BIQI, DM, EI, FISH, JND, LD, MM, SD
Fluctuating : BLIINDS− I I, BRISQE, CPBD, EM, JNBM, NIQE, QAC

.

For the Decreasing group, the evaluation results of AC, BM, KM, and SM demonstrate a decreasing
trend with increasing degradation, while, with respect to the level of average filter degradation, the
results of AC demonstrated an increasing trend and the results of BM, KM, and SM fluctuated.
The evaluation results of the Increasing group demonstrate an increasing trend with increasing
degradation. Meanwhile, the results of AG, EI, FISH, JND, LD, and SD demonstrated a decreasing
trend with increasing average filter degradation, the results of BIQI fluctuated with respect to the level
of average filter degradation, and the results of DM and MM were unchanging with respect to the
level of average filter degradation. The members of the Fluctuating group here largely coincide with
those of the Fluctuating group obtained for average filter degradation. For those members not in the
same group, EM demonstrated unchanging results and the results of NIQE fluctuated with respect to
the level of average filter degradation.

(c) Linear motion degradation

The scatter plots for the 21 IQMs based on the 40 levels of linear motion degradation applied to
the 12 sample images are presented in Figure 7.

The IQMs were classified into four groups according to their degree of monotonicity. The four
groups are given as follows:

Decreasing : AG, EI, EM, FISH, JND, LD, SD
Increasing : AC, BM
Fluctuating : BIQAA, BIQI, BLIINDS− I I, BRISQE, CPBD, JNBM, KM, NIQE , QAC, SM
Unchanging : DM, MM

.

The results of linear motion degradation were very similar to the results obtained for average filter
degradation. We note that the results of BIQAA and NIQE demonstrate a fluctuating trend with respect
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to the level of linear motion degradation while having, respectively, demonstrated decreasing and
increasing trends with respect to the level of average filter degradation. The results of BM demonstrate
an increasing trend with increasing linear motion degradation while having demonstrated a fluctuating
trend with respect to the level of average filter degradation.
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5.1.3. Prediction Consistency

The PLCC values between degradation levels for the three types of degradation and the IQM
evaluation results for the 12 sample images are listed in Table 2. The results marked in gray in the table
reside below the 0.05 confidence level, therefore indicating that the IQM fails to fulfill the requirements
of prediction consistency.

Table 2. PLCC values between degradation levels and image qualities.

Average Gaussian Motion

AC 0.670 −0.744 0.463
AG −0.664 0.917 −0.594

BIQAA −0.595 −0.473 −0.193
BIQI 0.445 0.778 0.083

BLIINDS-II 0.374 0.755 0.181
BM 0.056 0.169 0.402

BRISQE 0.763 0.767 0.510
CPBD −0.536 0.045 −0.435
DM −0.004 0.910 0
EI −0.690 0.351 −0.596

EM −0.425 0.192 −0.232
FISH −0.704 0.736 −0.776
JNBM −0.011 0.018 0.440
JND −0.193 −0.701 −0.166
KM −0.420 −0.481 −0.279
LD −0.617 −0.538 −0.553

MM 0.001 0.159 0
NIQE 0.886 0.865 0.686
QAC −0.759 0.873 −0.425
SD −0.519 0.774 −0.481
SM −0.467 −0.485 −0.341
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5.1.4. Summary of the Robustness of Image Quality Metrics

We summarized the evaluation results for the 21 IQMs based on their fulfillment of the
requirements of prediction accuracy, prediction monotonicity, and prediction consistency in Table 3.

Table 3. Summary of test results, where PA denotes prediction accuracy, PM denotes prediction
monotonicity, and PC denotes prediction consistency. Meanwhile, the symbol

√
indicates that an IQM

fulfills the requirements for a given criterion, and the symbol × indicates that it does not.

Average Gaussian Motion

PA PM PC PA PM PC PA PM PC

AC
√ √ √ √ √ √ √ √ √

AG
√ √ √ √ √ √ √ √ √

BIQAA
√ √ √ √ √ √

× ×
√

BIQI
√

×
√ √ √ √ √

× ×
BLIINDS-II

√
×

√ √
×

√
× ×

√

BM
√

× ×
√ √ √ √ √ √

BRISQE
√

×
√ √

×
√ √

×
√

CPBD
√

×
√ √

× ×
√

×
√

DM
√

× ×
√ √ √ √

× ×
EI

√ √ √ √ √ √ √ √ √

EM
√ √ √

× ×
√

×
√ √

FISH
√ √ √ √ √ √ √ √ √

JNBM
√

× ×
√

× ×
√

×
√

JND
√ √ √ √ √ √ √ √ √

KM
√

×
√ √ √ √

× ×
√

LD
√ √ √ √ √ √ √ √ √

MM
√

× ×
√ √ √ √

× ×
NIQE

√ √ √ √
×

√ √
×

√

QAC
√

×
√ √

×
√ √

×
√

SD
√ √ √ √ √ √ √ √ √

SM
√

×
√ √ √ √ √

×
√

The IQMs fulfilling the requirements of prediction accuracy, prediction monotonicity, and prediction
consistency for the three types of degradation are summarized in Table 4.

Table 4. Robust IQMs for different degradations.

Degradation Robust IQMs

Average AC, AG, BIQAA, EI, EM, FISH, JND, LD, NIQE, SD.
Gaussian AC, AG, BIQAA, BIQI, BM, DM, EI, FISH, JND, KM, LD, MM, SD, SM.
Motion AC, AG, BM, EI, FISH, JND, LD, SD.

Unknown AC, AG, EI, FISH, JND, LD, SD.

5.2. Factor Analysis of Robust Image Quality Metrics

The robust IQMs listed in Table 4 were subjected to FA to determine the representative IQM for
each type of degradation. The KMO and Bartlett’s test results are listed in Table 5. From Table 5,
we note that FA is appropriate for the intended study.

Table 5. Results of KMO and Bartlett’s test.

Average Gaussian Motion All

KMO 0.699 0.727 0.689 0.742

Bartlett’s test
Approximate chi squared 8556.255 14,746.642 6576.038 25,101.243

Freedom 45 91 28 21
Significance 0.000 0.000 0.000 0.000
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The eigenvalues of the robust IQMs (i.e., components) listed in Table 4 are plotted in Figure 8
for all types of degradation. The eigenvalue provides a measure of the significance of the component.
Eigenvalues greater than or equal to 1.0 are considered significant [37]. The number of components
equal to the number of IQMs. From Figure 8, we note that two components are retained for average
filter degradation, three for Gaussian white noise degradation, three for linear motion degradation,
and one for all types of degradation together.
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Tables 6–9 present the component loading matrix for each type of degradation after conducting
orthogonal rotation. The loading value was the correlation coefficient between IQMs and retained
components. For each IQM, the level of importance of an IQM on a component increases with
increasing loading value.

Table 6. Rotated component matrix for average filter degradation.

Component

1 2
EI 0.980 0.032

AG 0.975 0.032
FISH 0.951 −0.028
LD 0.944 0.058

BIQAA 0.895 −0.118
NIQE −0.871 0.019

AC −0.699 0.523
SD 0.526 0.382

JND 0.223 −0.894
EM 0.566 0.634



ISPRS Int. J. Geo-Inf. 2017, 6, 133 14 of 18

Table 7. Rotated component matrix for Gaussian white noise degradation.

Component

1 2 3
EI 0.921 −0.328 0.113

AG 0.880 −0.431 0.101
LD 0.805 −0.579 0.026
SD 0.787 −0.245 0.293
AC −0.700 0.105 0.449

BIQAA −0.001 0.843 −0.008
SM −0.251 0.813 −0.212
BM −0.408 0.806 0.238

BIQI 0.518 −0.787 0.018
KM −0.365 0.693 −0.095

FISH 0.631 −0.691 −0.098
MM 0.169 −0.190 0.952
JND 0.351 −0.007 −0.914
DM 0.401 0.107 0.834

Table 8. Rotated component matrix for linear motion degradation.

Component

1 2 3
LD 0.978 −0.044 0.018
AG 0.967 0.157 0.126

FISH 0.960 0.190 0.037
EI 0.953 0.195 0.150

BM −0.595 0.246 0.593
JND −0.002 0.909 −0.065
AC −0.588 −0.748 0.059
SD 0.337 −0.227 0.815

Table 9. Rotated component matrix for all degradation types together.

Component

1
EI 0.984
LD 0.983
AG 0.980

FISH 0.964
SD 0.898
AC −0.888
JND 0.726

The IQMs clustered in two-dimensional and three-dimensional component space are shown in
Figure 9. The IQM with the highest loading value on a component was selected as the representative
IQM for a given type of degradation. The results are summarized as follows:

• Average filter degradation

Component 1: EI, AG, FISH, LD, BIQAA, NIQE, AC, SD.

Component 2: JND, EM.

From the perspective of the spatial resolution of an image, the results suggest EI and JND for
evaluating the quality of an image:

• Gaussian white noise degradation
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Component 1: EI, AG, LD, SD, AC.

Component 2: BIQAA, SM, BM, BIQI, KM, FISH.

Component 3: MM, JND, DM.

The results suggest EI, BIQAA, and MM for evaluating the quality of an image:

• Linear motion degradation

Component 1: LD, AG, FISH, EI, BM.

Component 2: JND, AC.

Component 3: SD.

The results suggest LD, JND, and SD for evaluating the quality of an image:

• All degradation types

Component 1: EI, LD, AG, FISH, SD, AC, JND.

EI is suggested for evaluating the quality of an image when the type of degradation is unknown.ISPRS Int. J. Geo-Inf. 2017, 6, 133  16 of 18 

 

 

Figure 9. Clustering of image quality metrics in two-dimensional and three-dimensional space. 

6. Conclusions 

In this paper, 21 objective NR IQMs were reviewed and evaluated for Quickbird images with 
urban, rural, and harbor contents subjected to 40 different levels of average filter, Gaussian white 
noise, and linear motion degradation. The experimental results provide a number of suggestions. (1) 
Different IQMs performed differently for different image contents and different types of image 
degradation. Generally, the effect of the degradation type was stronger than that of the image content 
on the evaluation results. (2) The same IQM can provide opposite dependences on the level of 
degradation for different degradation types, e.g., the evaluation results of AC demonstrated a 
decreasing trend with increasing Gaussian white noise degradation and an increasing trend with 
increasing average filter degradation, and the evaluation results of AG, EI, FISH, JND, LD, and SD 
demonstrated increasing trends with increasing Gaussian white noise degradation and decreasing 
trends with increasing average filter degradation. (3) An IQM that performed well with one type of 
degradation may not perform well with another type, e.g., the evaluation results of BIQAA fluctuated 
with respect to the level of linear motion degradation and demonstrated a decreasing trend with 
increasing average filter degradation, the evaluation results of BM demonstrated an increasing trend 
with increasing linear motion degradation and fluctuated with respect to the level of average filter 
degradation, and the evaluation results of NIQE fluctuated with respect to the level of linear motion 
degradation and increased with increasing average filter degradation. (4) The general results of 
clustering provided suggestions for representative IQMs most appropriate for the different types of 
degradation. For average filter degradation, EI and JND for evaluating the quality of an image. For 
Gaussian white noise degradation, EI, BIQAA, and MM for evaluating the quality of an image. For 
linear motion degradation, LD, JND, and SD for evaluating the quality of an image. (5) For image 
quality assessment without knowledge of the degradation type, EI was suggested for evaluating the 
quality of an image. 

Acknowledgments: This work was supported by a grant from 973 project in China (Grant #2012CB719901). 

Figure 9. Clustering of image quality metrics in two-dimensional and three-dimensional space.



ISPRS Int. J. Geo-Inf. 2017, 6, 133 16 of 18

6. Conclusions

In this paper, 21 objective NR IQMs were reviewed and evaluated for Quickbird images with
urban, rural, and harbor contents subjected to 40 different levels of average filter, Gaussian white
noise, and linear motion degradation. The experimental results provide a number of suggestions.
(1) Different IQMs performed differently for different image contents and different types of image
degradation. Generally, the effect of the degradation type was stronger than that of the image
content on the evaluation results. (2) The same IQM can provide opposite dependences on the
level of degradation for different degradation types, e.g., the evaluation results of AC demonstrated
a decreasing trend with increasing Gaussian white noise degradation and an increasing trend with
increasing average filter degradation, and the evaluation results of AG, EI, FISH, JND, LD, and SD
demonstrated increasing trends with increasing Gaussian white noise degradation and decreasing
trends with increasing average filter degradation. (3) An IQM that performed well with one type of
degradation may not perform well with another type, e.g., the evaluation results of BIQAA fluctuated
with respect to the level of linear motion degradation and demonstrated a decreasing trend with
increasing average filter degradation, the evaluation results of BM demonstrated an increasing trend
with increasing linear motion degradation and fluctuated with respect to the level of average filter
degradation, and the evaluation results of NIQE fluctuated with respect to the level of linear motion
degradation and increased with increasing average filter degradation. (4) The general results of
clustering provided suggestions for representative IQMs most appropriate for the different types
of degradation. For average filter degradation, EI and JND for evaluating the quality of an image.
For Gaussian white noise degradation, EI, BIQAA, and MM for evaluating the quality of an image.
For linear motion degradation, LD, JND, and SD for evaluating the quality of an image. (5) For image
quality assessment without knowledge of the degradation type, EI was suggested for evaluating the
quality of an image.
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