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Abstract: The widely applied location-based services require a high standard for positioning
technology. Currently, outdoor positioning has been a great success; however, indoor positioning
technologies are in the early stages of development. Therefore, this paper provides an overview of
indoor fingerprint positioning based on Wi-Fi. First, some indoor positioning technologies, especially
the Wi-Fi fingerprint indoor positioning technology, are introduced and discussed. Second, some
evaluation metrics and influence factors of indoor fingerprint positioning technologies based on Wi-Fi
are introduced. Third, methods and algorithms of fingerprint indoor positioning technologies are
analyzed, classified, and discussed. Fourth, some widely used assistive positioning technologies are
described. Finally, conclusions are drawn and future possible research interests are discussed.
It is hoped that this research will serve as a stepping stone for those interested in advancing
indoor positioning.

Keywords: indoor positioning technology; Wi-Fi; fingerprint

1. Introduction

The wide application of location-based services requires a high standard of positioning technology.
Although outdoor positioning technology has matured, research into high accuracy positioning
technology has gradually transferred from the outdoors to indoor [1]. This is mainly due to two
reasons: first, according to the investigation and analysis in reference [1], people generally spend
about 80–90% of their daily time indoors. Furthermore, 70% of mobile phones are used indoors and
80% of data communications are performed indoors. Second, the above-mentioned data show that
the demand for indoor mobile communication is very strong. Nevertheless, function areas in indoor
spaces—especially large indoor public spaces such as airports, plazas, hotels, and so on—become more
complicated and larger, for example, restaurants, cinemas, jewelers and many other kinds of stores
may be integrated on only one floor level in a plaza, and so they may prove difficult for customers
to find interesting areas. Therefore, from the above-mentioned viewpoints, indoor location-based
services are of huge market potential.

During the last decade, indoor positioning technology has rapidly developed, with many new
emergent technologies and methods. From the RADAR system developed by Microsoft Research
Asia [2] and the Horus system put forward by the University of Maryland [3], to the LIFS system
proposed by Tsinghua University [4] and the WHERE@UM system [5] created by University of Minho.
As positioning results are becoming more accurate, costs are similarly reduced.
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Indoor positioning technologies can be mainly divided into two fields, one based on a 2D model,
and the other based on a 3D model. The positioning technologies based on a 2D model mainly
use Bluetooth [6], ZigBee [7], and Wi-Fi as positioning signals, and combine the signal intensity
or space-time attributes with positioning algorithms. Infrared [8], ultra-wideband (UWB) [9], and
ultrasonic [10] are used for positioning based on a 3D model. Compared with 3D model-based
technology, the hardware used in 2D model-based positioning technology is much cheaper than Wi-Fi
routers, which can easily bring down costs, and the network it requires has already been widely
distributed. Based on its advantages, 2D model-based positioning technologies are widely used
around the world. In contrast, 3D model-based positioning technologies mostly use TOA (Time of
Arrival method), AOA (Angle of Arrival method) and other positioning methods based on time and
space attributes. These types of technologies require an additional hardware platform, which greatly
increases costs, but positioning accuracy is higher. As the positioning results are maintained at a
decimeter level, the technology also has considerable applications in specific fields. The fingerprint
positioning technology based on Wi-Fi is one of the most popular positioning technologies based on
2D modeling, and has become an area of indoor location research as it can be used in both outdoor
and indoor positioning. For outdoor positioning as per reference [11], outdoor fingerprint positioning
technology mainly uses three types of fingerprint. The first type is a visual fingerprint like image;
the second type is a motion fingerprint, which uses motion sensors such as accelerometers, electronic
compasses, etc.; and the third type is a signal fingerprint like RSSI (Received Signal strength indication).
In comparison, indoor fingerprint positioning technology mainly uses signal fingerprint and uses
the received signal strength of every location (as fingerprints stored in the fingerprint database) to
match the signal strength measured at users’ locations to achieve positioning. This paper focuses on
the fingerprint positioning technology based on Wi-Fi, as shown in Figure 1 (which is based on the
Figure 1 in reference [12]).
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Figure 1. Technology of indoor fingerprint positioning based on Wi-Fi.

The rest of this paper is organized as follows. Section 2 makes a comprehensive introduction to the
positioning technology based on Wi-Fi; Section 3 mainly focuses on fingerprint positioning technology
based on Wi-Fi; Section 4 looks at auxiliary positioning technology with inertial sensors; Section 5
mainly introduces some public databases and competitions in this field; and Section 6 concludes the
paper and addresses directions in future research.
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2. Wi-Fi-Based Positioning Technology Theory

2.1. Wi-Fi Working Principle

Wi-Fi (Wireless Fidelity) is a wireless local area network (WLAN) standard, which is a form of
local area network connecting equipment used in a small space through a radio frequency signal.
Not only can Wi-Fi identify the interconnection of the apparatus, but can also connect to the wider
network through Wi-Fi.

Wi-Fi is the IEEE 802.11b standard, using radio frequency technology (RF) electromagnetic waves
as the data carrier. Due to the high frequency (2.4 GHz and 5 GHz) and short transmission radius of
the Wi-Fi signal (around 100 m), it is difficult to cover whole large areas with Wi-Fi and can only be
used in local hotspots such as apartments, offices, markets, etc.

2.2. Wi-Fi Positioning Technology

The market potential of indoor positioning technology has greatly improved with the wide
distribution of Wi-Fi. The high precision, low-power consumption, and low-cost has made it an area
of great interest in indoor positioning technology research. According to the IEEE 802.11 standards,
a Wi-Fi wireless network card and access point (AP) has the function of measuring the intensity of
radio frequency signals [13]. Therefore, users can utilize mobile devices such as smart phones, laptops,
tablet PCs, and others to achieve indoor positioning with Wi-Fi and certain algorithms. So far, there
are two types of Wi-Fi-based positioning technologies: time and space attributes of received signal
(TSARS)-based technology and received-signal strength (RSS)-based positioning technology.

2.2.1. Time and Space Attributes of Received Signal-Based Positioning Technology (TSARS)

TSARS-based positioning technology mainly uses time and space attributes of received signal
such as spatial distance, the time signal sending-receiving consumes and the spatial angle of signal.
This technology includes TOA, AOA, and Time Difference of Arrival (TDOA) [14]. TOA calculates the
distance according to the arrival time of the signal sent by different APs (Access Points) [15]. TDOA
measures the delay time of the arrival signal [16], while AOA measures the angle of the arrival signal.

After obtaining the space-time relationship between the user and multiple APs, the user’s position
is calculated using trilateration [17]. To achieve high accuracy, at least three APs are required in this
method. In some cases, additional hardware devices are needed, which leads to high deployment cost.
As RF signal propagation in indoor environments is complex and can be affected by the multipath
effect—human body interference and other factors—which creates many difficulties when measuring
the RF signal and greatly affects positioning results.

2.2.2. Received Signal Strength-Based Positioning Technology (RSS)

The RSS-based positioning technology utilizes the strength of the received signal to obtain the
users’ position. This method does not require an additional positioning device. This method has
attracted immense attention due to its high accuracy, low-cost, and low-power consumption since
it was first developed. In general, there are three kinds of the method [18]: trilateration, similarity
perception, and scene analysis, as shown in Figure 2.
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(1) Trilateration

Trilateration is a typical form of positioning technology which has been extensively studied
and applied in the process of indoor positioning technology development. Researchers combined
a triangular positioning method with the TSARS positioning technology, which has also reached a
certain effect. Due to the limitations of the above-mentioned techniques and the advantages of signal
strength (RSS), the triangular positioning technology based on RSS has been widely studied.

The trilateration method uses three or more APs to send signals received by the mobile devices
and converts them into spatial distance which is used as the radius of circles (whose center is AP) and
the intersection of the three circles is the measured user location, as shown in Figure 3.
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Since the complexity of indoor space can have a great impact on the RF signal, when one converts
the signal strength to spatial distance, it can inevitably produce errors. To reduce the error, researchers
have suggested a variety of methods to assist trilateration. Among them, the path loss model to
estimate the space position of APs is the most widely used.

There are two kinds of indoor path loss model [19]: the empirical path loss model, and the classic
logarithmic model. Based on these two types, researchers have greatly improved the accuracy of
trilateration in combination with other methods. In 2013, Bai et al. [20] proposed a method combined
with the KNN (K-Nearest Neighbor) algorithm and fingerprint positioning technology; the triangular
positioning method was based on the classic path loss model where they found that the positioning
accuracy of their method increased 0.5 m compared with the Ekahau real-time positioning system [20].
The Active Campus system Griswold et al. [21] proposed in 2004, used the classic path loss model
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combined with the trilateration positioning method for indoor positioning where the positioning
accuracy of it remained in the 8–10 m range.

Due to the need to obtain precise AP positions and the use of the accurate path loss model, the
triangular positioning method is less practical, difficult to locate, and has low positioning accuracy.

(2) Approximate Perception

The approximation perception (AP) method is a relatively simple method [22], which uses the
strongest base station as the positioning criterion. When the user communicates with a wireless device
via Wi-Fi, the AP (which the device is connected to) will be viewed as user position. Since this method
depends heavily on AP positions and has low positioning accuracy, researchers used an antenna cluster
at a known position to improve positioning accuracy [18].

In addition to the antenna cluster, Cell-ID—which is generally used in the cellular mobile
network—can be used to locate by enhancing the spatial property and strength of a Wi-Fi signal.
Cell-ID divides indoor space into cells with a unique ID through signal strength received from the
base station.

Approximate perception is simple, but the method heavily relies on the base station location and
coverage areas. In addition, this method has a low accuracy of around 100 m.

(3) Scene Analysis

Scene analysis is also known as fingerprint matching. It differs from other methods as it does not
require the location of the AP in advance, or the specific distribution of interior space environment
or scene, just several APs and their corresponding algorithms can obtain precise location results.
As scene analysis has the characteristics of being low-cost, high-precision, and low-energy consuming,
this method has become of great interest.

Scene analysis is based on signal strength and the signal intensity of different APs at the same
Reference Point (RP) is measured to obtain the strength information of the RPs. Combined with
specific coordinate information and the MAC (Media Access Control) address of the RP, we can acquire
data on the RP, also called a fingerprint. After all fingerprints are collected, researchers can use these
fingerprints to establish a fingerprint database called the radio map. With the radio map, researchers
can collect the user’s signal strength and compare it using the fingerprint database stored in it via the
corresponding algorithm to obtain the location of the user.

Scene analysis generally is divided into two phases. The first phase is the offline acquisition phase
where the main task is to establish a fingerprint database. The second phase is called the online phase.
In this phase, researchers utilize real-time receiving signal strength measured by mobile devices and
find a fingerprint which mostly matches the measurements through specific matching algorithms in
the database to obtain the relevant position of the user.

2.3. Wi-Fi Positioning Metrics

With the development of Wi-Fi positioning technology, many Wi-Fi positioning systems have
been proposed—from early systems such as RADAR [2] and Horus [3], to systems using advanced
technology such as WILL [23] and Lifts [24]. These systems, including the various techniques and
methods researchers have proposed, all view accuracy as the primary measuring rule of indoor
positioning technology. However, it is not enough to measure how well an indoor positioning
technology is operating by only using accuracy to judge. According to reference [18], the Wi-Fi
positioning system has the following several aspects of metrics.

(1) Accuracy/Measurement Uncertainty

Accuracy, or measurement uncertainty, is the primary measure of the indoor positioning method.
The higher the accuracy, the better the positioning effect of the method, thus the greater the likelihood
of the method being more suitable for indoor positioning. According to Mautz [25], instead of accuracy,
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measurement uncertainty is now used for the quantification of a standard deviation. However, many
researchers still use accuracy in their studies so as to avoid misunderstanding, we use the conventional
term ‘accuracy’ in this paper. Mautz [25] thought that “positioning accuracy” should be understood
as the degree of conformance of an estimated or measured position at a given time to the true value,
expressed for the vertical and horizontal components at the 95% confidence level. Of course, due
to various application environments, each indoor positioning system has different requirements
for accuracy.

(2) Precision

Precision is used to describe the continuous measurement performance of an indoor positioning
method, and it is a standard used to judge the robustness of the indoor positioning method. Liu [18]
proposed that precision should be used as the distribution of distance error between the estimated
location and the true location.

Here, we introduce the cumulative distribution function to measure precision. When two
indoor positioning methods are compared, if the accuracy of both are the same, the faster the
cumulative distribution function curve grows, and the faster the probability of reaching the peak,
the better the method’s performance. As the error distance interval considered by the cumulative
distribution function of precision is very small, researchers generally use percentages to value precision.
For example, if the precision of one indoor positioning method is 90% within 2 m, this means the
cumulative distribution function of the error distance is less than 0.9 within 2 m.

(3) Complexity

Complexity is an important criterion to measure an indoor positioning method. Low complexity
methods have better adaptability to the dynamic change of the indoor space and the user’s position
transformation response. The complexity of an indoor positioning method is mainly composed of
hardware distribution, algorithm, and an operator.

For hardware distribution, the more the hardware is distributed, the higher the costs, likewise,
the more complex the positioning methods, the higher the complexity.

For the algorithm, the spatial complexity and time complexity of the algorithm used in an indoor
positioning method can directly affect the performance of the indoor positioning method. Due to the
limited processing capacity of wireless terminal equipment, especially mobile devices, the low spatial
complexity of a positioning method represents low energy and memory consumption, while low time
complexity represents low positioning delay and high dynamic adaptability.

With regards to the operator, an indoor positioning method that introduces fewer operators
means less preliminary work which means that less information is required. This makes for a better
user experience.

(4) Robustness

Robustness describes the robustness and adaptability of indoor positioning methods. A highly
robust indoor positioning method ensures high accuracy and precision even on the condition that
errors occur in signal strength or radio map. Highly robust indoor positioning methods can be applied
to a variety of indoor environments, whether it be free space or a harsh indoor environment.

(5) Scalability

Scalability describes whether the positioning method can maintain good performance when the
environment expands. In indoor space, the farther the distance between the user and APs, the lower
the performance of the positioning method. An indoor positioning method considers two aspects of
the interior space: geographical distribution and density. Geographical distribution characterizes the
spatial structure of the interior space. The more complex the geographical distribution of interior space,
the greater the impact on the signal. Density represents the number of units of geospatial location
per unit time. With the increase in density, geographic space becomes larger, which requires better
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scalability. Another aspect of scalability is dimensionality as some positioning methods are applied in
two-dimensional space, and others are applicable in three-dimensional space.

(6) Costs

For an indoor positioning system, the costs encompass several aspects, including capital
expenditure, time consumption, space consumption, energy consumption, and sink consumption.
The cost of capital is crucial to the usefulness of an indoor positioning method, mainly due to hardware
costs. Time cost includes deployment and maintenance time. Space consumption mainly refers to the
unit density of the method. Due to the limited energy of the mobile terminal, energy consumption is
particularly important. The sinking cost refers to whether the hardware devices used in the deployment
of an indoor positioning method already exist or not. In comparison, low-cost indoor positioning
methods are likely to be more popular.

Furthermore, Mautz et al. [25] discussed more metrics such as coverage area (which describes the
spatial extension where system performance must be guaranteed by a positioning system), continuity
(which is the property of continuous operation of the system over a connected period of time to
perform a specific function), and so on.

3. Fingerprint Positioning Based on Wi-Fi

3.1. Wi-Fi Fingerprint Positioning Technology Analysis

To date, most of the indoor positioning methods are based on fingerprint matching technology
combined with other methods [26]. With further study, researchers have used many ways to improve
fingerprint matching technology across all aspects.

3.1.1. Advantages of Wi-Fi Fingerprint Positioning Technology

Compared with other positioning systems, Wi-Fi fingerprint positioning technology has the
advantages of low-cost and high precision. Due to the wide deployment and use of Wi-Fi worldwide,
fingerprint positioning technology can be applied to any indoor scenario where Wi-Fi networks are
deployed without any additional hardware, which makes the technology cost low. This technology
uses Wi-Fi signal strength to model and measure, without having to identify the exact location of the
APs. In a complex indoor environment, under low-cost conditions, the space-time attributes such as
angle and time of arrival can produce large errors; however, the signal intensity is relatively stable,
thus making the positioning accuracy of this method greater than others.

3.1.2. Disadvantages of Wi-Fi Fingerprint Positioning Technology

Wi-Fi fingerprint positioning technology needs many algorithms as support, so computation
consumption and algorithm complexity is relatively high. Additionally, as the method requires a large
amount of a priori information as data support, the preliminary work has a high cost factor. Since the
method is modeled by the strength of each AP signal received at a certain location, it is also influenced
by the environment. Once the AP location or the indoor environment changes, data re-acquisition
and re-modeling are needed. The indoor environment is complex, so radio frequency signals will be
affected by multipath effects, so there may be errors in the measured signal intensity.

3.1.3. The Influence Factors of Wi-Fi Fingerprint Positioning

(1) Effects of the Human Body on Signal Strength

As 70% of the human body is composed of water, it can partly absorb the radio frequency signal
of 2.4 GHz [27]. Since people spend most of their daily time in an indoor space, the human body has
a significant impact on radio frequency signal by causing the decline and uncertainty of the signal in
varying degrees.
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Walters [28] suggested that the location of the human body in an indoor space, the distance
between people and APs and human body orientation could influence signal propagation. Walters
found in their experiments that when there were moving bodies in indoor space, the average signal
strength declined and the standard deviation increased significantly. Additionally, when mobile
devices were completely blocked by human bodies, the signal strength would decrease significantly
by around 10 dBm.

(2) Effects of the Multipath Effect on Signal Strength

Since many obstacles (like windows, doors, and walls) exist in indoor space, the radio frequency
signal will propagate through different paths, which causes the signal to reach the receiver at different
times. A different receiving time causes different phase, which can be superposed and cause signal
distortion. This phenomenon above is called the multipath effect.

Multipath is the main factor affecting indoor signal strength and the multipath effect is different
in diverse environments due to their different distribution, construction, main materials [29], and so
on. To minimize its impact, researchers have used the channel propagation model. Fang et al. [30]
found that the multipath effect could be divided into two parts: one part is the convolution filter effect
caused by multi-scattering in an indoor environment, and the other part is communication additive
noise. They modeled both effects with the logarithmic propagation model and reduced the probability
of the standard deviation of estimate error from 42% to 29%, respectively.

It is worth mentioning that, due to the multipath effect, there is time-duration exiting while
measuring the RSS, which also has an impact on RSS measurement. Ignoring the time-duration leads
to incorrect and unstable RSS measurements. Thus, it is necessary to keep measuring for a period, like
20 to 30 s, depending on the indoor environment [31].

(3) Effects of the Number of APs and RPs

The number of APs and RPs has a profound effect on the fingerprint positioning methods. Too
few results in inaccurate fingerprint data, leading to poor performance. However, blindly increasing
the number can cause further costs and an extension of time during the offline phase. According to
different indoor environments, selecting the appropriate number of APs and RPs is a mean in which to
improve the efficiency of indoor positioning.

Moghtadaiee [32] analyzed and modeled the number of APs and RPs. In their experiment, they
used the root mean square (RMS) deviation of various positioning algorithms (like KNN and ANN)
and the lower bounds of the non-Bayesian probability method with different numbers of APs and RPs
and found that in an indoor space with dimensions of 11 × 23 m, the RMS of different methods can
be as low as 5 APs and increasing their number barely influences the result. Similarly, the RMS of
different methods hardly changes with 66 RPs and more RPs are useless.

(4) Effects of Mobile Devices

Walters [28] suggested that the RSS (Received Signal Strength) measured at the same location by
dissimilar devices could be different. The real received signal energy is measured in dBm or decibel
milliwatt, but researchers generally use RSS measured in dBm as an integer number [28]. Different
device manufacturers have different standards to convert the real signal energy strength to an RSSI
value, which causes differences in RSS measurement that can be large in some cases.

In addition to the type of mobile devices, their orientation also has a large impact on the RSS
value. Kaemarungsi and Krishnamurthy [31] discussed the orientation of mobile devices in their work
and found that the RSS values measured by devices oriented in various directions at the same location
could be different. They further found that if the device was set behind the APs, the RSS value was
the lowest, which decreased by 10 dBm when compared with the highest which was measured when
the device was set facing the APs. This indicated that device orientation is crucial and should be
considered during RSS measurement.
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3.2. Fingerprint Data Collection

Fingerprint data collection, also called offline training, is the first phase of fingerprint positioning,
which uses the fingerprinting technique to store the location dependent characteristics of a signal
collected at known locations ahead of the system's use for localization in a database [33]. The main task
in this phase is to collect fingerprint data to build a model. There are two main methods of collecting
fingerprint data, one is accurate modeling and the other is empirical modeling [34].

3.2.1. Empirical Modeling

Empirical modeling is determining the number of RPs at certain intervals in the area to be located,
and measuring the signal strength received from different APs at the location of every RP. The signal
strength is stored with information of the RP’s location, as well as other information (like MAC address)
in the fingerprint database or radio map as a piece of fingerprint data. Since empirical modeling is
based on many data samples, the workload in the early stages can be large and this modeling method
depends on the indoor environment. However, this modeling method has a high level of accuracy.

According to Jung [35], construction of the empirical models involves fingerprint data collection
and the fingerprint data component. Fingerprint data collection is how fingerprint data samples like
RSS—which are used to build the empirical models or radio maps—are obtained. The fingerprint
data component is another important factor as different positioning strategies use different data based
on RSS.

There are different strategies to collect fingerprint data. To cover the entire area, researchers
distribute different numbers of AP and select various numbers of RP based on indoor environments.
The most primitive way is by point-by-point manual calibration, which can achieve the greatest
accuracy. The target area is partitioned into numerous pieces, i.e., locations, and dedicated surveyors
collect fingerprint samples point-by-point by considering the center of each location as a measurement
point [35].

Liu et al. [36] proposed a strategy using the smallest enclosing circle algorithm (SEC) which is
widely used in the field of information security. They directly input the RP’s coordinates instead of the
RSS, and the smallest enclosing circle is the smallest circle that consists of all points to be positioned.
Associated with the WKNN (Weighted K-nearest Neighbors) algorithm and clustering, this method
decreased the calibration cost and improved the positioning accuracy by 29.1%.

Fetzer et al. [37] proposed a strategy that combined varieties of assistive technology aimed at
multi-floor indoor environments. The fingerprint data they used is described in Equation (1).

o = (swifi, sib, ∆θ, nsteps, ρrel, Ω) (1)

In Equation (1), Swifi and Sib contain the RSS measured from the AP and i-Beacons, respectively.
∆θ and nsteps describes the relative angular change and the number of steps detected for the pedestrian.
Prel indicates the relative barometric pressure used to detect the floor where users were located. Finally,
Ω contains the activity currently estimated for the pedestrian by accelerometer and are: unknown,
standing, walking, walking up the stairs, or walking down the stairs.

To obtain the fingerprint data, they arranged four different walking paths instead of point-by-point
manual calibration. This method is called a walking survey [35] and reduces the effort required to
recognize each location. Moreover, this method was also used to obtain sensor signals like barometric
pressure and the activity of the pedestrian. However, walking surveys require additional time, which
increases the cost of effort.

The IPIN (Indoor Positioning and Indoor Navigation) competition discussed in [38] introduced
several new indoor positioning systems. The team called HFTS used the walking survey method to
acquire fingerprint data containing heading directions, RSSI and step information, while the UMinho
team’s approach was based on Wi-Fi combined with placement records and assistive positioning
technologies. The team tried different strategies to build the radio map, which was finally built by
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associating fingerprints to linearly interpolated coordinates between known positions, combined with
the movement information extracted from the accelerometer data. Although many other strategies
were introduced in reference [38], they will not be discussed in this paper.

Another indoor positioning competition called the EvAAL–ETRI Indoor Localization Competition
(part of the Sixth International Conference on Indoor Positioning and Indoor Navigation (IPIN
2015) was presented in reference [39] where many novel and effective approaches were introduced.
Additionally, references [40–42] discussed different ways to build empirical models by using
multi-points, crowdsourcing, and so on.

3.2.2. Accurate Modeling

Accurate modeling—also called channel propagation model modeling—only needs the signal
strength of several important positions to generate the entire radio map by calculating and expanding
the data with the channel propagation model. Accurate modeling requires the accurate position of
the APs; however, the position can be hard to determine in most cases. Thus, channel propagation
modeling can be used in an experimental environment where the position of the AP is known to find
the relationships between fingerprint data [33], or examine the performance of the proposed method.
Furthermore, this modeling can be used in a real positioning environment to calibrate the positioning
results obtained by other means.

For radio frequency signals, signal propagation is always affected by scattering, reflection, and
refraction. Due to the complexity and limitations of the indoor environment, this effect can be amplified,
making the signal transmitted from the broadcaster to the receiver over a variety of paths. Called the
multipath effect, it causes signal fading and phase shift [2], which decreases the signal-to-noise ratio.
Inaccurate signals can reduce the accuracy of positioning and bring larger distance errors. Therefore,
the main task of accurate modeling is to establish a channel propagation model which can describe
indoor signal fading properly.

(1) Typical Channel Propagation Models

Due to the complexity and limitation of the indoor environment and the large number of obstacles,
there are four factors to be considered when building a channel propagation model: path decline,
scattering, refraction, and reflection [43,44]. As such, the channel propagation model should be
combined with a large-scale fading model and a small-scale fading model [45]. Here, we introduce
several typical channel propagation models [34].

Indoor General Propagation Model:

PL(d) = PL + 10 ×Nsf × log10(d) + FAF (2)

In Equation (2), PL represents the path loss in the range of 1 m in free space, while Nsf represents
the dissipation factor of the same layer, and FAF represents the additive value of the loss through
different paths. The model does not take the obstacles in actual interior space into account, and one
has to measure the actual field strength to acquire the value of Nsf and FAF before using this model.

Chan Propagation Model:

L = PL0 + 10 × n ×log10(d) + Fwall + Ffloor (3)

In Equation (3), Lfs represents the pass loss in free space and Lp represents the loss value associated
with the interior walls. The Chan propagation model is the most basic prediction model of indoor path
loss, and it takes the impact of indoor walls on channel propagation into account based on the free
space propagation model.

Loss Factor Propagation Model:

L(d) = PL + 10 × ηsf ×log10(d) + FAF (4)
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In Equation (4), PL represents the path loss in the range of 1 m in free space; ηsf represents
the testing index of area to be tested; and FAF represents the additive value of the loss through
different paths.

Motely Propagation Model:

L = PL0 + 10× n ×log10(d) + Fwall + Ffloor (5)

In Equation (5), PL0 represents the path loss in the range of 1 m in free space, while n represents
loss factor (value recommended as 2 in this model). d represents the distance between wireless
devices; Fwall represents the correction factor of the signal attenuation caused by walls; and Ffloor
represents the correction factor of the signal attenuation caused by floor. Both correction factors change
with materials.

Application of Channel Propagation Model:
The radar [2] system analyzed the ground attenuation factor channel model (FAF) [46], and found

that when this model was associated with a large-scale path loss model, it was flexible enough to be
used in different indoor space structures. Based on the FAF, researchers built a model called the wall
attenuation factor channel model (WAF) used in radar, as shown in Equation (5).

P(d)[dbm] = P(d0)[dbm]− 10n log10(
d
d0

)−
{

nW ×WAF nW < C
C ×WAF nW ≥ C

(6)

In Equation (6), n represents the distance path attenuation rate, where P(d0) represents the signal
strength value under the condition that the distance between the sender and receiver equals reference
distance d0; and d represents the distance between the sender and receiver. C indicates the maximum
number of walls that the factor works; nW represents the number of walls between the sender and
receiver; and WAF represents the wall attenuation factor. Using the WAF model, the median of accuracy
of positioning can reach 4.3 m.

Nurminen et al. [47] used the classical logarithmic model (power-law model) as the indoor channel
propagation model. The classical logarithmic mode combines LOS (Line of Sight) and NLOS (Not Line
of Sight) propagation by using numbers of correction factors to offset the uncertainty caused by these
two propagations. Equation (7) shows the logarithmic model Nurminen [47] used.

Prx(d) = Prx(d0) − 10×n× log10(d/d0) + W (7)

Prx(d) is shown as a logarithm, where d0 represents the reference distance. n represents the path
fading index and W–N(0, σ2) represents a random variable as normal distribution, which indicates
the slow fading (shadow fading) of indoor signal propagation. Nurminen [47] utilized this model
based on a large number of fingerprint data measured to optimize his research results, which had
some effects.

Laitinen et al. [48] improved the model proposed by Nurminen [47] and built the single slope
model, shown in Equation (8).

Pi,ap = PTap − 10nlog10di,ap + ηi,ap (8)

In Equation (8), nap represents the effect of path loss on the ap-th AP where di,ap represents the
distance between the ap-th AP and the i-thRP, which is calculated as Euclidean distance. Pi,ap represents
the signal strength measured at the i-thRP sent from the ap-th AP, where PTap represents the signal
propagation strength of the ap-th AP, and ηi,ap represents a noise factor as normal distribution. Unlike
Nurminen [47], Laitinen [48] obtained only a few pieces of fingerprint data at several key RPs and then
obtained the entire radio map through the model. Laitinen [48] optimized the fingerprint database in
this way, which improved positioning efficiency.
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Alternatively, there are other new ways to achieve positioning using accurate modeling in
combination with other methods like those discussed in reference [49].

3.3. Signal Pre-Processing

The main purpose of signal pre-processing is to optimize the fingerprint database and remove
invalid and redundant data by filtering and clustering, to improve the operating efficiency of the whole
positioning system.

3.3.1. Fingerprint Database Denoising

During the fingerprint acquisition process, the complex indoor environment can have a great
impact on the signal strength by generating a large number of noise, which is very difficult to eliminate
regardless of the selected acquisition method. Therefore, it is necessary to filter the fingerprint
database, not only to optimize the sample space and remove the invalid samples and bad data, but
also to improve positioning accuracy and enhance the efficiency of the positioning system. So far,
based on the differences between all kinds of positioning algorithms, there are two kinds of methods
in fingerprint filtering: deterministic denoising and probabilistic denoising.

(1) Deterministic Denoising

Channel Propagation Model Denoising: More than 90% of indoor channel propagation models
are empirical models. The model is based on a large number of prior data, which has a high reliability.
The channel propagation model is used to model the indoor space, and a correction factor is introduced
to eliminate the influence of indoor areas (such as walls, doors, and windows) on the radio frequency
signal, so the denoising of the channel propagation model performs well. The channel propagation
model denoising uses fingerprint data as a parameter to be calculated in the channel propagation
model after the end of the offline phase. The channel propagation model identifies the effective and
invalid data, thus removing the noise. Channel propagation model denoising is a commonly used
deterministic denoising method; however, this method mainly relies on the establishment of the
channel propagation model, so the channel propagation model directly affects the denoising effect.

The radar [2] system used the channel propagation model to establish the fingerprint database,
and at the same time, the radar system did the denoising operation to the fingerprint data.

Median Filter: Median filtering is a non-linear filtering denoising method that uses the median
value of the neighborhood noise point to replace it. Lim et al. [50] chose median filtering to denoise
the fingerprint database. The median filtering can effectively solve the short-term effect of fast fading
on signal strength.

Neighborhood Mean Filtering: Like median filtering, neighborhood mean filtering is also
a common denoising method. After finding the noise point of the fingerprint database, the value
is estimated by using the average of the values of non-noise point in the neighborhood to achieve
filtering [13].

In reference [13], after the neighborhood filtering method was used to denoise the fingerprint
database, the average location error decreased by 13%, and the error in the 6 m above the fixation point
decreased by 46%.

(2) Probabilistic Denoising

Probabilistic denoising is combined with probabilistic positioning algorithms. After establishing
the fingerprint database in the offline phase, unusual data in the fingerprint database can be removed
by establishing the probability distribution function. According to the probability distribution function,
the most common method is the histogram method [34].
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3.3.2. Fingerprint Database Clustering

With the indoor environment continually expanding, the required fingerprint data gradually
increases. This increase directly affects the positioning efficiency and time consuming, which can also
increase the number of invalid fingerprint data, resulting in reducing positioning accuracy, so the
optimization of fingerprint data is particularly necessary.

Clustering evaluates the fingerprint data based on their similarity degree and classifies them
by it to optimize the fingerprint data. After clustering, the fingerprint database can be divided
into several parts, improving the efficiency of positioning and reducing the system consumption.
Swangmuang [34] used median clustering and K-mean clustering to cluster the fingerprint database
separately. The contrast experiment they undertook indicated that the clustering method could
save many operations required from the model without clustering, which reduced around a third of
the operations separately. Altintas [1] proposed a positioning solution using K-means clustering in
combination with the KNN method which outperformed the traditional KNN. Instead of clustering the
fingerprint database, they clustered the k reference fingerprint data obtained by KNN with K-means
clustering to participate in positioning. The K-means clustering reduces the required reference data
and decreases the positioning average distance errors.

Lee [51] proposed a novel clustering-based approach to achieve indoor positioning.
They presented the support vector machine-based clustering approach, named SVM-C, which used the
margin between two canonical hyper planes for classification instead of using the Euclidean distance
between two centroids of reference locations. They clustered the fingerprint data with SVM margins
in the offline phase and utilized clustering match technology in the online phase. The experimental
results indicated that the positioning mean errors were lower than other approaches like the means
clustering method, SVC, etc.

3.3.3. AP Selection Strategy

With the constant development of Wi-Fi, AP distribution density is also rapidly increasing.
Traditional indoor positioning methods can choose to use all the APs that can be detected in the
environment; however, the signal strength provided by the AP can be affected by a severe multipath
effect and has a low reference value which interferes with the accuracy of the fingerprint data and
increases the burden of the positioning system, thus making it difficult to locate the fingerprint.
Therefore, the choice of AP becomes an issue requiring further attention [52].

Jhuang et al. [53] proposed that, in the online phase, the standard error of the signal strength was
used as the metric to calculate the detected signal strength of each AP and categorized them prior to
selecting the top M APs as positioning APs to participate in positioning.

Feng Chen [54] listed two common AP selection strategies based on the strongest received signal
strength and the Fisher criterion.

During the online phase, the AP selection strategy based on the strongest received signal strength
chooses the M strongest signals of the AP to participate in positioning. As this method sorts all the
APs based on the strength of signals every time positioning, every time positioning it picks different
APs to participate in positioning based on the different locations of users.

In contrast, the Fisher criterion calculates the signal strength from each AP through the fingerprint
database analysis of signal distribution, as shown in Equation (9).

ξi =
∑(j,o)∈C (ϕo

i,j − ϕi)
2

∑(j,o)∈C(∆o
i,j)

(9)

Among them,
−
ϕi = 1/

∼
N × Σ(j,o)εC ×ϕ◦i,j. As seen in Equation (9), the smaller the denominator,

the higher the probability that the fingerprint data from the same AP is similar to the signal strength
obtained at the same location in the online phase. Molecules represent the changes in signal strength
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at different RPs to measure the ability of different APs to differentiate reference points. The Fisher
criterion selects the top M ξi of the largest Aps to participate in positioning by sorting ξi.

3.4. Positioning Algorithm

In the online phase, positioning systems match pre-collected data with the signal strength at the
user's location to determine where the user is, and during this phase the use of positioning algorithms
is important. So far, there are two kinds of positioning algorithms, one is the deterministic positioning
algorithm and the other one is the probabilistic positioning algorithm.

3.4.1. Deterministic Positioning Algorithm

The deterministic positioning algorithm utilizes real-time matching of fingerprint data by means
like machine learning, data mining, artificial neural network, etc. This method is based on the
measurement of signal strength; therefore, it is affected greatly by the precision of the fingerprint data
acquired offline.

(1) K–Nearest Neighbor

The KNN algorithm is one of the simplest algorithms in machine learning. KNN and its variants
have been widely used in indoor positioning for its low-cost and high performance. The core thought
of KNN is to compare the signal strength obtained by users with fingerprint data in the fingerprint
database while positioning. It chooses the k nearest neighbors of fingerprint data according to
root-mean-square error. It completes the positioning operation by calculating the weighted average of
the k fingerprint data. The Weighted K-Nearest Neighbor is a variant of KNN that adds distance as
weight. Nearest Neighbor is another variant of KNN.

The signal intensity vector of the user’s location is Va = (V1, V2, . . . , Vn) and is used to calculate
the similarity between the signal intensity vector of the user’s location and the fingerprint data in the
fingerprint database. The computing method is shown as Equation (10).

dq(Va, Vi) = (
n

∑
j=1

∣∣vj − vij
∣∣q) 1

q

(10)

If it is calculated by the Manhattan distance, then q = 1. If it is calculated by Euclidean distance,
then q = 2. After calculating the similarity, this method chooses the k fingerprint data based on the
similarity. The k fingerprint data which contains the coordinates of the k position is the most likely
position of users and calculating the mean values of the coordinates of the k fingerprint data increases
accuracy. The average value is the location of the user.

The radar [2] system is the earliest indoor positioning system that applies the nearest neighbor
methods. Bahl et al. presented a new version called the Nearest Neighbor in Signal Space by improving
the nearest neighbor methods. The core ideal of the NNSS was to match the nearest neighbor by
calculating the distance between the signal strength received by users and the signal strength in the
fingerprint database. Bahl [2] compared this method with the perceived similarity and channel model
methods and found that the positioning accuracy of this method could reach 2.94 m. It still has some
issues in its practical applications, but has provided new thoughts in researching indoor positioning.

Ma et al. [55] presented a new method called the Clustering Filtered KNN (CFK) which combined
clustering with the KNN method. CFK can divide the entire fingerprint database into several
non-adjacent parts by using hierarchical clustering as per the physical location of each neighbor
point. It selects the nearest neighbor points in one cluster to match the user’s location. Ma [55] also
found that the average positioning error and positioning median error were both less than the KNN,
as was the calculating cost.

Guowei et al. [56] used the Jeffries Matusita distance instead of the Euclidean distance.
The distance formula was established based on Euclidean distance, but expanded the error function
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elements (which were small), and could stably achieve the Euclidean distance. First, their method
obtained the nearest neighbor point datasets by KNN before extracting the reference points from these
sets by the K-n algorithm. Finally, they used similarity between the user and reference points, and set
the frequency of the reference points (showing as weight) to participate in matching. Compared to
KNN, the method put forward by Guowei [56] has carried out deeper digging on the correlation of
signal strength value and has some advantages.

d(x, y) =

[
N

∑
i=1

(
√

xi −
√

yi)
2

] 1
2

(11)

Shin et al. [57] presented the EWKNN (Enhanced Weighted K-nearest Neighbor algorithm)
algorithm. First, it generated a list of signal strength by comparing fingerprint data in the fingerprint
database with signal strength measured while positioning for the first selection. Next, it compared the
rest of the data in the list for the second selection. The k in Equation (11) represents the number of RPs
reserved and utilizes the differences in signal strength as weight to participate in the second selection.
To acquire the final positioning result, it requires some iterations. The EWKNN reduces the error in
comparison to the KNN algorithm, and has better adaptability for k which is variable.

(2) Support Vector Machine

Statistical learning theory is an important theoretical basis for the machine learning method, the
theory of statistical estimation, and the prediction of small sample theory. The support vector machine
(SVM) is one of the youngest, most practical, and highest potential methods in statistical learning
theory as it translates the input space into a higher dimensional space by nonlinear transform defined
by inner product function, and calculates the optimal classification plane in this space. The expression
formula is shown by Equation (12).

f (x) = sgn(
n

∑
i=1

TiyiK(xi, x) + b) (12)

Here, Ti is the Lagrange multiplier corresponding with each sample. b is the classification
threshold and K(xi, x) is the optimal classification plane of the inner product function. This function
can achieve linear classification after a nonlinear transformation and is the kernel function of support
vector machines (SVM) which are classified by its kernel function. So far, the SVM used in indoor
positioning generally divides the fingerprint matching problem into two kinds: the SVC problems and
the Support Vector Regression (SVR) problems.

Brunato et al. [58] systematically illustrated the application background and principle of statistical
learning theory and SVM applied in indoor fingerprint positioning, and established the theoretical
foundation for the application of SVM in the field of indoor positioning. Brunato [58] used SVM to
match fingerprint data and compared them with WKNN, Bayesian regression analysis and artificial
neural network. They found that the error of positioning results by SVC was very low, and the results
by SVR were roughly the same as the WKNN algorithm.

Abdou et al. [59] presented regression analysis positioning technology based on the similarity of
support vector machines by combining SVM and cluster. The method clustered the fingerprints in the
fingerprint database via the similarity propagation model in an offline collection phase, and studied
each type of fingerprint data by SVM for correlation information based on the RPs and signal strength
values. In the online positioning stage, the user’s mobile device uploaded the collected signal strength
information to the server. The server determined the user's signal strength information membership
category through pattern recognition and used the strongest AP to choose the corresponding AP
information. Next, the information would be served as the input of the support vector machine
regression analysis to conduct positioning precisely. The positioning results were good, and positioning
errors were far less than other methods such as KNN, and Bayesian.
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Wu et al. [60] combined SVM and particle filter. They classified the data in the fingerprint database
as per the known position by SVM and used Pedestrian Dead Reckoning to achieve a positioning
match, and optimized the data by particle filter. The positioning accuracy was 1.2 m.

(3) Artificial Neural Network

As the principle of fingerprint data matching is similar to pattern recognition, a large number of
artificial intelligence technologies used in pattern recognition can also be used in fingerprint positioning.
Artificial neural network is one of the most important methods in machine learning. To date, most
researchers use artificial neural network methods, such as multilayer perceptron, back propagation
neural networks, multi-layer neural networks, and regression neural networks.

Dai et al. [61] introduced the Multi-Layer Neural Network (MLNN) into indoor positioning.
MLNN is a forward artificial neural network with some hidden layers existing between its input and
output. The MLNN designed in reference [61] consisted of three parts: the transmission element,
denoising element, and positioning element. The MLNN can be directly calculated from the user’s
location without matching fingerprint data. The experiments showed that the average error of
positioning by this method was less than other mainstream methods.

Fang et al. [62] proposed Discriminant-Adaptive Neural Networks. This method first uses
multiple discriminant analysis to find useful discriminative information in the fingerprint data, and
then introduces the extracted information into the discriminative components to increase the important
information weights, maximizes the useful information in the neural network, and uses the information
as the parameter to participate in the DANN (Discriminant-Adaptive Neural Network) calculation.
Compared with other mainstream methods, this method achieved higher positioning accuracy.

Battiti et al. [63] used a multi-layer perceptron for indoor positioning, with a positioning accuracy
of 2.3 m. Nowicki et al. [64] proposed a method that used Deep Neural Network (DNN) combined
with stacked autoencoder (SAE). The DNN used in this method was the first to be used for Wi-Fi
fingerprinting and could achieve better performance in image analysis than other methods. The SAE
Nowicki [64] used could determine the floor or building and reduce dimensionality of the input data.
The experiment results were better than other networks without autoencoders.

(4) Other Deterministic Positioning Algorithms

In addition to the above-mentioned mainstream positioning algorithm, there are several
algorithms used by researchers that have achieved good results. Kushki [65] used the distance
calculation method of kernel function and AP selection strategy. The average positioning error could
be kept at approximately 2m. Feng Chen [54] used the combination of compression perception
technology and clustering technology for indoor positioning. Yim [66] used a decision tree for indoor
positioning, which reduced not only the complexity of the algorithm, but also the average positioning
error when the sample space was larger (about 80 samples), in comparison with other algorithms.
Li [6] used the Least Square and its related variants, such as the Weighted Least Square (WLS), and the
Nonlinear Least Square (NLS) to achieve positioning match. The average error could be up to 1 m and
positioning efficiency was high.

3.4.2. Probabilistic Positioning Algorithm

The most significant difference between the probabilistic positioning algorithm and the
deterministic positioning algorithm is that the deterministic positioning algorithm matches the signal
strength of corresponding fingerprint data by using the positioning algorithm to obtain the final
position of the user, while the probabilistic positioning algorithm stores the probability distribution of
the signal strength during a certain time in the fingerprint database [22]. Next, the probability position
of the user’s location is calculated by the Bayesian theory system based on signal strength.

Kontkanen et al. [67] conducted a more comprehensive analysis and study of the application
of probability and statistical methods in location services and concluded that the probability and
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statistical method not only had broad prospects in indoor positioning, but also had great potential in
personnel tracking, distance calibration, and other related position services.

The main task of the probabilistic positioning algorithm in the offline phase is to build the
probability distribution model of signal strength collected through the sample data by using
corresponding methods such as the histogram method and kernel function. In the online phase,
the model calculates the probability that a user is at a certain location, and then uses the model to
estimate the location of the user.

(1) Probability Distribution of Signal Strength

An important step is to obtain the probability distribution of the signal strength for the
probabilistic positioning algorithm. The quality of the probability distribution model directly affects
the efficiency and accuracy of positioning. The probability distribution model of signal intensity is
established using the histogram method or kernel function based on the signal intensity measurements
of different APs received at different RPs in the offline phase.

Many researchers have used standard Gaussian distribution to model the probability distribution
of signal strength. For example, Kaemarungsi et al. [31] analyzed the change and influence of signal
intensity in the indoor environment and concluded that standard Gaussian distribution was more
suitable for the probability distribution of the signal strength in the indoor environment. The Horus
system, designed by Youssef et al. [3], was the first system to locate indoors through the probabilistic
positioning method that also used a standard Gaussian distribution in the distribution model.

Luo et al. [68] suggested that the standard Gaussian distribution did not fully describe the signal
strength in the indoor environment of the distribution. Luo [68] demonstrated that the signal intensity
distribution in indoor environments tended to bimodal distribution rather than the traditional sense
of the standard Gaussian distribution. They found that the signal strength values will be left, and
its peak was much higher than the standard Gaussian distribution, so proposed the addition of
appropriate parameters to perform a more suitable fit in the probability distribution of signal strength
modeling. Chen Miao [69] proposed a multi-Gaussian mixture model to store the signal strength; and
Ferris et al. [70] used a Gaussian process to model the signal strength. Although the Gaussian process
was used to reduce the number of samples collected previously, the probability distribution model
established at each reference point was the standard Gaussian distribution, which could not describe
the signal strength in the indoor environment.

(2) Probabilistic Positioning

After establishing the probability distribution model of the signal strength, we needed the
Bayesian system, combined with other methods (the most commonly used is clustering), on the
posterior probability of the user's location calculated to obtain an estimate of the user's location. Naive
Bayesian, Hidden-Bayesian, Bayesian networks, and maximum likelihood estimation are also widely
used methods.

The Horus system uses joint clustering, probability distribution, and deterministic positioning,
first combining the clustering and probability distribution in the indoor positioning field
simultaneously. The Bayesian theorem and the maximum certainty positioning algorithm were
used to solve the positioning problem in different environments. The positioning error of the system
was less than 0.6 m.

Bisio et al. [71] proposed an intelligent probabilistic fingerprinting algorithm that improved the
computational speed of prior probabilities and reduced the cost of positioning and the time-consuming
costs associated with traditional probabilistic fingerprinting algorithms. Madigan et al. [72] used
a Bayesian hierarchical model for positioning. Patwari et al. [73] selected the maximum likelihood
function for positioning.
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3.5. Back-End Filtering

Due to the complexity of the indoor environment and the wide distribution of noise, back-end
filtering is needed to obtain more accurate results at the end of positioning. The commonly used
filtering methods are Bayesian filtering, Kalman filtering, and particle filtering.

Honkavirta et al. [74] have described Bayesian filtering and Kalman filtering in detail.
Gordon et al. [75] introduced the application of particle filter in location tracking. Wu Yao [76]
also provided a more in-depth description of the fusion of the filtering algorithm and the
location-tracking technique.

Back-end filtering has a certain effect on the improvement of positioning accuracy. However,
it can affect the whole process of positioning if the cost of back-end filtering is too high, so most
researchers choose mean-based filtering in the back-end filtering technology.

As most positioning results are relatively stable and accurate, and the cost of back-end filtering
methods are relatively high, it is not widely used by positioning systems.

4. Assistive Positioning Technology

Wi-Fi signal propagates in the way of non-line-of-sight propagation in complex indoor
environments (scattering, diffraction, refraction), causing multipath effects, so it is not sufficient
to only use Wi-Fi signal strength to gain positioning results.

As smart phone technology developed, micro sensors such as accelerometers, magnetic compasses,
pressure sensors, gyroscopes, etc. have been integrated into these devices, which are generally
representative of mobile terminals. Researchers have used micro sensors combined with Wi-Fi
fingerprint technology to further improve positioning results. This trend is now mainstream in
the indoor positioning field and this technology is widely used.

With this development, assistive positioning technology has been introduced to increase
positioning accuracy, to adjust the positioning results and to expand the positioning function, which
plays an assistive role in Wi-Fi fingerprint indoor positioning systems. Based on this, we decided to
call this kind of approach assistive positioning technology.

4.1. Indoor Location Based on Inertial Sensor Technology

Inertial sensors make full use of micro-sensors based on the micro-electro-mechanical system
(MEMS), which is a combination of micro-sensors, such as accelerometers, gyroscopes, magnetic
compasses, etc. Currently, inertial sensors based on indoor positioning technology are mainly divided
into two categories [77]. One is based on Newton's law of motion, and obtains the speed and position
of movement by calculating acceleration. Since data drift occurs when this method is used in practice,
the cumulative error of multiple calculations can reach tens of meters or even hundreds of meters
within a few seconds. Another method is pedestrian dead reckoning (PDR), which uses the number of
steps that pedestrians walk to gain results. Due to its high accuracy, it has become an area of much
interest in the assisted positioning technology field.

The UnLoc positioning system based on track estimation was designed by Wang [78] at Duke
University, and utilizes the accelerometer and magnetic compass combined with dead reckoning.
Wang [78] used an accelerometer to judge the number of steps and direction of the moving user, before
using relevant techniques to obtain the user's location information.

Zhang [79] used an improved algorithm of PDR. In the PDR algorithm, the traditional methods of
calculating steps are the zero-crossing method and peak detection algorithm. Both methods have a
fixed threshold value and require a steady speed. The method proposed in reference [79] used dynamic
threshold and time window to measure the number of steps. It could self-regulate based on the state
of the environment and pedestrians. In the same reference [79], the experimental results showed that
the average positioning error of the method could be maintained around 0.57 m, with a maximum
positioning error of only 1.4 m.
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The Zee positioning system proposed by Rai et al. [80] used gyroscopes, accelerometers, and
electronic compasses to predict the number of steps in combination with particle filtering.

4.2. Geomagnetic-Based Indoor Positioning Technology

A dozen years ago, outdoor positioning using geomagnetic methods were proposed and
implemented. During the study, it was found that magnetic positioning did not require deploying an
additional hardware environment. The data it used were easy to acquire and were less affected by
the external environment. In the development of indoor positioning, geomagnetism has gradually
attracted people's attention, and has become a research hotspot [81]. Geomagnetic positioning in indoor
environments and buildings is mainly influenced by the steel skeleton structure. Li et al. [82] deeply
discussed the feasibility of geomagnetic location, and thought that there were still many problems to
be solved despite the obvious advantages of geomagnetic location.

Chung et al. [83] used geomagnetic signals as fingerprint data to locate indoor fingerprints. They
analyzed the characteristics of geomagnetic data and proposed geomagnetic maps and geomagnetic
matching methods based on position and orientation. In reference [83], 90% of the positioning accuracy
could reach 1.64 m and 50% could reach 0.71 m.

4.3. Indoor Positioning Technology Based on Wi-Fi Signal Characteristics

Abdelnasser et al. [84] analyzed the characteristics of Wi-Fi signals and found that there were
common features of Wi-Fi signals in different areas of an indoor environment. Abdelnasser [84]
proposed a semantic-based SLAM (Simultaneous Localization and Mapping) positioning method
based on these features. Abdelnasser [84] established the landmark distribution of indoor environment
based on the sampling information of various micro-sensors. This method clustered the signal strength
samples according to the characteristics of Wi-Fi signal strength near different landmarks and then it
combined with a SLAM framework for positioning, with the average positioning error reaching 0.53 m.

5. Miscellaneous

To examine the effects of the positioning approach, experimental work was necessary. To save on
costs and time, there are lots of resources available online.

Collecting data is always the first step of indoor positioning, which is important but cost intensive.
Thanks to the researchers, there are lots of public databases available on RSS:

The uiuc/uim dataset: a set of Bluetooth and Wi-Fi traces collected by 28 Google Android phone
users (staff, faculties, grads, and undergrads at the University of Illinois) for three weeks in March 2010.
Each UIM experimental phone contained Bluetooth and a Wi-Fi scanners to capture both Bluetooth
MAC addresses and Wi-Fi access point MAC addresses in the proximity of the phone [85].

The kth/rss dataset: This dataset contains the RSS (Radio Signal Strength) data collected with a
mobile robot in two environments: indoor (KTH) and outdoor (Dortmund). RSSI metric was used
to collect the RSS data in terms of dBm. The mobile robot location was recorded using its odometry
(dead reckoning) [86].

Smartphone Dataset for Human Activity Recognition (HAR) in Ambient Assisted Living
(AAL) Data Set: This dataset was used to improve the accuracy of our HAR algorithms applied
in a social connectedness experiment in the domain of Ambient Assisted Living. The dataset was
collected from the in-built accelerometer and gyroscope of a smart phone worn around the waists
of the participants. The data was collected from 30 participants within the age range of 22–79 years.
Each activity (standing, sitting, laying, walking, walking upstairs, walking downstairs) was performed
for 60 s, and the tri-axial linear acceleration and tri-axial angular velocity were collected at a constant
rate of 50 Hz [87].

UJIIndoorLoc Data Set: The UJIIndoorLoc database covers three buildings of Universitat Jaume
I with four or more floors and almost 110.000 m2. It was created in 2013 by means of more than
20 different users and 25 Android devices. The database consists of 19,937 training/reference records
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and 1111 validation/test records. The 529 attributes contain the Wi-Fi fingerprint, the coordinates
where it was taken, and other useful information [88].

UJIIndoorLoc-Mag Data Set: The UJIIndoorLoc-Mag database can be used to compare magnetic
field-based indoor localization methods. It consists of 270 continuous samples for training and 11 for
testing. Each sample comprises a set of discrete captures taken along a corridor (or an intersection) with
a period of 0.1 s. In total, there are almost 40,000 discrete captures, where each one contains features
obtained from the magnetometer, the accelerometer, and the orientation sensor of the device [89].

There are many top competitions of indoor positioning with many of the competitors’ positioning
approaches improving the entire indoor positioning field. The most valuable competitions are listed
below: Microsoft Indoor Localization Competition @ IPSN (2014–2017) [90], EvAAL Competition
(2011–2015) [1], IPIN Competition (2016–2017) [38], and the EVARILOS project and competition [91].
Besides, [92,93] introduced the benchmarking tools for indoor positioning solutions.

6. Conclusions and Future Work

In this paper, we discussed indoor Wi-Fi positioning technology, including the various phases and
processes of Wi-Fi fingerprinting technology and we classified the methods used across the various
phases. We introduced the studies on Wi-Fi fingerprint indoor positioning technology in recent years
and discussed the research trends of indoor positioning. We acknowledge that there are still many
potential areas in the indoor fingerprint positioning field that can be improved.

1. Integrating different methods to overcome the defects that appeared when methods were used
alone. Additionally, optimizing the whole positioning system, and integrating diverse methods
in different phases can overcome problems appearing in every phase. Utilizing new methods is
the key to finding new ways to optimize positioning systems.

2. Due to the expansion of the positioning environment and the corresponding increase in fingerprint
data, traditional ways of capturing fingerprint data are no longer suitable as they are time and
labor intensive. Thus, it is necessary to find new ways of obtaining fingerprint data quickly and
easily, like crowdsourcing [87].

3. There are still many unresolved problems in Wi-Fi signal due to its disadvantages which can
have a bad influence on positioning results. Thus, finding a new physical media or signal that is
better than Wi-Fi may be one way to resolve the issue.

According to the three points discussed above, we foresee that Wi-Fi indoor positioning will
develop in the following areas:

1. The integration of different methods and utilizing new methods, for example, the integration of
deterministic and probabilistic methods. Data are analyzed by probabilistic positioning analysis
for the user’s historical data, and then the deterministic method is used for accurate positioning.

2. The LIFS positioning systems [4] proposed a new direction in indoor positioning development,
which tried to reduce labor consumption in the off-line acquisition phase by using methods like
crowdsourcing. This direction is also one of the new developing trends of indoor positioning.

3. In recent years, some studies have started to use information of a physical level instead of RSS
to get fingerprint data like channel impulse response (CIR), which has better time stability and
spatial sensitivity. Thus, using different physical media [94–96] is also a research pathway.

Indoor positioning has developed considerably in the past decade, but also faces many new
challenges and potential problems like high calculating costs, and the accuracy of positioning is not
stable and satisfied. The novelty of positioning systems deserves special mention, and is important
in this field. The innovation of technical methods and hardware inventions inject new vitality to the
indoor positioning market, which has greatly promoted indoor positioning technology development
in the past decade.
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