
 International Journal of

Geo-Information

Article

Within Skyline Query Processing in Dynamic
Road Networks
Yuan-Ko Huang

Department of Maritime Information and Technology, National Kaohsiung Marine University,
Kaohsiung City 80543, Taiwan; huangyk@webmail.nkmu.edu.tw

Academic Editor: Wolfgang Kainz
Received: 22 January 2017; Accepted: 27 April 2017; Published: 29 April 2017

Abstract: The continuous within skyline query is an important type of location-based query,
which can provide useful skyline object information for the user. Previous studies on processing
the continuous within skyline query focus exclusively on a static road network, where the object
attributes and the conditions of roads remain unchanged. However, in real-world applications, object
attributes and road conditions inevitably vary with time, which severely limits the applicability of
previous studies in practice. Therefore, in this paper, we address the issue of efficiently processing
the continuous within skyline query in dynamic road networks with time-varying information.
We design three elaborate data structures, the object attribute dominating matrix (OADM), the road
distance sorted list (RDSL) and the skyline object expansion tree (SOET), to maintain the information
of objects and the road network. Combined with OADM, RDSL and SOET, we develop an efficient
algorithm, namely the within skyline object updating algorithm, to provide real-time processing of
the time-varying information. Finally, a thorough experimental evaluation is conducted to show the
merits of the proposed approaches.

Keywords: continuous within skyline query; skyline objects; dynamic road networks; time-varying
information; within skyline object updating algorithm

1. Introduction

With the fast advance of positioning techniques in mobile systems and the popularization of
portable computers (e.g., laptops, 3G mobile phones and tablet PCs), spatio-temporal databases
that aim at efficiently managing a large number of moving objects so as to support various types
of location-based queries have attracted much attention in the database community [1–4]. Many
applications, such as geographical information systems, traffic control systems and location-aware
advertisements, can benefit from efficient processing of the location-based queries. The distance-based
skyline query is an important type of location-based query that can provide useful information for
preference-based data analysis and has a wide range of real applications [5–7]. Given a set of data
objects So with m dimensional attributes and a query object q in a road network, the distance-based
skyline query finds the objects in So that are not dominated by any other object, in terms of the m
attributes and the road distance to q. More specifically, object p dominates another object p′ if (1) its
value in each attribute is as good or better than that of p′ and is better in at least one attribute and (2) it
is closer to q than p′. The objects not dominated by others are termed the skyline objects.

A novel distance-based skyline query, called the within skyline query, can be used to find the
skyline objects within a given distance range, where the objects retrieved are termed the within
skyline objects (WSOs). In the previous work [8], the continuous within skyline query is presented
for continuous monitoring of WSOs in road networks. Given a path Pq, along which the query object
q moves, a set of data objects So and a distance d, the continuous within skyline query finds a set of
WSOs for each point p on Pq, such that the road distance from each WSO to point p is less than or

ISPRS Int. J. Geo-Inf. 2017, 6, 137; doi:10.3390/ijgi6050137 www.mdpi.com/journal/ijgi

http://www.mdpi.com/journal/ijgi
http://www.mdpi.com
http://www.mdpi.com/journal/ijgi

ISPRS Int. J. Geo-Inf. 2017, 6, 137 2 of 20

equal to d. The continuous within skyline query can be found in many fields and application domains.
A real-world example is that of a traveler who is planning a trip, who may want to know which hotels
are better to stay at en route. In this scenario, the traveler can issue the continuous within skyline
query to find the hotels within the distance range d and with good quality (e.g., higher rank and lower
price) during the trip.

Figure 1 illustrates an example of processing the continuous within skyline query, where objects
o1 to o4 and the query object q are located in a road network, represented as a graph consisting of
nodes and edges. Figure 1a shows the static attributes (i.e., “rank” and “price”) of the four objects.
In this example, the query object q moves from node n1 to node n2 (that is, the query path is n1n2).
Assume that the continuous within skyline query is issued to find the WSOs whose road distances to q
are within 300 (i.e., d = 300). When q is located at point p1 (as shown in Figure 1b), only object o2 is the
WSO. Note that although o1 is not dominated by o2, it cannot be the WSO because its road distance to
q is greater than d. When q moves to point p2 (as shown in Figure 1c), the road distance of object o4 to
p2 is equal to that of object o2. That is, when q is located at the left side of p2, object o4 becomes closer
to q than o2. Thus, o4 is better than o2 in the “distance” dimension, so that o4 becomes a skyline object.
As the road distances of o2 and o4 are both less than d, they are the WSOs.

(b) distances of objects to p1 (c) distances of objects to p2

q

o1

o2

o3

o4

n1

n2

n4

n6

n7

n5

n3430

p1

n8

n9180480

280

q

o1

o2

o3

o4

n1

n2

n4

n6

n7

n5

n3

p2

n8

n9

380

230

230

530

hotel price(k)rank

o1

1.5

3

2

5

1

4

o2

o3

o4

1.5

2.8

(a) static attributes of objects

Figure 1. Example of the continuous within skyline query.

The processing techniques for the continuous within skyline query developed in [8] focus
exclusively on a static road network, where the information of objects (i.e., their object attributes) and
the conditions of roads remain unchanged. However, in real-world applications, object information
and road conditions inevitably vary with time. For example, a hotel offers a 20% discount so as to
attract more customers (that is, varying the “price” attribute), and a crash obstructs the road for several
hours (in this case, the length of the road is changed to ∞). Such varying information about objects
and roads may outdate the previous query result, so that the continuous within skyline query needs
to be evaluated again. This incurs the problem of high re-evaluation cost, which severely limits the
applicability of the approaches in [8] in practice.

In this paper, we address the issue of efficiently processing the continuous within skyline query in
dynamic road networks with time-varying information, where three types of time-varying information
are taken into account. The first type of time-varying information is the time-varying object attribute,
in which an object o changes its attribute from o.a to o.a′. The second type is the time-varying edge
length, where the length of an edge e changes from e.len to ∞ (meaning that the road is temporarily
closed) or from ∞ to e.len (i.e., the road now is passable). The last one is the time-varying query path,

ISPRS Int. J. Geo-Inf. 2017, 6, 137 3 of 20

where the query path Pq has been changed to P′q because there are road congestions or accidents on the
roads in Pq.

To provide real-time processing of the above time-varying information, we need to quickly
examine whether the WSOs of the continuous within skyline query are affected by the time-varying
information and then evaluate the new WSOs if necessary. Therefore, we design three elaborate data
structures, the object attribute dominating matrix (OADM), the road distance sorted list (RDSL) and
the skyline object expansion tree (SOET), to adequately maintain the information of objects and the
road network, which can be used to facilitate the task of quickly determining which time-varying
information influences the query result. Moreover, we develop an efficient algorithm, namely the
within skyline object updating algorithm, combined with the three data structures to rapidly evaluate
the new result of the continuous within skyline query. For better readability, Table 1 summarizes the
notations used.

Table 1. The notations.

Notation Description

So a set of data objects
Pq a path along which the query object moves
d a user-defined distance

WSOs the within skyline objects
Time-varying object attribute o changes its attribute from o.a to o.a′

Time-varying edge length e’s length is changed from e.len to ∞ or from ∞ to e.len
Time-varying query path Pq is changed to P′q

The main contributions of this paper are summarized as follows.

• We address the issue of efficiently processing the continuous within skyline query in dynamic
road networks, where three types of time-varying information, the time-varying object attribute,
the time-varying edge length and the time-varying query path, are taken into account in
query processing.

• Three data structures, OADM, RDSL and SOET, are designed to adequately maintain the information
of objects and the road network, in order to efficiently handle the time-varying information.

• We propose the within skyline object updating algorithm, combined with the three data structures,
to rapidly evaluate the new query result affected by the time-varying information.

• A comprehensive set of experiments is conducted to demonstrate the merits of the
proposed approaches.

The remainder of this paper is organized as follows. Section 2 reviews some related works.
In Section 3, we present the three data structures, SADM, RDSL and SOET. Section 4 illustrates how
the within skyline object updating algorithm works. Section 5 shows extensive experiments on the
performance of the proposed methods. Finally, Section 6 concludes the paper with directions on
future work.

2. Related Works

The skyline query is first studied in the area of computational geometry [9–13]. Several processing
methods have been proposed to solve the continuous skyline query in Euclidean spaces.
Cheema et al. [14] study the problem of continuously monitoring a moving skyline query by using
a safe zone-based approach. Zheng et al. [15] propose continuous skyline computation over an
incremental motion model, where the query point moves incrementally in discrete time steps with no
restrictions and predictability. Vu et al. [16] further address the issue of processing the skyline query
for object data with uncertainty.

In recent years, processing skyline queries in road networks has received considerable attention.
Deng et al. [17] extend the concept of the spatial skyline [7] to road networks and present the

ISPRS Int. J. Geo-Inf. 2017, 6, 137 4 of 20

multi-source skyline query (MSQ). Given a set of m query objects and a set of n data objects in a road
network, each data object o is mapped to an m-dimensional point, where the value of the i-th dimension
refers to the road distance between o and the i-th query object. Then, MSQ retrieves the skyline points
that are not dominated in terms of the m dimensions. Deng et al. propose three algorithms, the
Euclidean distance constraint (EDC), the lower bound constraint (LBC), and collaborative expansion
(CE), to solve the MSQ problem. To improve the search performance, EDC and LBC utilize Euclidean
distance as the lower bound of road distance to prune data objects. As for CE, the pruning strategy is
to start from the m query objects to search the road network for candidate skyline objects. Once an
object has been visited m times, those objects that have never been visited can be pruned. However,
these algorithms may generate too many candidates and cause unnecessary road distance computation.
Hence, Zou et al. [18] propose the shared shortest path (SSP) algorithm associated with the shortest
path tree (SP-Tree) to overcome the problems. The criteria for determining the skyline points in
the above methods are based on the road distances between data objects and query objects. Other
studies [19,20] consider the skyline problem in multi-cost transportation networks (MCN), where each
edge (i.e., road segment) is associated with multiple cost values and the skyline points are determined
based on these cost values. Huang et al. [21] study another skyline problem of finding the skyline
points that are not dominated in terms of only two attributes: (1) their network distance to a query
location q and (2) the detour distance from q’s predefined route on the road network. Jang et al. [22]
address the issue of processing continuous skyline queries in road networks. The idea is to pre-compute
a range R for each data object o such that if the query object is within R, then o must be a skyline point
in terms of its road distance to the query object and object attribute. Then, the skyline points of the
query object can be determined based on the pre-computed ranges of all data objects. However, two
major problems limit the applicability of this method. The first problem is that pre-computing all object
ranges incurs tremendous processing cost, especially for a road network with a large size. The second
is that the skyline result cannot provide useful information to the user because the skyline points far
away from the query object are also included in the query result. Recently, Huang et al. [8] propose
several approaches to process the continuous within skyline query in a static road network. For each
edge e ∈ Pq, the procedure includes: (1) obtaining a set of global within skyline objects (GWSO) such
that object o ∈ GWSO must be a WSO for point p on edge e; and (2) determining some points on edge
e such that the WSOs between two consecutive points remain the same and finding the corresponding
WSOs of these points. However, as discussed in the Introduction, the time-varying information limits
the applicability of their approach in practice.

The related works mentioned above focus exclusively on: (1) processing the skyline queries in
Euclidean spaces (e.g., [14,15]), where the distance between objects is computed by simply using
the objects’ locations rather than based on the connectivity of the road network; (2) answering the
traditional skyline queries and their variants in the road networks (e.g., [7,17,18]); or (3) considering
the continuous skyline query processing in a static road network (e.g., [8,22]), in which the information
of objects and the conditions of the roads remain unchanged. In this paper, our efforts are devoted
to overcoming the limitations of the previous works. That is, we investigate the continuous skyline
problem in dynamic road networks with time-varying information.

3. Data Structures

The approach in [8] first determines a set GWSO for each edge e ∈ Pq and then finds the WSOs for
point p on edge e by taking into consideration the objects in GWSO only. The set GWSO is represented
as a union of the WSOs of the two nodes connected by the edge e and the objects on e, where
determining the WSOs of the nodes dominates the overall performance of processing the continuous
within skyline query since it involves a large number of road distance computations. To efficiently
process the continuous within skyline query in dynamic road networks with time-varying information,
we design three data structures, the object attribute dominating matrix (OADM), the road distance
sorted list (RDSL) and the skyline object expansion tree (SOET), to maintain the information of objects

ISPRS Int. J. Geo-Inf. 2017, 6, 137 5 of 20

and the road network. Benefiting from the data structures, we can quickly update the set GWSO for
each edge e ∈ Pq affected by the time-varying information. In the following, we describe separately
the three data structures in detail and discuss how to update them for the time-varying information
(i.e., the time-varying object attribute, the time-varying edge length and the time-varying query path).

3.1. Object Attribute Dominating Matrix

For each node n belonging to the query path Pq, the object attribute dominating matrix (OADM),
represented as a 2D matrix, is designed to maintain the dominance relationships between objects,
in terms of their object attributes. When the continuous within skyline query is processed, the rows
and the columns of the OADM correspond to the objects whose road distances to n are less than
or equal to the distance d. The reason why only such objects are kept in the OADM is that if their
dominance relationships have been changed by the time-varying object attributes, the WSOs of node n
could be affected. In other words, the time-varying object attributes of the objects not in the OADM
cannot affect n’s WSOs.

In the OADM, the value of each entry (oi, oj) is represented as follows:

(oi, oj) =

× if i = j,
1 if oi dominates oj,
−1 if oj dominates oi,
0 otherwise,

(1)

where “1” and “−1” mean that there is a dominance relationship between objects oi and oj, and “0”
shows that oi and oj cannot dominate each other, in terms of their object attributes. Consider the
example in Figure 2a, where four objects o1 to o4 are located on a road network, and have “price” and
“rank” attributes. Assume that a continuous within skyline query is processed to find the skyline
objects within the distance range d = 100. As the road distances between objects o1 to o4 and the node
n1 are less than or equal to 100, they all are kept in the OADM of n1. In terms of the “price” and “rank”
attributes of objects, the value of each entry in the OADM can be determined by using Equation (1),
as shown in Figure 2b. In this figure, only objects o1, o2 and o4 are the WSOs of node n1 (because o3 is
dominated by o2).

When the time-varying information (i.e., the time-varying object attribute, the time-varying edge
length or the time-varying query path) has been changed, the OADM of node n needs to be updated
accordingly, as discussed in the following.

• For the time-varying object attribute of an object o where o’s attribute is changed from o.a to o.a′:
if object o appears in the OADM, then the dominance relationships between o and the other objects
in the OADM are re-checked based on o.a′, so as to update the values of entries in the row and
the column containing o. Otherwise, the OADM need not be updated as o does not appear in
the OADM.

• For the time-varying edge length of an edge e where the length of e is changed from e.len to ∞
(or ∞ to e.len): in the case that e’s length is changed from e.len to ∞, the road distances of some
objects to n would increase. Conversely, changing e’s length from ∞ to e.len would decrease some
objects’ road distances. As a result, the objects whose road distances updated by the time-varying
edge length are less (greater) than or equal to d need to be added into (removed from) the OADM.
Then, the values of new entries in the OADM are determined using Equation (1).

• For the time-varying query path where the query path Pq is changed to P′q: if the edge e connecting
node n belongs to Pq

⋂
P′q, then the OADM of n is still usable because e is not affected by the

time-varying query path. Otherwise, e belongs to Pq − P′q, and thus, the OADM of n is removed as
n is not on the query path.

ISPRS Int. J. Geo-Inf. 2017, 6, 137 6 of 20

o3

n1

o1

o2

20

30

30

10

30

n3

n4

40

20

n6

n7

40

30 o4

o1 120 5

30 4

3

o
i

20 2

35

o2

o3

o4

price rank

n2
...

o1

o2

o3

o4

X

X0

1

-1 X

0

0

0

0 0

0

0

X 0

0

o2 o3o1 o4

(c) RDSL(b) OADM

(a) Four objects with attributes

o2o2 o1 o3 o420 30 70 80 nil

(d) SOET

Φ

n1 0

n3 50 { }o2
n4 40 { }o1

n2 100 { }

n6 110 { }o3
n7 110 { }o4

{ }Φ

n4 80 { }Φ n3 70 { }Φ

n7 150 { }o4
n1 120 { }o1

n6 130 { }o3
n1 120 { }o2

N1

N2 N3
N4

N5 N6 N7 N8

N9 N10 N11 N12

Figure 2. Three data structures: object attribute dominating matrix (OADM), the road distance sorted
list (RDSL) and the skyline object expansion tree (SOET).

3.2. Road Distance Sorted List

As the road distance between each object and the query object plays an important role in
determining the WSOs result, we design the road distance sorted list (RDSL) to store, for each node
n belonging to the query path Pq, the objects in ascending order of their road distances to n. Similar
to the OADM, only the objects whose road distances to n do not exceed the distance d are stored in
the RDSL. If the position of an object o in the RDSL is in front of that of another object o′, then o has a
chance to dominate o′ because of its smaller distance to n. Consider again Figure 2a, where objects o1

to o4 are within the distance range d = 100. According to their road distances to node n1, the RDSL
of n1 is shown in Figure 2c. In this figure, the entry (o2, o3) in the OADM is equal to one (refer to
Figure 2b), and o2 is in front of o3 in the RDSL. Therefore, o3 is dominated by o2 in terms of “price”,
“rank” and “distance” attributes. Note that although o3 is not a WSO, it is still kept in the OADM and
the RDSL because its distance to n1 does not exceed d.

Due to the time-varying information, the road distances of objects in the RDSL of node n could be
changed, as well as the order of objects. Once the RDSL is affected by the time-varying object attribute,
the time-varying edge length or the time-varying query path, it needs to be updated as follows.

ISPRS Int. J. Geo-Inf. 2017, 6, 137 7 of 20

• For the time-varying object attribute of an object o: changing o’s attribute from o.a to o.a′ affects
only the dominance relationship between o and the other objects, in terms of object attributes.
The road distances of objects to node n remain unchanged so that the order of objects in the RDSL
is not affected by the time-varying object attribute.

• For the time-varying edge length of an edge e: if the length of e is changed from e.len to ∞ (i.e., e is
temporarily closed), then the distances of some objects to n increase. For each object in the RDSL
of n, once its road distance affected by e is greater than d, it needs to be removed. In the case
that e’s length is changed from ∞ to e.len, some objects would have decreasing distances to n
because e is now passable. Therefore, such objects can be added into the RDSL if their decreasing
distances do not exceed d. In addition to increasing or decreasing the road distance of the object,
the time-varying edge length of e may also result in an adjustment in the order of objects in
the RDSL.

• For the time-varying query path where the query path Pq is changed to P′q: similar to the process
of updating the OADM of node n mentioned in Section 3.1, the RDSL of n is removed only if n is
not on the new query path P′q.

3.3. Skyline Object Expansion Tree

As discussed in the previous subsections, the time-varying edge length of an edge e results in
the re-computations of the road distances of objects. However, computing the object distance by
re-executing Dijkstra’s algorithm or the A* algorithm, whenever the time-varying edge length is
changed, would incur high cost in processing the continuous within skyline query. In order to greatly
reduce the computation cost, the skyline object expansion tree (SOET) is designed to quickly compute
the road distances of objects affected by the time-varying edge length, without the need to execute the
specific algorithms.

For each node n belonging to the query path Pq, the SOET is built to keep information of the objects
and the network nodes whose road distances to n are less than or equal to d. Then, by traversing the
SOET, we can determine whether the time-varying edge length affects the objects within the distance
range d and compute their new road distances to n if necessary. In the SOET, each tree node N has the
structure (ni, disti, Oi, ptrsN), where ni refers to the network node id, disti is the road distance of ni
to n, Oi is the set of objects on the edge connecting ni and nj (where nj belongs to N’s parent node)
and ptrsN are the pointers to N’s child nodes. For ease of exposition, the road network presented in
Figure 2a is used again to illustrate the SOET structure, where the distance region starts at the node n1

and ends at the vertical marks with distance d = 100. Initially, the root N1 of the SOET stores the start
node n1’s information, including the network node id n1, the distance to n1 (i.e., 0) and O1 = {∅}.
As node n1’s adjacent nodes n3, n4 and n2 in the road network have the distances less than or equal
to 100, the tree nodes N2, N3 and N4 in the forms of (n3, 50, {o2}), (n4, 40, {o1}) and (n2, 100, {∅}),
respectively, are stored in the SOET and pointed by ptrsN1 (i.e., they are the child nodes of N1). Then,
consider the adjacent nodes n6 and n4 of n3 in the road network. Because the distances of object o3 and
node n4 to n1 do not exceed 100, the tree nodes N5 and N6 of the SOET are represented as (n6, 110, {o3})
and (n4, 80, {∅}), respectively, and pointed by ptrsN2 . Similarly, the tree nodes N7 and N8 in the forms
of (n7, 110, {o4}) and (n3, 70, {∅}), respectively, are the child nodes of N3. The corresponding SOET of
node n1, consisting of 12 tree nodes N1 to N12, is shown in Figure 2d. In the following, we discuss how
to update the SOET of each node n when the time-varying information is changed.

• For the time-varying object attribute of an object o: for the continuous within skyline query, the
SOET of n remains valid regardless of the time-varying object attribute, because of the unchanged
distance d.

• For the time-varying edge length of an edge e: the process of updating the SOET of node n needs
to first determine which objects are affected by e and then re-compute their road distances to
n. For the case that the length of edge e connecting nodes ns and ne is changed from e.len to ∞
(i.e., e is temporarily closed), the SOET of node n is traversed from its root down to leaf level so as

ISPRS Int. J. Geo-Inf. 2017, 6, 137 8 of 20

to check whether there are parent-child relationships between the tree nodes containing ns and
ne. If no such parent-child relationship exists, then the SOET of n remains valid because edge e
connecting ns and ne falls out of the distance range d. Otherwise, the subtrees rooted at the tree
nodes containing ns and ne are affected by e and need to be removed from the SOET. For the case
that the length of edge e connecting nodes ns and ne is changed from ∞ to e.len, some objects’ road
distances can further decrease because e now is passable. As such, we perform a grown expansion
starting from ns and ne to include the objects whose decreasing distances are less than or equal
to d. Then, the subtree rooted at the tree node containing ns (or ne) is updated accordingly to
contain information of such objects. Here, we explain the two cases using a concrete example,
continuing the previous example in Figure 2. Assume that the edge connecting nodes n1 and n4

is temporarily closed (corresponding to the first case), as shown in Figure 3a. Having traversed
the SOET of node n1, we know that both the tree nodes N1 and N10 (N3 and N6) contain node n1

(n4). As there is a parent-child relationship between N1 and N3 (N6 and N10), the subtree rooted
at N3 (N10) is removed from the SOET (the shaded part in Figure 3a), so that the road distances
of objects o1 and o4 are re-computed as ∞ (because o1 is on e) and 120, respectively. As a result,
objects o1 and o4 are removed from the OADM and the RDSL of n1. Going back to the example
in Figure 2, assume that the edge connecting nodes n4 and n6 is passable, and its length is equal
to 30 (corresponding to the second case), as shown in Figure 3b. Starting from the tree nodes N3

and N6 containing node n4, two new subtrees have been included into the SOET (the bold part in
Figure 3b) because their updated distances do not exceed the distance 100.

• For the time-varying query path where the query path Pq is changed to P′q: if the node n is not on
the new query path P′q, then the SOET of n is removed.

o3

n1

o1

o2

20

30

30

10

30

n3

n4

40

20

n6

n7

40

30

o4

Φ

n1 0

n3 50 { }o2
n4 40 { }o1

n2 100 { }

n6 110 { }o3
n7 110 { }o4

{ }Φ

n4 80 { }Φ n3 70 { }Φ

n7 150 { }o4
n1 120 { }o1

n6 130 { }o3
n1 120 { }o2

N1

N2 N3
N4

N5 N6 N7 N8

N9 N10 N11 N12

n2
...

o3

n1

o1

o2

20

30

30

10

30

n3

n4

40

20

n6

n7

40

30

o4

30

n2
...

Φ

n1 0

n3 50 { }o2
n4 40 { }o1

n2 100 { }

n6 110 { }o3

{ }Φ

n4 80 { }Φ

N1

N2 N3
N4

N5 N6

N7 N8

N9 N11 N12
n6 110N10 { }Φ

n6 70 { }Φ

n3 130 { }o3

N13

N14 N15

N16
N17

(a) Edge connecting and is closedn n1 4

(b) Edge connecting and is passablen n4 6

Figure 3. Update of the SOET.

4. Within Skyline Object Updating Algorithm

Recall that the WSOs result for each edge e ∈ Pq is obtained from the set GWSO, which is a union
of the WSOs of the two nodes connected by e and the objects on e. Here, we denote the WSOs set
of node n as WSOn. Determining the WSOn dominates the overall performance of processing the

ISPRS Int. J. Geo-Inf. 2017, 6, 137 9 of 20

continuous within skyline query because it involves a large number of road distance computations.
As the time-varying information (including the time-varying object attribute, the time-varying edge
length and the time-varying query path) can potentially outdate the previous WSOn, it needs to be
updated if necessary. An intuitive method to update the WSOn of node n is to re-execute the approach
in [8] whenever the time-varying information is changed, which, however, would suffer from a long
re-computation time for a large amount of time-varying information changed. Therefore, we develop
the within skyline object updating algorithm to provide real-time processing of the time-varying object
attribute, the time-varying edge length and the time-varying query path, so as to quickly update the
WSOn of each node n on Pq without the need to execute the approach in [8].

For the WSOn set of each node n on Pq, the procedure of the within skyline object updating
algorithm can be divided into three cases according to the type of time-varying information. The first
case is that the time-varying information is changed by an object o (which may or may not be a WSO of
n); the second one is that the time-varying information is changed by an edge e (that is, e is temporarily
closed or now passable); and the last case is that the time-varying information corresponds to the
time-varying query path (due to the road congestions or accidents on some roads belonging to Pq).
In the following, we discuss the three cases separately.

4.1. Processing of Time-Varying Object Attribute

The main idea of processing the time-varying object attribute is to (1) determine whether the
time-varying object attribute of object o affects the WSOn by examining whether o appears in the
OADM and the RDSL of n and (2) update the WSOn by checking the value of entry in the OADM and
the order of objects in the RDSL with respect to o. Suppose that object o changes its attribute from o.a
to o.a′. If o does not appear in the OADM and the RDSL of n, then the WSOn of node n need not be
updated regardless of object o’s new attribute o.a′. This is because o falls outside the distance range
d, and thus, the time-varying object attribute of o can be ignored. Otherwise (i.e., object o appears in
the OADM and the RDSL), the dominance relationship between o and another object, say o′, may be
changed by o.a′ (that is, the values of entries (o, o′) and (o′, o) in the OADM have been modified), so
that the previous WSOn needs to be further verified. According to whether o and o′ are contained in
the WSOn (i.e., they are the WSOs of n), the process of updating the WSOn can be divided into four
cases: (1) o ∈ WSOn and o′ ∈ WSOn, (2) o ∈ WSOn but o′ /∈ WSOn, (3) o /∈ WSOn, but o′ ∈ WSOn,
and (4) o /∈WSOn and o′ /∈WSOn, which are separately discussed in the following.

The first case where o ∈ WSOn and o′ ∈ WSOn implies that no object can dominate o and o′ in
terms of the object attributes and the “distance” attribute (closer to n than o and o′). Let us observe
the value of entry (o, o′) in the OADM affected by the time-varying object attribute, consisting of the
following six conditions, to determine whether the WSOn needs to be updated.

• (o, o′) is changed from −1 to zero: this means that there is no longer a dominance relationship
between o and o′ (i.e., o and o′ cannot dominate each other). Because o and o′ are still contained in
the WSOn, changing (o, o′) from −1–0 cannot affect the WSOn and can be ignored.

• (o, o′) is changed from one to zero: same as the first condition, the WSOn is not affected even
though (o, o′) is changed to zero.

• (o, o′) is changed from−1 to one: o now can dominate o′ in terms of the object attributes. Note that
since o is previously dominated by o′ in terms of the object attributes ((o, o′) = −1), but still can
be a WSO, o must be closer to n than o′ (i.e., o is in front of o′ in the RDSL). Therefore, when
(o, o′) = 1, o′ needs to be removed from the WSOn.

• (o, o′) is changed from one to −1: similar to the third condition, o has to be removed from the
WSOn because it is dominated by o′ in terms of the object attributes and the “distance” attribute.

• (o, o′) is changed from zero to −1: as (o, o′) = −1, o now is dominated by o′ in terms of the object
attributes. By checking the order of o and o′ in the RDSL, o should be removed from the WSOn

if it is behind o′ (otherwise, o is still kept in the WSOn because of its better “distance” attribute).

ISPRS Int. J. Geo-Inf. 2017, 6, 137 10 of 20

• (o, o′) is changed from zero to one: same as the fifth condition, o′ is removed from the WSOn as
long as o has a better order than o′ in the RDSL.

For the second case where o ∈ WSOn, but o′ /∈ WSOn, there exists an object, say o′′, that can
dominate o′ in terms of the object attributes (i.e., (o′, o′′) = −1 in the OADM) and the “distance”
attribute (i.e., o′ is behind o′′ in the RDSL). Note that o may be the object dominating o′ (i.e., o′′ = o).
The six conditions regarding the value of entry (o, o′) are described as follows.

• (o, o′) is changed from −1 to one: (o, o′) = 0 means that o is no longer dominated by o′, which
will not affect the objects in the WSOn. Thus, the change of (o, o′) can be ignored.

• (o, o′) is changed from one to zero: as the dominance relationship between o and o′ does not exist,
o′ can be promoted to a WSO (i.e., o′ is added to the WSOn) if (1) (o′, o′′) = −1 does not appear in
the OADM or (2) (o′, o′′) = −1 appears, but o′ is in front of o′′ in the RDSL. Otherwise, o′′ can still
dominate o′, so that the WSOn remains unchanged.

• (o, o′) is changed from −1 to one: similar to the first condition, the WSOn is not affected by
changing (o, o′) to one.

• (o, o′) is changed from one to −1: it implies that (1) o′ can dominate o if it has a better “distance”
attribute, and (2) o′ can be a WSO if no object dominates it. For (1), we only need to check the
positions of o and o′ in the RDSL. If o is behind o′, then o is removed from the WSOn. Otherwise,
o is still kept in the WSOn. For (2), the process for the second condition can be applied to determine
whether o′ becomes a WSO.

• (o, o′) is changed from zero to −1: because o now is dominated by o′ in terms of the object
attributes, o should be removed from the WSOn once o′ is better than o in the “distance” attribute.
By checking the order of o and o′ in the RDSL, o is removed from (kept in) the WSOn if it is behind
(in front of) o′.

• (o, o′) is changed from zero to one: same as the third condition, the WSOn is not affected by the
change of (o, o′).

The third case is that o /∈ WSOn, but o′ ∈ WSOn. In this case, there is an object o′′ dominating
o because (o, o′′) = −1 in the OADM and o′′ is in front of o in the RDSL (where o′′ may be o′).
The following six conditions describe how the WSOn is updated according to different values of (o, o′).

• (o, o′) is changed from −1 to zero: (o, o′) = 0 means that o is no longer dominated by o′ in terms
of the object attributes, and thus, o can be a WSO if o′ is the only object previously dominating o.
In other words, if there still exists an object o′′ that leads to (o, o′′) = −1 and is in front of o in the
RDSL, then o cannot be added to the WSOn. Otherwise, o becomes a new WSO and is added to
the WSOn.

• (o, o′) is changed from one to zero: even though the dominance relationship between o and o′ is
affected by changing (o, o′) from one to zero, the WSOn remains unchanged (that is, o /∈ SOn and
o′ ∈WSOn).

• (o, o′) is changed from −1 to one: because o now can dominate o′ in terms of the object attributes,
there is a chance that o (o′) is added to (removed from) the WSOn. Here, the process for the first
condition can be applied to determine whether o is added to the WSOn or not. On the other hand,
whether o′ is removed from the WSOn can be determined by checking the order of o and o′ in
the RDSL.

• (o, o′) is changed from one to−1: similar to the second condition, the WSOn would not be affected
regardless of the change of (o, o′).

• (o, o′) is changed from zero to −1: (o, o′) = −1 means that o now is dominated by o′ in terms
of the object attribute. As o /∈ SOn (that is, an object can dominate o), the changed dominance
relationship between o and o′ cannot affect the WSOn.

• (o, o′) is changed from zero to one: due to (o, o′) = 1, o can be used to dominate o′ by checking
whether it is in front of o′ in the RDSL. If so, o′ is removed from the WSOn. Otherwise, the WSOn

need not be updated.

ISPRS Int. J. Geo-Inf. 2017, 6, 137 11 of 20

Considering the last case that o /∈ WSOn and o′ /∈ WSOn, there exists an object o′′ (or o′′′)
dominating o (or o′) in terms of the object attributes and the “distance” attribute. In the following,
we discuss how the WSOn is affected under various values of (o, o′).

• (o, o′) is changed from −1 to zero: if o′ is the object previously dominating o (i.e., o′ = o′′) and
there is no other object whose (o, o′′) = −1 in the OADM and in front of o in the RDSL, then o can
be added to the WSOn. Otherwise, the WSOn is not affected by changing (o, o′) from −1 to zero.

• (o, o′) is changed from one to zero: although o′ is no longer dominated by o, it cannot be promoted
to a WSO based on the following reasons: (1) if o = o′′′, then the object o′′ previously dominating
o is still better than o′ in the object attributes and the “distance” attribute, even though the
dominance relationship between o and o′ has been changed, or (2) if o 6= o′′′, then there is an object
o′′′ dominating o′.

• (o, o′) is changed from −1 to one: similar to the first condition, o can be a new WSO and added to
the WSOn when o′ is the only object previously dominating o in terms of the object attributes and
the “distance” attribute.

• (o, o′) is changed from one to−1: same as the second condition, there must be an object dominating
o′ in terms of the object attributes and the “distance” attribute, regardless of the change of (o, o′).

• (o, o′) is changed from zero to −1: even if the dominance relationship between o and o′ is changed,
an object o′′ (or o′′′) can still dominate o (or o′) so that o /∈WSOn (or o′ /∈WSOn).

• (o, o′) is changed from zero to one: (o, o′) = 1 means that o now can dominate o′, which, however,
cannot affect the WSOn because both o and o′ are not contained in the WSOn.

The WSOn of node n can be updated by considering that each entry in the row containing the
object o changing its attribute from o.a to o.a′ corresponds to which case mentioned above. The example
in Figure 4 is used to illustrate how to update the WSOn of node n when the time-varying object
attribute of object o is changed. As shown in Figure 4a, there are four objects o1 to o4 with two
attributes: “price” and “rank” and the “distance” attribute (where the “distance” attribute refers to the
road distance of object n). Based on the object attributes and the “distance” attribute, o3 and o4 are
dominated by o2 and o1, respectively, and thus, o1 and o2 are the WSOs of n (i.e., WSOn = {o1, o2}).
The OADM of n is also shown in Figure 4a. Suppose that object o2’s “price” and “rank” attributes
are changed from 30 to 40 and from four to three, respectively. Due to the change of o2’s attributes,
the value of entry in the row and the column containing o2 in the OADM has been updated (refer to
Figure 4b). As objects o2 ∈WSOn and o3 /∈WSOn and (o2, o3) in the OADM are changed from one to
−1, meaning that o2 now is dominated by o3 in terms of “price” and “rank” attributes, the WSOn is
updated according to the fourth condition of the second case. Although, (o2, o3) = −1, o2 is still kept
in the WSOn because of its better “distance” attribute than o3. As for o3, it can be added to the WSOn

as (o3, o1) 6= −1 and (o3, o4) 6= −1. That is, WSOn = {o1, o2, o3}. Let us consider another scenario
where object o4 changes its “price” (“rank”) attribute from 130 (5) to 20 (3). The time-varying object
attribute of o4 affects the dominance relationship between o4 and o1, as well as o4 and o3. As shown in
Figure 4c, the values of entries (o4, o1) and (o4, o3) are changed to zero and one, respectively. For the
case that o4 /∈WSOn, o1 ∈WSOn and changing (o4, o1) from −1 to zero, which corresponds to the first
condition of the third case, o4 is added to the WSOn. For the case that o4 /∈ WSOn, o3 /∈ WSOn and
updating (o4, o3) from zero to one, corresponding to the last condition of the fourth case, the WSOn is
not affected by (o4, o3) = 1. Finally, WSOn = {o1, o2, o4}.

ISPRS Int. J. Geo-Inf. 2017, 6, 137 12 of 20

X

X

X

0

1

-1

0

0o1

o2

o3

o4

o1 o2 o3 o4

X

0

0

0

00-1

1o1 120 5

30 4

3

5

20

30

70

80

35

o2

o3

o4 130

o
i price rank distance

() our objects with attributesa F

X

X

X

0

-1

1

0

0o1

o2

o3

o4

o1 o2 o3 o4

X

0

0

0

00-1

1o1 120 5

40 3

3

5

20

30

70

80

35

o2

o3

o4 130

o
i price rank distance

(b) Time-varying object attribute of o2

X

X

X

0

1

-1

0

0o1

o2

o3

o4

o1 o2 o3 o4

X

0

0

00

o1 120 5

30 4

3

3

20

30

70

80

35

o2

o3

o4 20

o
i price rank distance

0

1

-1

(c) Time-varying object attribute of o4

Figure 4. Example of processing the time-varying object attribute.

4.2. Processing of Time-Varying Edge Length

Different from the time-varying object attribute, which changes only the value of the entry
in the OADM, the time-varying edge length may affect the number of objects in the OADM and
the RDSL. Specifically, an object could be added to (or removed from) the OADM and the RDSL
because of its decreasing (or increasing) distance affected by the time-varying edge length. Moreover,
the time-varying edge length may also result in an adjustment in the order of objects in the RDSL.
As such, when the time-varying edge length of an edge e is changed, the OADM, the RDSL and the
SOET of node n are updated accordingly, which are then used to determine whether the WSOn of
node n is affected by edge e’s time-varying edge length.

Consider the case that the length of edge e connecting nodes ns and ne is changed from e.len to ∞
(i.e., e is temporarily closed). In the SOET of node n, if there is no parent-child relationship between
the tree nodes containing ns and ne, then changing e’s length from e.len to ∞ cannot affect the OADM,
the RDSL and the SOET of node n, as well as its WSOn (i.e., the WSOs result remains valid). Otherwise,
the subtrees rooted at the tree nodes containing ns and ne are affected by e and removed from the
SOET. As a result, the road distances between the node n and the objects contained in the subtrees
removed need to be updated by traversing the remaining part of the SOET. Suppose that the updated
road distance of object o to node n increases from o.dist to o.dist′. Then, the process of updating the
WSOn is divided into the following three cases: (1) object o does not appear in the RDSL; (2) object o
appears in the RDSL, but o /∈WSOn; and (3) object o appears in the RDSL and o ∈WSOn.

ISPRS Int. J. Geo-Inf. 2017, 6, 137 13 of 20

• Object o does not appear in the RDSL: this means that the road distance o.dist of object o to node n
is greater than the distance d. As o.dist′ > o.dist, object o cannot appear in the RDSL. Therefore,
the WSOn need not be updated.

• Object o appears in the RDSL, but o /∈WSOn: if the updated distance o.dist′ of object o exceeds d,
then o is directly removed from the OADM and the RDSL of node n (while the WSOn remains
unchanged). Otherwise (i.e., o.dist′ ≤ d), the order of the RDSL has to be adjusted according to
o.dist′. As for the OADM and the WSOn obtained by previous, they are still valid because o’s
dominance relationship is not affected and o /∈WSOn.

• Object o appears in the RDSL and o ∈ WSOn: in the case where the updated distance o.dist′ is
greater than d, object o needs to be removed from the OADM, the RDSL and the WSOn of node n
(meaning that the WSOs result has been changed). In addition, some object, say o′, that appears
in the RDSL, but not in the WSOn, can be promoted to the skyline object if it is dominated only
by object o (i.e., (o, o′) = 1 in the OADM and o is in front of o′ in the RDSL). By looking up
the row containing o in the previous OADM, we know the objects with (o, o′) = 1. For each
object o′, if there is no object o′′ such that (o′′, o′) = 1 in the OADM and o′′ is in front of o′ in
the RDSL, then o′ can be added to WSOn as it is now a skyline object, and its distance to n is
within the distance range d. In the case where the updated distance o.dist′ ≤ d, object o is still
kept in the OADM and the RDSL, but it has a higher position in the RDSL than before. In this
case, object o could be removed from the WSOn because of its increasing o.dist′. Conversely, the
objects previously dominated by o have a chance to be added to the WSOn if they are no longer
dominated. To determine whether object o is removed from the WSOn or not, the row containing
o in the OADM is first checked to find each object o′ with (o, o′) = −1, and then, the updated
position of o in the RDSL is compared to that of o′. Object o is removed from the WSOn only when
o′ is in front of o. On the other hand, to determine whether object previously dominated by object
o can be added to the WSOn, each object o′ that has (o, o′) = 1 in the OADM and is behind o in the
RDSL is considered. Once o′ is now in front of o (that is, o′ is no longer dominated by o) and no
object o′′ in front of o′ and (o′′, o′) = 1 can be found, o′ is added to the WSOn. Otherwise, o′ is still
dominated by o′′, so that o′ /∈WSOn.

Consider the case that the length of edge e connecting nodes ns and ne is changed from ∞ to e.len
(that is, e is now passable). If nodes ns and ne are not contained in the tree nodes of the SOET of node n,
which implies that edge e falls outside the distance range d, then the OADM, the RDSL and the WSOn

obtained previously remain valid regardless of changing e’s length from ∞ to e.len. In other words,
the OADM, the RDSLand the WSOn may need to be updated if any tree node of the SOET contains
ns or ne. This is because the road distances between node n and the objects affected by edge e may
further decrease, leading to more or less objects in the OADM, the RDSL and the WSOn. Therefore, a
grown network expansion starting from ns and ne is performed to include the objects whose decreasing
distances (attributed to e) are less than or equal to d. Furthermore, the subtree rooted at the tree node
containing ns (or ne) is updated accordingly to contain information of such objects. Suppose that the
road distance of each affected object o to node n decreases from o.dist to o.dist′ (note that o.dist′ ≤ d).
Similar to the case mentioned above, whether the WSOn needs to be updated can be determined based
on: (1) object o does not appear in the RDSL; (2) object o appears in the RDSL, but o /∈WSOn; and (3)
object o appears in the RDSL and o ∈WSOn.

• Object o does not appear in the RDSL: as the updated road distance o.dist′ of object o to node n is
less than or equal to d, object o has to be added into the OADM (where the values of entries in the
row and the column containing o are computed using Equation (1)) and the RDSL (in which the
order of o is determined according to its o.dist′), resulting in that (a) object o could be added into
the WSOn and (b) some object o′ ∈WSOn could be removed from the WSOn. For (a), if there is an
object o′ with (o, o′) = −1 in the OADM and in front of o in the RDSL, then o is still dominated
by o′ and, thus, cannot be added to the WSOn. Otherwise, o ∈WSOn. For (b), object o′ ∈WSOn

is removed from the WSOn only when o is better than o′ in terms of the object attributes and the

ISPRS Int. J. Geo-Inf. 2017, 6, 137 14 of 20

“distance” attribute. Therefore, if the entry (o, o′) = 1 exists in the OADM and o is in front of o′ in
the RDSL, then o′ is removed from WSOn.

• Object o appears in the RDSL, but o /∈WSOn: as o.dist′ < o.dist, object o has a better order in the
RDSL than before. As a result, there is a chance that object o′ ∈WSOn behind o’s current position
in the RDSL (meaning that o is better than o′ in the “distance” attribute) is now dominated by o.
Having checked the row containing o in the OADM, such an object o′ can be removed from the
WSOn if (o, o′) = 1 exists in the OADM (that is, o is also better than o′ in the object attributes).
On the other hand, due to the decreasing distance o.dist′, all of the objects in front of o may no
longer dominate o so that o can be added to the WSOn. Consider again the row containing o in
the OADM. If no entry (o, o′) = −1, where o′ is in front of o in the RDSL, can be found, then o is
promoted to a skyline object (i.e., o ∈WSOn).

• Object o appears in the RDSL and o ∈WSOn: in this case, object o would still be kept in the WSOn

because its road distance decreases to o.dist′. Furthermore, o may dominate the other objects in
the WSOn, as it now has a better “distance” attribute. For each object o′ ∈ WSOn, once the two
conditions that (o, o′) = 1 in the OADM and o is in front of o′ in the RDSL hold, o′ is removed
from the WSOn.

4.3. Processing of the Time-Varying Query Path

Given the query path Pq, the continuous within skyline query finds the WSOs for each point on
Pq. Moreover, the OADM, the RDSL, the SOET and the WSOn of each node n on Pq are maintained for
efficient processing of the time-varying information. Nevertheless, the query path Pq may be changed
to P′q due to the road congestions or accidents on some roads (i.e., edges) belonging to Pq, making the
OADM, the RDSL, the SOET and the WSOn of the two nodes connecting such edges outdated.

To process the time-varying query path, each edge e belonging to Pq
⋂

P′q is first determined
because the OADM, the RDSL and the SOET of node n connecting e remain valid, as well as its WSOn.
Then, it is only necessary to execute the continuous within skyline query for the remaining part of the
updated query path (that is, P′q − Pq), so as to obtain the WSOs of the nodes on P′q − Pq and also their
OADM, RDSL and SOET. The procedure of the within skyline object updating algorithm is detailed in
Algorithm 1.

Algorithm 1: The within skyline object updating algorithm.
Input : The time-varying information changed by an object o, an edge e, or the query path Pq,

and the original WSOn set of each node n on Pq

Output: The updated WSOn set of node n

/* corresponding to the time-varying object attribute */
if (object o changes its attribute from o.a to o.a′) then

if (o does not appear in OADM and RDSL) then
return the original WSOn;

else
update the WSOn according to the four cases described in Section 4.1;

/* corresponding to the time-varying edge length */
if (the length of edge e is changed from e.len to ∞) then

update the WSOn based on the first case mentioned in Section 4.2;

/* changing e’s length from ∞ to e.len */
else

update the WSOn based on the second case mentioned in Section 4.2;

/* corresponding to the time-varying query path */
if (the query path Pq is changed to P′q) then

update the WSOn using the process discussed in Section 4.3;

ISPRS Int. J. Geo-Inf. 2017, 6, 137 15 of 20

5. Performance Evaluation

In this section, we first conduct two sets of experiments to investigate the efficiency of the
proposed within skyline object updating algorithm, compared to the Cd-SQ algorithm in [8] which
operates without the support of the OADM, the RDSL and the SOET presented in this paper. The first
set of experiments studies the effects of four important factors on the performance of processing the
continuous within skyline query. The second one investigates how well the within skyline object
updating algorithm and its competitor work for dynamic road networks. Then, we discuss the space
requirements of the within skyline object updating algorithm and the Cd-SQ algorithm, respectively.

5.1. Experimental Settings

All experiments are performed on a PC with AMD Athlon X2 5200 CPU and 2 GB RAM.
The algorithms are implemented in C++. As shown in Figure 5, the road map, Oldenburg (a city in
Germany) [23], consisting of about 6000 nodes and 7000 edges, is used in our simulation. The set of
data objects (varying from 10 K to 200 K) is generated using the generator proposed in [24], which is
the most popular framework used in road networks [25–27]. Each data object has several attributes
(ranging from two to six) whose values are normalized in the range [0, 1]. In the experimental space,
we also generate 30 query paths, each of which consists of multiple edges (ranging from one to 16).
For each query path Pq, we perform a continuous within skyline query to find the WSOs for each point
on Pq, in which the distance d varies from 0.1% to 3% of the entire space. Based on the WSOs result
obtained, the OADM, the RDSL and the SOET of each node belonging to Pq are maintained for the
within skyline object updating algorithm. To investigate the effect of the time-varying information on
the performance of the proposed approaches, for each query path Pq, we set the default number of
updates to 20, and each update process involves x% of objects changing their attributes (where x varies
from zero to 20), y% of edges updating their lengths (in which y varies from zero to 16), and z% of
edges on Pq affected by the time-varying query path (where z varies from zero to 25). The performance
is measured by the average CPU time in performing workloads of 30 continuous within skyline queries
with 20 updates. Table 2 summarizes the parameters under investigation, along with their default
values and ranges.

Figure 5. Oldenburg road network.

ISPRS Int. J. Geo-Inf. 2017, 6, 137 16 of 20

Table 2. System parameters.

Parameter Default Range

Number of objects 100 (K) 10, 50, 100, 150, 200 (K)
Number of attributes 4 2, 3, 4, 5, 6
Length of path length 4 1, 2, 4, 8, 16

Distance d 1% 0.1, 0.5, 1, 2, 3 (%)
Time-varying object attribute x 10% 0, 5, 10, 15, 20 (%)

Time-varying edge length y 4% 0, 2, 4, 8, 16 (%)
Time-varying query path z 10% 0, 5, 10, 20, 25 (%)

5.2. Effect of Four Important Factors

The first set of experiments demonstrates the efficiency of the within skyline object updating
algorithm (WSOU) by comparing it with the Cd-SQ algorithm, in terms of the CPU time. Four
experiments are implemented to investigate the effects of four important factors on the performance
of processing the continuous within skyline query with time-varying information. These important
factors are the number of objects, the number of attributes, the length of query path and the value of d.

Figure 6a studies the effect of the number of objects on the performance of the WSOU algorithm
and the CdSQ algorithm. In this experiment, we vary the number of objects from 10 K to 200 K and
measure the CPU time for the proposed algorithms. As we can see from the simulation, the performance
gap between the WSOU algorithm and the CdSQ algorithm increases with the increasing number
of objects. The reason is that for the CdSQ algorithm, the query needs to be re-executed whenever
an update occurs, so that when the number of objects increases, more processing time is spent on
the repetitive query execution. However, for the WSOU algorithm, the query re-execution can be
effectively reduced by taking advantage of the three data structures, the OADM, the RDSL and the
SOET, because most of the time-varying information actually does not affect the query result and, thus,
can be directly ignored.

Figure 6b illustrates the performance of the WSOU algorithm and the CdSQ algorithm as a function
of the number of attributes (ranging from two to six). The simulation shows that the performance of
the CdSQ algorithm degrades linearly as the number of objects increases, while the WSOU algorithm
is not sensitive to the number of attributes. This is because more object attributes would result in more
skyline objects (in terms of the object attributes), and thus, more dominance tests are performed for the
CdSQ algorithm. The simulation confirms again that applying the OADM, the RDSL and the SOET in
the WSOU algorithm can efficiently improve the performance of processing the continuous within
skyline query with time-varying information.

In Figure 6c, we investigate the efficiency of the WSOU algorithm and the CdSQ algorithm by
measuring the CPU cost under different lengths of query path (varying from one to 16 edges). When
the length of query path increases, the CPU overhead for both algorithms increases because for a longer
query path, (1) the CdSQ algorithm takes more CPU time to determine the new query result affected
by each update and (2) the WSOU algorithm requires building more OADM, RDSL and SOET for the
nodes belonging to the query path. Nevertheless, the WSOU algorithm outperforms its competitor in
all cases. The improvement is due to the fact that the WSOU algorithm considers only the time-varying
information affecting the query result (however, the CdSQ algorithm needs to re-execute the query no
matter whether the result is affected or not).

Finally, in Figure 6d, we compare the performance of the WSOU algorithm and the CdSQ
algorithm with respect to different values of d (ranging from 0.1% to 3%). For the WSOU algorithm,
a greater d leads to more objects kept in the OADM, the RDSL and the SOET (i.e., more objects
with the distance range d), and thus, the required CPU time increases slightly with the increasing
d (but basically, the CPU time is still under 10 s). For the CdSQ algorithm, a smaller d is favorable
because less computation of road distances of the objects within the distance range d has to be
performed. However, when d increases to a larger value (e.g., 3%), meaning that more qualifying

ISPRS Int. J. Geo-Inf. 2017, 6, 137 17 of 20

objects are considered, the CPU cost of the CdSQ algorithm becomes much higher than that of the
WSOU algorithm (because it has no chance of avoiding the query re-execution).

0

5

10

15

20

25

30

35

10K 50K 100K 150K 200K

C
P

U
 �

m
e

 (
se

c.
)

Number of objects

CdSQ

WSOU

(a) Number of objects

0

5

10

15

20

25

2 3 4 5 6

C
P

U
 !

m
e

 (
se

c.
)

Number of a"ributes

CdSQ

WSOU

(b) Number of attributes

0

5

10

15

20

25

30

35

1 2 4 8 16

C
P

U
 !

m
e

 (
se

c.
)

Length of query path

CdSQ

WSOU

(c) Length of query path

0

5

10

15

20

25

30

35

0.1% 0.5% 1% 2% 3%

C
P

U
 �

m
e

 (
se

c.
)

d

CdSQ

WSOU

(d) Distance d

Figure 6. Effect of four important factors. WSOU, within skyline object updating.

5.3. Effect of Time-Varying Information

The second set of experiments studies how well the WSOU algorithm and the CdSQ algorithm
work for dynamic road networks by varying the percentages of: (1) objects changing attributes;
(2) edges updating lengths; and (3) affected edges on the query path. Hereafter, for the x-axis in the
figures, the three percentages refer to x%, y% and z%, respectively.

Figure 7a investigates the impact of various numbers of objects changing their attributes
(i.e., varying x%) on the performance of the WSOU algorithm and the CdSQ algorithm. In the
experiment, we vary x% from 0% to 20% and measure the CPU cost for the two algorithms.
The simulation shows that the WSOU algorithm outperforms the CdSQ algorithm by a factor of
1.5 to three in terms of the CPU time. The large difference in CPU time between the two algorithms
comes from: (1) for the CdSQ algorithm, the query re-execution at each update is inevitable, no matter
what the number of objects changing attributes is (that is why its cost keeps almost constant); while (2)
for the WSOU algorithm, the query re-execution can be avoided by determining which of the objects
changing attributes fall outside the distance range d and by only updating the affected query result if
necessary, utilizing the OADM, the RDSL and the SOET.

In Figure 7b, we measure the CPU overhead of the WSOU algorithm and the CdSQ algorithm
under different numbers of edges changing lengths (ranging from 0% to 16%). Similar to the reason
explained in the previous experiment, the CPU time for the CdSQ algorithm is nearly constant as the
number of edges changing lengths increases (i.e., increasing y%). As for the WSOU algorithm, its CPU
time shows an increasing trend because as y becomes greater, the chance of the edge falling within
the distance range d increases so that more distance updates of objects are required. Nevertheless,
the WSOU algorithm can still achieve better performance than the CdSQ algorithm in all cases (by a
factor of up to two), as the affected object distances can be updated by traversing the SOET (but for

ISPRS Int. J. Geo-Inf. 2017, 6, 137 18 of 20

the CdSQ algorithm, Dijkstra’s algorithm or the A* algorithm must be executed to compute the
affected distances).

The last experiment shown in Figure 7c evaluates the effect of the time-varying query path on
the CPU time of the WSOU algorithm and the CdSQ algorithm, in which z% ranges from 0% to 25%.
A large value of z leads to more number of edges belonging to the query path Pq and affected by the
time-varying query path (that is, more edges belonging to P′q − Pq, where P′q is the updated query path).
For the WSOU algorithm, the CPU cost increases with z, because more processing time is required
for determining the WSOs of edges belonging to P′q − Pq using the continuous within skyline query.
Note that the WSOs of edges belonging to Pq

⋂
P′q are still valid, for which the continuous within

skyline query need not be executed. For the CdSQ algorithm, the CPU time is almost not affected by
the value of z. The reason is that the continuous within skyline query has to be re-executed, regardless
of whether the query path is changed or not. Again, the simulation shows that the WSOU algorithm
performs better than the CdSQ algorithm in all cases.

0

5

10

15

20

0 5 10 15 20

C
P

U
 !

m
e

 (
se

c.
)

x (%)

CdSQ

WSOU

(a) Varying x

0

5

10

15

20

0 2 4 8 16

C
P

U
 �

m
e

 (
se

c.
)

y (%)

CdSQ

WSOU

(b) Varying y

0

5

10

15

20

0 5 10 20 25

C
P

U
 �

m
e

 (
se

c.
)

z (%)

CdSQ

WSOU

(c) Varying z

Figure 7. Effect of time-varying information.

5.4. Discussion of the Space Requirement

In this subsection, we discuss the space complexity of the WSOU algorithm and the CdSQ
algorithm, in terms of the data structures used in query processing. For the CdSQ algorithm (refer to [8]),
three tables, Tedge, Tnode and Tobj, are used to represent the road network and maintain information
of data objects. During the course of query processing, the query path Pq is divided into a set of
edges, each of which requires a GWSO set to keep the within skyline objects on it. Assume that the
query path Pq consists of n edges, and the average size of GWSO set for each edge is |GWSO|. The
space complexity of the CdSQ algorithm is estimated as O(|Tedge|+ |Tnode|+ |Tobj|+ n× |GWSO|),
where |Tedge|, |Tnode| and |Tobj| refer the sizes of the tables Tedge, Tnode and Tobj, respectively. For the
WSOU algorithm, in addition to the required space of the CdSQ algorithm, the data structures OADM,
RDSL and SOET are needed to maintain the information of the dominance relationships and the
road distances of objects. For the query path Pq consisting of n edges, there are (n + 1) nodes
connecting the edges, and in each node, the three data structures are used to facilitate handling the
time-varying information. Let |OADM|, |RDSL| and |SOET| be the average sizes of the OADM,

ISPRS Int. J. Geo-Inf. 2017, 6, 137 19 of 20

the RDSL and the SOET, respectively. Then, the space requirement for the WSOU algorithm is
O(|Tedge|+ |Tnode|+ |Tobj|+ n× |GWSO|+ (n + 1)× (|OADM|+ |RDSL|+ |SOET|)). Although the
WSOU algorithm slightly sacrifices the space cost compared to the CdSQ algorithm, it can greatly
improve the performance of processing the continuous within skyline query in dynamic road networks,
which has been demonstrated in the above simulations.

6. Conclusions

This paper focuses on efficiently processing the continuous within skyline queries in dynamic
road networks, where the attributes of objects, the lengths of edges and the query paths may vary
with time (called the time-varying information). To provide real-time processing of the continuous
within skyline queries with time-varying information, we design three data structures, the OADM,
the RDSL and the SOET, to adequately maintain information of objects and road network. Based on
the three data structure, we further develop the within skyline object updating algorithm to quickly
determine whether the query result is affected by the time-varying information and rapidly update the
new result if necessary. Extensive experiments have been conducted to demonstrate the efficiency of
the proposed approaches.

There are several interesting avenues for the future extensions of this work. One important
avenue is to cope with other variations of the skyline queries, such as the continuous k nearest
neighbor queries [8], in dynamic road networks with time-varying information. Another extension
is to extend the within skyline object updating algorithm to be suitable for the highly dynamic
environment, in which all objects move as time passes (implying that the object locations change with
time). An important extension is to study the possibility of applying the within skyline object updating
algorithm to distributed environments, such as the sensor networks [28–30].

Acknowledgments: This work was supported by the Ministry of Science and Technology of Taiwan under Grant
MOST 105-2119-M-022-002 and Grant MOST 104-2119-M-022-001.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Benetis, R.; Jensen, C.S.; Karciauskas, G.; Saltenis, S. Nearest Neighbor and Reverse Nearest Neighbor
Queries for Moving Objects. VLDB J. 2006, 15, 229–249.

2. Huang, Y.K.; Kuo, W.H.; Lee, C.; Wang, T.H. Shortest Average-Distance Query on Heterogeneous
Neighboring Objects. In Proceedings of the International Conference on IDEAS, Yokohoma, Japan,
13–15 July 2015; pp. 116–125.

3. Mokbel, M.F.; Xiong, X.; Aref, W.G. SINA: Scalable Incremental Processing of Continuous Queries in
Spatio-temporal Databases. In Proceedings of the ACM SIGMOD, Paris, France, 13–18 June 2004; pp. 623–634.

4. Tao, Y.; Papadias, D. Time-parameterized queries in spatio-temporal databases. In Proceedings of the ACM
SIGMOD, Madison, WI, USA, 2–6 June 2002; pp. 334–345.

5. Borzsonyi, S.; Kossmann, D.; Stocker, K. The skyline operator. In Proceedings of the 17th International
Conference on Data Engineering, Heidelberg, Germany, 2–6 April 2001; pp. 421–430.

6. Huang, Z.; Lu, H.; Ooi, B.C.; Tung, A. Continuous Skyline Queries for Moving Objects. IEEE Trans. Knowl.
Data Eng. 2006, 18, 1645–1658.

7. Sharifzadeh, M.; Shahabi, C. The Spatial Skyline Queries. In Proceedings of the International Conference on
Very Large Data Bases, Seoul, Korea, 12–15 September 2006; pp. 751–762.

8. Huang, Y.K.; Chang, C.H.; Lee, C. Continuous distance-based skyline queries in road networks. Inf. Syst.
2012, 37, 611–633.

9. Bentley, J.L.; Kung, H.T.; Schkolnick, M.; Thompson, C.D. On the average number of maxima in a set of
vectors and applications. J. ACM 1978, 25, 536–543.

10. Chomicki, J.; Ciaccia, P.; Meneghetti, N. Skyline Queries, Front and Back. ACM SIGMOD Rec. 2013, 42, 6–18.
11. Hsueh, Y.L.; Hascoet, T. Caching Support for Skyline Query Processing with Partially Ordered Domains.

IEEE Trans. Knowl. Data Eng. 2014, 26, 2649–2661.

ISPRS Int. J. Geo-Inf. 2017, 6, 137 20 of 20

12. Kung, H.T.; Luccio, F.; Preparata, F.P. On finding the maxima of a set of vectors. J. ACM 1975, 22, 469–476.
13. Mortensen, M.L.; Chester, S.; Assent, I.; Magnani, M. Efficient caching for constrained skyline queries.

In Proceedings of the International Conference on Extending Database Technology, Brussels, Belgium,
23–27 March 2015.

14. Cheema, M.A.; Lin, X.; Zhang, W.; Zhang, Y. A Safe Zone Based Approach for Monitoring Moving Skyline
Queries. In Proceedings of the International Conference on Extending Database Technology, Genoa, Italy,
18–22 March 2013.

15. Zheng, J.; Chen, J.; Wang, H. Efficient Geometric Pruning Strategies for Continuous Skyline Queries.
ISPRS Int. J. Geo-Inf. 2017, 6, 91.

16. Vu, K.; Zheng, R. Efficient Algorithms for Spatial Skyline Query With Uncertainty. In Proceedings of
the 21st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems
(ACM SIGSPATIAL), Orlando, FL, USA, 5–8 November 2013.

17. Deng, K.; Zhou, X.; Shen, H.T. Multi-source skyline query processing in road networks. In Proceedings of
the 23rd International Conference on Data Engineering, Istanbul, Turkey, 11–15 April 2007; pp. 796–805.

18. Zou, L.; Chen, L.; Ozsu, M.T.; Zhao, D. Dynamic Skyline Queries in Large Graphs. In Proceedings of the
International Conference on Database Systems for Advanced Applications, Tsukuba, Japan, 1–4 April 2010.

19. Kriegel, H.P.; Renz, M.; Schubert, M. Route Skyline Queries: A Multi-Preference Path Planning Approach.
In Proceedings of the International Conference on Data Engineering, Long Beach, CA, USA, 1–6 March 2010.

20. Mouratidis, K.; Lin, Y.; Yiu, M.L. Preference Queries in Large Multi-Cost Transportation Networks.
In Proceedings of the International Conference on Data Engineering, Long Beach, CA, USA, 1–6 March 2010.

21. Huang, X.; Jensen, C.S. In-Route Skyline Querying for Location-based Services. In Proceedings of
the International Workshop on Web and Wireless Geographical Information Systems, Goyang, Korea,
26–27 November 2004; pp. 120–135.

22. Jang, S.M.; Yoo, J.S. Processing Continuous Skyline Queries in Road Networks. In Proceedings of the
International Symposium on Computer Science and its Applications, Hobart, Australia, 13–15 October 2008.

23. TIGER. Available online: http://www.census.gov/geo/www/tiger/ (accessed on 28 April 2017).
24. Brinkhoff, T. A Framework for Generating Network-Based Moving Objects. GeoInformatica 2002, 6, 153–180.
25. Cheema, M.A.; Zhang, W.; Lin, X.; Zhang, Y.; Li, X. Continuous reverse k nearest neighbors queries in

Euclidean space and in spatial networks. VLDB J. 2012, 21, 69–95.
26. Guting, R.H.; de Almeida, V.T.; Ding, Z. Modeling and querying moving objects in networks. VLDB J. 2006,

15, 165–190.
27. Mouratidis, K.; Yiu, M.L.; Papadias, D.; Mamoulis, N. Continuous Nearest Neighbor Monitoring in Road

Networks. In Proceedings of the International Conference on VLDB, Seoul, Korea, 12–15 September 2006.
28. Buonanno, A.; D’Urso, M.; Prisco, G.; Felaco, M.; Meliado, E.F.; Mattei, M.; Palmieri, F.; Ciuonzo, D. Mobile

Sensor Networks based on Autonomous Platforms for Homeland Security. In Proceedings of the Tyrrhenian
Workshop on Advances in Radar and Remote Sensing, Naples, Italy, 12–14 September 2012.

29. Ciuonzo, D.; Buonanno, A.; D’Urso, M.; Palmieri, F.A. Distributed Classification of Multiple Moving Targets
with Binary Wireless Sensor Networks. In Proceedings of the International Conference on Information
Fusion, Chicago, IL, USA, 5–8 July 2011.

30. Tsiligkaridis, T.; Sadler, B.M.; Hero, A.O. On Decentralized Estimation with Active Queries. IEEE Trans.
Signal Process. 2015, 63, 2610–2622.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://www.census.gov/geo/www/tiger/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Data Structures
	Object Attribute Dominating Matrix
	Road Distance Sorted List
	Skyline Object Expansion Tree

	Within Skyline Object Updating Algorithm
	Processing of Time-Varying Object Attribute
	Processing of Time-Varying Edge Length
	Processing of the Time-Varying Query Path

	Performance Evaluation
	Experimental Settings
	Effect of Four Important Factors
	Effect of Time-Varying Information
	Discussion of the Space Requirement

	Conclusions

