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Abstract: Geologic survey procedures accumulate large volumes of structured and unstructured
data. Fully exploiting the knowledge and information that are included in geological big data
and improving the accessibility of large volumes of data are important endeavors. In this paper,
which is based on the architecture of the geological survey information cloud-computing platform
(GSICCP) and big-data-related technologies, we split geologic unstructured data into fragments and
extract multi-dimensional features via geological domain ontology. These fragments are reorganized
into a NoSQL (Not Only SQL) database, and then associations between the fragments are added.
A specific class of geological questions was analyzed and transformed into workflow tasks according
to the predefined rules and associations between fragments to identify spatial information and
unstructured content. We establish a knowledge-driven geologic survey information smart-service
platform (GSISSP) based on previous work, and we detail a study case for our research. The study
case shows that all the content that has known relationships or semantic associations can be mined
with the assistance of multiple ontologies, thereby improving the accuracy and comprehensiveness
of geological information discovery.
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1. Introduction

Large volumes of geological reports have been accumulated during geological survey procedures,
with each report containing different geological themes, such as rocks, minerals, or hydrology.
The contents of these reports are stored in different formats, such as .doc, .pdf, .jpg, .tiff, and spatial
data files. In addition, these reports consist of large amounts of structured data and unstructured
data. Structured data are typically stored and managed using relational or spatial databases; however,
the characteristics of unstructured data render them difficult to manage via virtual applications.
Unstructured data include diverse types and fragmented information, which contain more abundant
information and have more potential value than structured data. Using a traditional file system to
manage these data could increase the inefficiency of answering queries and retrieving statistical
information and increase the difficulty of retrieving and mining data. Therefore, considerable research
is focused on developing methods of efficiently managing, mining and utilizing these unstructured
data, and cloud computing and big-data-related technologies have the potential to resolve issues
related to unstructured data.
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Technical advancements continue to strengthen the relationship between cloud computing and
big data. Cloud computing provides a scalable, cost-efficient solution and on-demand processing
service for using big data and can address data-oriented challenges [1–3], fostering a potential solution
for the transformation of Big Data’s 4 Vs (volume, velocity, veracity and variety) into the 5th V
(value) [4]. Researchers have combined cloud computing and big-data technologies in different
domains. A framework named CIRUS is a generic and elastic cloud-based platform that enables
real-time, ubiquitous big-data analytics [5]. Vera-Baquero et al. introduced a cloud-based architecture
that leverages big-data technology to support the performance analyses of any business domain
and that operates in a timely manner regardless of the underlying issues that are associated with
the operational systems [6]. DiploCloud is an efficient, distributed and scalable Resource Description
Framework (RDF) data processing system for distributed and cloud environments and uses a resolutely
non-relational storage format [7]. Jizhe Xia et al. utilized cloud computing and volunteer computing
technologies and proposed a spatiotemporal performance model that provides more accurate performance
evaluations to users from different regions at different times [8]. Roberto Giachetta proposed a geospatial
data processing framework to enable the management and processing of spatial and remote sensing
data in a distributed environment [9]. Big data is a massive set of data that is challenging to manage
with traditional applications and includes huge, complex, and abundant structured, semi-structured,
and unstructured data alongside hidden data that are generated and gathered from several fields
and resources [10]. However, available data-mining techniques are designed for schema-oriented
storage and therefore are not applicable to an unstructured data style [11]. The variety and veracity of
big data demand new technologies (e.g., Hadoop, HBase) to clean, store, and organize unstructured
data [12,13]. The use of NoSQL (Not only SQL) technology is increasing among internet companies
and other enterprises to mine information from such diversiform data [14,15]. NoSQL repositories
offer great flexibility and speed in terms of data processing, and the key-value style of querying this
type of database enables efficient retrieval [16]. TouchR and RSenter are designed to extract terms from
unstructured data sources (specifically, NoSQL databases) and are focused on the document-append
style of NoSQL storage [17–19]. MapReduce is widely used to improve the performance of systems for
large-scale data analyses and various data-management methods [20,21]. For example, Zhong et al. [22]
proposed an “indexing + MapReduce” data architecture for efficient spatial query processing.
Hadoop-GIS [23] utilized global partition indexing and implicit parallel spatial query execution
on MapReduce to achieve efficient query processing. SpatialHadoop [24] is an efficient MapReduce
framework for spatial data queries and operations, which builds a two-level spatial index structure
and basic spatial components inside the MapReduce layer.

The increased demand for online spatial-information services poses new challenges to the
fields of computer science and geographic information science [25]. Because of the explosion of
information and changes in the nature of the services and information demanded by users, information
technology professionals are finding it difficult to satisfy the needs of their users. Modern users want
to retrieve specific information from within the plethora of available information thus, requiring
the conversion of simple document text retrieval to knowledge retrieval [26,27]. Ontologies have
been used for information system development as one of the main knowledge representation tools.
These tools consist of concepts, hierarchies, arbitrary relationships between concepts, and possibly
other axioms [28]. Kuo, C.L. and J.H. Hong proposed a new strategy and framework to process
cross-domain geodata at the semantic level [29]. This framework leverages the semantic equivalence
of concepts between domains through bridge ontology and facilitates the integrated use of different
domain data, which has long been considered superior to Geographic Information Systems (GIS).

Some researchers combined ontologies and semantics with geospatial technologies to improve
geospatial data or service discovery. Stock, K. et al. described an information model for a geospatial
knowledge infrastructure that uses ontologies to represent these semantic details, including knowledge
regarding domain concepts, the scientific elements of the resource, and web services, which can
be used to enable more intelligent searches over scientific resources and support new methods
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to infer and visualize scientific knowledge [30]. Cruz, S.A.B. et al. used semantic descriptions of
geospatial data quality requirements in a rule-based form. These rules allow the semantic annotation of
geospatial data alongside the conditional planning method [31]. Arctic SDI is a prototype that utilizes
the knowledge-based approach and spatial web portal technology to propose a hybrid approach for
efficient service discovery from distributed web catalogs and the dynamic Internet. This method
proposes a domain knowledge base to model the latent semantic relationships among scientific data
and services and an intelligent logic reasoning mechanism for (semi-)automatic service selection and
chaining [32]. Jung et al. proposed an ontology-enabled framework for a geospatial problem-solving
environment that allows collaborations among web service providers, domain experts, and solution
seekers to semantically discover and use geographic information services to solve a target class
of geospatial problems [33]. Sensor Metadata Ontology [34] was proposed to achieve a unified
semantic description for heterogeneous sensors and to promote accurate and efficient discovery.
Yingjie Hu et al. [35] developed an ontology for ArcGIS online data to convert metadata into linked
data and calibrate a linear regression model for semantic searches and flexible queries for knowledge
discovery. In addition, common technologies are widely used when performing semantic-related
research. Jena is a free and open source Java framework for building semantic web and linked data
applications [36–38], RDF is a framework for describing the available resources and their relationships
on a network [28,36,39–41], SPARQL (Simple Protocol and RDF Query Language) is a graph-based
query language for RDF [37,42–45], and SWRL (Semantic Web Rule Language) is utilized to provide
rules for semantic networks [33,46–48].

At present, in terms of content retrieval and knowledge discovery, many researchers have explored
some methods combined with ontology and semantic-related technology. However, many of the
current studies are based on structured spatial data, semi-structured metadata, and descriptive spatial
services. For large-scale unstructured content, some scholars have done research on storage and
information extraction but do not take into account the relevance and fusion value of unstructured
data and structured data, thus resulting in the inability to fully excavate the value of unstructured
content. Geological big data represent an application of big-data theories and technologies in
the geological domain. At present, geological research has transitioned from qualitative research
to quantitative research and from scarce data to massive data. Compared to general big data,
geological big data contain both massive unstructured data and abundant geospatial information
and temporal information, which are significant in the geological sciences. Thus, it is critical to derive
diversified information from massive geological survey data, promote geological content retrieval from
keyword-based discovery to knowledge-based discovery, and improve the information accessibility
of geological data. This paper attempts to explore the methods of applying massive geological data
from the perspective of unstructured data, structured data and spatial service integration, which could
effectively fuse heterogeneous information and improve the quality of geological content services.
In this paper, we establish a knowledge-driven geological survey information smart-service platform
(GSISSP) based on our previously developed geological survey information cloud-computing platform
(GSICCP) [49]. NoSQL technology is integrated into GSISSP to organize complex unstructured data,
and ontologies are imported to build semantic and knowledgeable associations. Our subsequent
efforts concentrate on the following aspects of using geological big data: (1) Introduce geological
thematic ontology, geological temporal ontology and toponymy ontology (these terms are short
for the geological domain ontology), combine big-data storage and processing technologies, split
unstructured geologic survey data into fragments, and extract multi-dimensional information from
each fragment to rapidly discover target information from massive content. (2) Build associations
between geological fragments using relationships presented in the geological domain ontology and
promote the retrieval from keyword-based discovery to knowledge-based discovery to improve the
accuracy and comprehensiveness of information discovery. (3) Combine semantic-related technologies
and establish a retrieval framework ontology. Our work could help transform a specific class of
geological problems into workflows to increase the intelligence of the information discovery process.
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The remaining sections of this paper are structured as follows. Section 2 proposes the architecture
of the GSISSP and provides a brief introduction of the key technologies. Section 3 describes the
method for organizing massive unstructured data from geologic surveys in detail. Section 4 introduces
a method of associating one content item with another based on geological domain ontology and
proposes a question-oriented retrieval framework. Section 5 illustrates a use case. Section 6 presents
our conclusions and discusses prospects for future work.

2. Architecture of the GSISSP

In a previous study, we established a GSICCP, which is a platform that provides multiple types
of geological services. The GSICCP is vertically divided into five layers: a data layer, a fabric layer,
a resources layer, a discovery and integration layer, and an application and representation layer [49].
In this paper, which is based on the architecture of the GSICCP, we intend to store and discover massive
geological structured and unstructured data. Hadoop’s [50] ecosystem technologies are imported
to extend the resources layer, and semantic technologies are imported to extend the discovery and
integration layer. Thus, a GSISSP is established to support information mining and discovery. The data
layer and fabric layer are maintained in their original conditions, and a geological content discovery
portal is built in the application and representation layer. Detailed descriptions of these layers can be
found in the literature [49]. The architecture of the GSISSP is shown in Figure 1.
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The resource layer is the foundation of the GSISSP, consisting of certain pivotal modules, including
a geological survey information cloud (GSI-CLOUD) resource integration middleware, GSI-CLOUD
meta-service libraries, GSI-CLOUD workflow service middleware, and GSI-CLOUD service engine
middleware. MapGIS 10 (a geographic information system platform for managing and analyzing
spatial data) and IGServer (a MapGIS software package for map service publication) are integrated
into this layer [49]. In addition, the Hadoop ecosystem is integrated into this layer to provide storage
and processing for unstructured data. In the GSISSP, a distributed Hadoop environment is deployed
on each GSISSP node. All the primeval data are stored in an HDFS [51] (Hadoop Distributed File
System), which can provide more reliable backup storage and distribute various access points over
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different servers. This system plays a key role in backing up original files. ZooKeeper [52] is utilized
to coordinate and manage multiple Hadoop servers. To improve the access and retrieval efficiency,
unstructured geological content is reorganized as “content items”, where each content item contains
multivariate characters, such as thematic features, spatial features, and temporal features. In GSISSP,
HBase [53] provides storage support for content items.

The discovery and integration layer provides a node management method for gathering resources
distributed in a cloud environment, and this layer describes the hardware resources, software resources
and data resources universally. In the GSISSP, to achieve geological big-data integration, mining and
knowledge-driven discovery, certain semantic technologies are integrated into the discovery and
integration layer. The conceptual model between the terminologies is described by the geological
domain ontology, and the relationships between the terminologies are expressed by an RDF (resource
description framework), which defines the structure of the domain knowledge. The GSISSP integrates
the geological thematic ontology, the geological temporal ontology and the toponymy ontology used
to establish a basic knowledge-driven discovery environment. Combined with some semantic web
rules predefined by domain experts, inference machines can be used to help identify new relationships
that are not explicitly presented in the geological domain ontology. These new relationships are
gathered to build a geological knowledge graph. Because this geological knowledge graph contains
more abundant relationships and knowledge, information mining and discovery operations are
launched. To discover spatial-related information, geospatial workflow services are integrated into
this layer, and geospatial workflows can be executed automatically with a specific configuration
file that is dynamically generated according to the SWRL and the retrieval framework ontology. In
addition, certain data processing tools are integrated into this layer to increase the convenience of
the content discovery. These tools are mainly used to reorganize the original data, extract content
features, associate content items and batch upload data. Moreover, data-mining libraries (Mahout,
PLDA, Nature Language Toolkit, etc.) can be gradually integrated in the future.

3. Organization of Multiple-Classification Content Based on Geologic Domain Ontology

3.1. Organization Patterns of Complex Geological Unstructured Content

Diversified and fragmented unstructured data from geological surveys are the most representational
geological survey results. For example, a 1:250,000 regional geological survey report of Xigaze contains
308 different documents, and these documents are in different formats, such as .doc, .pdf, .jpg, and .tiff.
The content of these documents includes geological maps, analysis reports and images. When managing
these data for a certain region, all the files are assembled and defined as a geological archive that includes
the concrete content and data features of a geological archive, as shown in Table 1:

Table 1. Concrete content and data features of a geological archive.

Document Name Content Description Count Data Type Data Features

Achievement reports
Regional geological survey theme
reports (origin, evolution, working
methods, etc.), results summaries

4 a doc Unstructured

Achievement
Illustrations

Geological maps, mineral maps,
environmental geological maps 3 b gis Structured

Acceptance
Documentation

Final evaluation result reports,
mid-term evaluation result reports,

wild acceptance result reports
9 doc Unstructured

Field Book Wild route record,
measured profile record 78 c xml, d jpg, doc, gis Unstructured

Editorial Images
Field draft, comprehensive

draft, factual material, primitive
maps for compilation

31 jpg, gis Unstructured
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Table 1. Cont.

Document Name Content Description Count Data Type Data Features

Image and Interpretation Remote sensing imagery, aerial
survey interpretations 11 gis, e tiff, jpg Unstructured

Geological Section Geological section tables,
stratum section column 54 gis, doc, f xls Unstructured

Specimens Ore mineral, spectrum,
silicate, tombarthite 35 doc, gis Structured

Quality Check

Geological data quality check card
(geotraverse, section, etc.), raw

material inspection records, raw
material inspections

22 doc, xls Structured

Measurement Report
Rock authentication reports, fossil
authentication reports, tombarthite

analysis report
21 doc, xls Unstructured,

Structured

Photos Geological pictures 5 jpg Unstructured

Designing Files
Overall design, geological

mineral draft, project design,
compilation note

7 doc, gis Unstructured,
Structured

a doc: Word document, b gis: MapGIS spatial data (includes the .wp, .wl, .wt, and .mpj formats), c xml: Extendable
marked language file, d jpg: Pictures in .jpg format, e tiff: Remote sensing image, f xls: Excel document.

The information and knowledge contained in complex unstructured data are not expressed in
the same way as traditional relational data. Instead, most of these data are included in the nature of
unstructured text. Thus, building knowledge and feature libraries based on the original geological
content is pivotal to effectively expressing information and represents the foundation to achieving
knowledge discovery. The purpose of establishing a knowledge content library model is to reconstruct
knowledge attributes or fragments based on the principle of not losing information. Thus, the original
content data must be reorganized and described in as simple terms as possible to facilitate the virtual
access of the data descriptions and the discovery of knowledge included in unstructured content.
A knowledge content library model seeks to achieve descriptive and structural modeling based on
clear semantics and efficient organization to promote knowledge integration and share and reuse
information. In this paper, we aim to apply multiple classifications to unstructured content using
various methods, such as content splitting, feature extraction, and information reorganization, to
reconstruct unstructured geological data and store them in a NoSQL type database, which is more
suitable for managing unstructured data. Because Hadoop ecosystem technologies have been merged
into the GSISSP, HDFS and HBase are selected as the file system and database, respectively, to store
geological unstructured content.

After storing the original geological documents in HDFS, our experimental process reorganizes
and re-describes the original content to render the analysis closer to the data’s original meaning and
identify hidden knowledge without losing information. Based on the features of HBase, we can
reorganize the original geological documents, store commonly used information in HBase as “content
items” (forming a “basis content database”), organize unstructured data to render them suitable for
data mining, and provide quick information services. The process of establishing the Basic_Content
table is shown in Figure 2.
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Table 1 shows that a geological archive contains hundreds of documents alongside spatial data,
pictures and spreadsheets, and each document usually references many illustrations and tables and
corresponds to spatial data files. A directory listing in each geological archive records the metadata
of all the included documents, pictures and spatial data. Generally, geological information services
mainly focus on text, images, spatial data and temporal data. During the content-item-organization
procedure, we extract the text, images, spatial information, time information and other common
characteristics from geological archives and build an HBase table called “Basic_Content” to store these
content items. As Figure 2 shows, each document in a geological archive is split into fragments, and the
splitting process should be consistent with certain rules to maintain certain knowledge relationships,
or the contents of each fragment should describe a certain subject. Thus, subtitles of documents are
selected as the split point. The benefit of this strategy is that the main line of each fragment must
revolve around a particular topic; therefore, our process is more convenient for extracting features.
After splitting the document, three types of characteristics must be extracted from each fragment:
geological thematic features, geological spatial features and geological temporal features. Thematic
features describe the core content of the fragments, spatial features describe the spatial locations and
attributes that are related to the fragment, and temporal features describe the geological time of the
fragment. After extracting the thematic features, certain geological concepts regarding the fragment
can be obtained. After extracting the spatial features, spatial location information (such as coordinates
and map documents) or semantic spatial information (such as place names or metallogenic belts) can
be obtained. After extracting the temporal features, the geological temporal terms of the fragment
can be obtained. The extraction of these characteristics is mainly based on statistics, ontologies and
semantic similarity theories. After the thematic, spatial and temporal characteristics are extracted,
all the images in the fragment are extracted, which facilitates retrieval because the directory listing
records the names and relative paths of all the image files. Thus, we can quickly determine which
image is included in each fragment merely by matching strings.
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After extracting the information from a fragment, all of the features related to this fragment
can be organized as content items and stored in the HBase. As Figure 2 shows, the content items
mainly include the following information: texts of fragments, thematic features, spatial information
(e.g., coordinates and place names), corresponding map documents, temporal features, and all the
image files. These pieces of information are stored in the Basic_Content table as a record. Each content
item receives a unique code as the row key of the record; for example, in Table Basic_Content, the row
key consists of a geological document’s MD5 code and the fragment offset. In this way, the fragments
from the same document can be stored together in order, and the fragments from different documents
can be globally hashed to different servers, which will help improve the searching efficiency.

3.2. Storage Pattern of Complex Geological Unstructured Content

HBase retrieves a certain record via the key values, and well-designed row keys and column
keys can significantly affect the efficiency of accessing data [54]. We designed two tables to store
reorganized information: Table Archive_Info, which is used to store the metadata of geological
original information, and Table Basic_Content, which is used to store content items. Details of Table
Archive_Info’s structure are provided in Table 2, and details of Table Basic_Content’s structure are
provided in Table 3. As Tables 2 and 3 show, “basic_info” and “feature_info” are two column families of
Tables 2 and 3, respectively. Each column family contains more than one column to store different fields.

Table 2. Structure of Table Archive_Info.

Table name: Archive_Info

Row Key: MD5 of Geological Archive

Column family0:
basic_info

Column_key Column name

arch_id Archive id

create_time Upload time

authority Access authority

user User name

size File size

name Archive name

title_ml_a [FilePath] [Document title]
a [FilePath] represents the relative path of a certain file.

Table 3. Structure of Table Basic_Content.

Table name: Basic_Content

Row Key: MD5 of document + offset of fragment

Column family0:
feature_info

Column_key Column name

frag_content Fragment content

theme_features Thematic feature concepts

time_features Temporal feature concepts

coordinate_info Coordinates

geo_name Toponymy

map_doc_a [FilePath] Source file of map document

breviary_img_[FilePath] [Thumbnail]

original_img_[FilePath] [Image original file]
a [FilePath] represents the relative path of a certain file.
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A fragment may contain more than one image or map document. In Basic_Content, not all of
the images or map documents are stored in one column; instead, each image or map document will
be stored as a single key value. For spatial data, HBase stores only the map document file (.mpj file
format) and not the original spatial data (.wp, .wl, or .wt formats). Because the original spatial data are
organized in HDFS according to the directory structure, the map document file records the relative
positions of the original spatial data. Thus, when a map document is found, the corresponding spatial
data can quickly be discovered in HDFS and published as a map service on IGServer.

4. Fragmented and Diversified Content Discovery

We establish a framework to help make the geological discovery system more knowledgeable.
A retrieval frame ontology is designed based on ontology-related theories to achieve geospatial
problem parsing and workflow building. We extract multiple features for each content item and
link the content item with a specific geological ontology to improve the information accessibility of
geological data. Thus, a bridge that joins the data and the framework is built.

4.1. Question-Oriented Content Retrieval Framework

The question-oriented content retrieval framework is an ontology-based framework to achieve
geological knowledge and information discovery. In this framework, a specific class of geological
question can be submitted according to the predefined SWRL, and the related spatial analysis
operations can be semantically discovered. Then, a conceptual workflow is established automatically.
The conceptual workflow can be executed with the spatial analysis services and work flow services in
IGServer. The structure of the content discovery framework is illustrated in Figure 3. The entire
framework is built on the resource layer, discovery and integration layer and application layer.
The resource layer provides multiple spatial data, unstructured data, data services, spatial analysis
services, and related services. The discovery and integration layer mainly combines ontologies,
SWRL and semantic technologies to resolve the content discovery and work-flow-building problems.
The application layer provides a retrieval portal and some visualization tools to receive geological
problems and render analytical results.

Ontologies and source data must be organized into the system before using the framework:

a. Domain experts build and adjust the geological thematic ontology, geological temporal ontology
and retrieval frame ontology;

b. We convert the original unstructured data to content items and extract the features of each item,
and then we reorganize the content items to HBase and re-store the spatial data to HDFS.

For end users, the work process of this framework is as follows:

1. Submit a specific class of a geological question according to the retrieval portal, for example, the
volcanic activity in Xinjiang, China;

2. Key information is extracted from the proposed question, such as the question type, target area,
or target theme;

3. Find the corresponding rules from the predefined SWRL database according to the question type;
4. The SWRL rules are input into the inference machine;
5. The inference machine and SWRL rules bind with the geological domain ontology to start

thematic reasoning and discovery;
6. If related content indices are discovered from the ontology, then the source unstructured data

would be retrieved from HBase; if spatial data indices are discovered, then the source spatial data
would be selected from HDFS and added to the GIS platform to facilitate the spatial analytical
work. After related map documents or unstructured content are retrieved from the data source,
the map document would be published as a map service on the IGServer platform;

7. Newly published map services are associated with the Web Service Ontology;
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8. The inference machine and SWRL rules bind with the retrieval frame ontology to start the work
flow reasoning and discovery, and then the conceptual work flow is built and expressed in a
specific format;

9. The conceptual workflow is transmitted to the workflow engine and the spatial analytical work
is initiated;

10. The spatial analytical results are transferred to the visualization tools in the application layer;
11. Visualization tools render the original result and show the final analytical result.
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4.2. Ontology Design

4.2.1. Geological Domain Ontology

Although geological data are expressed in a variety of forms, these data usually contain rich
information. Thus, extracting information from massive high-dimensional unstructured data and
associating spatiotemporal and thematic information are the keys to knowledge mining. To address
these issues, we utilize ontological theories in the GSISSP to assist in resolving problems. The concept
of ontology originated from the field of philosophy, which is used to explain the nature of existence [55].
From the perspective of information science, ontology is a conceptual model that describes the term
and the relationship between terms. This concept is a clear specification of the conceptual model [56,57].
On the one hand, ontology limits the term set, so we must use a common recognition of a set of words.
On the other hand, ontology defines the upper and lower relationships between the terms. Ontologies
can be used to identify and correlate the knowledge that corresponds to the information concept to
realize the explicit semantics of information content [32,58]. The geological ontologies used in this
paper consist of a geological thematic ontology, toponymy ontology and geological temporal ontology
(Figure 4).
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A geological ontology is a domain ontology that describes the knowledge of a geological field.
This ontology provides the formal concepts, interrelationships, characteristics, and laws of the
geological field. For geological content retrieval and discovery systems, geological domain ontologies
could help eliminate the ambiguity surrounding geological concepts or terms and provide a common
understanding of geological knowledge and a clear definition of relationships between geological
terms at different levels [59,60]. In our previous research, geological experts constructed a geological
thematic ontology that includes 22 categories (e.g., rock, stratum, and geological structure) and more
than 49,520 geological professional terms and concepts; this ontology provides a detailed hyponymy
classification of the geology [61,62]. A portion of this geological thematic ontology is shown in Figure 5.
Moreover, a geological temporal ontology has been constructed by geological experts, and it includes
737 geological temporal-related terms (e.g., geological age, geological movement, glacial period, rain
period, and biological evolution stage). This ontology also includes the hyponymy between terms,
and a portion of the geological temporal ontology is shown in Figure 6. In this study, we consider
the spatial attributes in the geological domain using the place names database and the relationships
between the place names. Thus, we built a toponymy ontology that is accurate to the village and street
level (as shown in Figure 7) and that combines spatial data to provide location-related information.
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4.2.2. Retrieval Frame Ontology

Geological problems usually involve spatial analysis operations. To provide accurate spatial
information, the GSISSP must consider how to query spatial data and text content related to target
problems and determine how to intelligently complete the related spatial analysis process and return
the results. Furthermore, the entire process of spatial analysis should be transparent to the users.
To achieve an intelligent content discovery service, spatial analysis service, and the visualization of the
results based on previous work, this paper designs a retrieval frame ontology by binding the SWRL
rules and web services. The retrieval framework can convert a specific class of geological problem
into a workflow process, and spatial analyses, content discovery and other operations can be executed
using a workflow engine. The structure of our retrieval frame ontology is shown in Figure 8.
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Figure 8 shows a specialized ontology that is designed to solve certain geospatial problems.
The entire framework consists of sub-module ontologies that are each incorporated with SWRL rules;
thus, the framework has an inferential capability. By binding predefined SWRL rules to the inference
engine, automatic content discovery can be achieved. Each inference rule implies the necessary
conditions and branching conditions for every step of the operation. Hence, according to the inference
rules, the whole concept workflow process can be established. After rewriting the concept workflow
in a specific workflow engine format, the concept workflow can be executed by the workflow engine.
In this study, MapGIS 10 is used to provide the workflow engine and IGServer is used to provide
workflow-related web services. Throughout the entire framework, different types of ontologies are
connected through object properties, and the function of each sub-module ontology is as follows:

1. Question Ontology:
The question ontology defines the conceptual model of the geological question. All the geological
questions must contain two elements: the question type and the target content. The question
ontology is associated with the question type ontology and data ontology; the objective is to
verify both the geological question type and the related data content that are queried by the
users. To obtain knowledgeable or semantic information that is related to the target content, the
question ontology is associated with the geological domain ontology to more comprehensively
render the information discovery.

2. Question Type Ontology:
The question type ontology describes the concrete question types. Two main types of questions
exist in the current framework: spatial-related questions and non-spatial-related questions.
Different spatial analysis operations must be employed to answer a spatial-related question
according to the different questions. For example, whatNear and whereIn are two spatial-related
questions, and the whatNear type of question can be semantically expressed as “what is near a
target area”. This type of question semantically implies a buffer analysis operation. The whereIn
type of question can be semantically expressed as “where are the objects in the target area”.
This type of question semantically implies an overlay analysis operation. Spatial questions are
associated with the spatial analysis ontology to discover the related spatial analysis operations.
Non-spatial-related questions are different from spatial-related questions. To answer these
questions, the target content must be retrieved from the database without undertaking a spatial
analysis. Consequently, non-spatial questions do not have to be associated with the spatial
analysis ontology.

3. Geological Domain Ontology:
The geological domain ontology provides the domain knowledge and information to achieve
knowledgeable and semantic discoveries in the retrieval framework. According to the geological
domain ontology, the keywords that are contained in the retrieval question can be obtained.
In addition, the equivalent words and hyponyms of these keywords can also be obtained
according to the relations that are contained in the geological domain ontology. During the
retrieval, equivalent words and hyponym words will also be retrieved, which could guarantee
comprehensiveness with respect to the semantics and knowledge. In the geological domain
ontology, knowledgeable information is obtained by invoking a related web service, so the
geological domain ontology is associated with the web service ontology.

4. Data Ontology:
The data ontology describes the involved data content contained in the geological questions.
There are two types of data in the framework: spatial data and unstructured data. Although
spatial data contain multiple types of geological thematic data, unstructured data contain various
geological pictures and text. All the data access operations are implemented by a web service, so
the data ontology is associated with the web service ontology.
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5. Spatial Analysis Ontology:
The spatial analysis ontology describes all of the common spatial analysis functions, and it
semantically annotates the associated input, output and algorithm model of these spatial analysis
functions. The spatial analysis ontology is connected to the process ontology.

6. Process Ontology:
The process ontology describes the execution standard of the spatial analysis web services and
annotates the input and output of these services. This ontology is connected to the related spatial
analysis services.

7. GIS Data Model Ontology:
The GIS data model ontology describes the organization model of the spatial data. All of the spatial
processing work will finally be concentrated on the feature processing, as each spatial feature
contains attributes, references and geometries. Here, we utilize the spatial data organization model
of MapGIS 10, and the GIS data model ontology inherits the ontology in the GSICCP [49].

8. Content Discovery Ontology:
The content discovery ontology describes the process function that does not involve spatial
data, and it currently includes image discovery and text discovery functions. This ontology is
implemented by a web service and is connected to the related web services.

9. Web Service Ontology:
The web service ontology describes all of the web services in the GSICCP, including spatial-related
web services and non-spatial-related web services. Although the spatial-related web services
mainly consist of the OGC service (WPS, WFS, etc.) and the IGServer service (the map document
service, tile map service, vector layer service, etc.), non-spatial-related web services mainly consist
of unstructured content discovery services and some data-mining services.

The classes of each ontology in Figure 8 are connected to other classes according to a series of
relationships (has* format). This type of relationship is defined as an object property in the ontology,
which reflects the association between the objects in the ontology. Another type of relationship that
corresponds to the object property is the data property, which reflects the attributes of the object itself.
In this retrieval frame ontology, the parsing of problems and building of the workflow are achieved
based on the object properties. For example, the GIS Function class in the Spatial Analysis Ontology
(5th in Figure 8) contains some object properties: the hasInput property is associated with the Input
class of the Process Ontology, and the hasOutput property is associated with the Output class of the
Process Ontology and is an individual of (rdf: type) the Automatic Process. The Input class and Output
class are the subclasses of the Parameter class, which is an individual of the FeatureCollection class.
All the individuals of FeatureCollection are spatial data that are expressed in the GIS data model.
According to the retrieval frame ontology, a correct completion of a spatial analysis operation requires
some spatial data as inputs, and the results are returned to the spatial data. Any individual in the
GIS Function is an automatic operation and thus clearly expresses the function of each class and
its individuals.

For instance, consider the problem “how many freshwater lakes in China”. The process of
automatically building a workflow according to the framework is illustrated in Figure 9. When a
question is submitted, a semantic parser explains the question in the form of a 4-tuple, which is
designed as <question_type> <target_theme> <spatial_relationship> <target_area>. Hence, the target
question is transformed into <HowMany> <freshwater lakes> <In> <China> and sent into the system.
The <question_type> and <spatial_relationship> can determine the type of problem and the spatial
operations. The <target_theme> and <target_area> can determine the required data for answering
the question. Different classes of geospatial problems have their own spatial operation methods and
processes, so different types of problems must choose different spatial analysis functions. SWRL was
used to determine the spatial analysis functions and sequence under different problems. In SWRL,
the input constraints and outputs that meet all the constraints are defined by analyzing the SWRL
rules for different types of questions. We could determine the prerequisites and final results to resolve
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the problem, thus laying the foundation for the automatic building of the workflow. In the example
question, the related SWRLs of a “HowMany” question are defined as follows:

• Rule 1: define a formal question composition, which contains a question type and required data.
• Rule 2: define a HowMany question; a question that is marked with “HowMany” could be

regarded as a “HowMany” question.
• Rule 3: define the execution sequence of the HowMany question, which requires an overlay and

spatial query operation; the spatial query operation follows the overlay operation.
• Rule 4: define the function’s connections; the output of the previous function is the input of its

subsequent functions.
• Rule 5: define the requirement of identical data; two identical spatial data set must have identical

geometries and spatial reference systems.

Rule1:
hasQuestionType(?type) ∧ hasData(?type)→
Question(?type)
Rule2:
HasQuestionType(“How Many”) ∧ hasData?(?type)→
HowManyType(?type)
Rule3:
HowManyType(?type) ∧ Overlay(?overlay) ∧ SpatialQuery(?spatialQuery) ∧
hasGISFunction(?type, ?overlay) ∧ hasGISFunction(?type, ?spatialQuery) ∧
hasNextFunction(?overlay, ?spatialQuery)→
howMany(?type)
Rule4:
GISFunction(?func1) ∧ Output(?out1) ∧ hasOutput(?func1, ?out1) ∧
GISFunction(?func2) ∧ Input(?in1) ∧ hasInput(?func2, ?in1) ∧
hasSameData(?out1, ?in1)→
hasNextFunction(?func1, ?func2)
Rule5:
FeatureCollection(?data1) ∧ FeatureCollection(?data2) ∧ Geometry(?geo1) ∧
Geometry(?geo2) ∧ hasGeometryType(?data1, ?geo1) ∧ hasGeometryType(?data2, ?geo2) ∧
hasSRS(?geo1, ?srs1) ∧ hasSRS(?geo2, ?srs2) ∧ sameAs(?geo1, ?geo2)
∧ sameAs(?srs1, ?srs2)→
hasSameData(?data1, ?data2)

SWRL shows that spatial overlay analysis and a spatial query function are required to solve
“HowMany” questions. The GIS Function class is questioned according to the object property
hasFunction of the Spatial Question to determine whether spatial overlay analysis and a spatial query
function exist. If functions are found, the required inputs and target output can be determined for each
concrete spatial analysis function according to the hasInput and hasOutput properties to filter opposite
functions. After finding all the appropriate spatial analysis tools, we could invoke the specific spatial
analysis function through the web service. We could determine the context of the spatial analysis
according to the sequence that was defined in the SWRL rule. We could determine the appropriate data
or parameters and identify the entire workflow according to the input and output conditions of each
space operation. Finally, we could describe the entire workflow process with the specific workflow
language and start the engine to execute the workflow.
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4.3. Feature Extraction Based on the Geological Domain Ontology

4.3.1. Thematic Feature Extraction

This paper selects the sentence in each fragment as the semantic annotation unit. Based on the
geological thematic ontology, the model in this paper extracts implicit information from the text.
A geological document may contain multiple topics, so we may experience a partial fragment loss
problem if we utilize only statistical methods to extract pieces of knowledge in accordance with the
paragraph weight. Therefore, we used sentences as the basic unit for information extraction. Under the
guidance of the document theme and concept similarity theories, we use statistical methods and
heuristic rules to extract the key sentences from the text as the abstracts of the fragments. Finally, we
extract all of the geological terms from the abstract. The specific steps are provided below.

First, the text is split into multiple individual words, and certain words that are not relevant to
the subject knowledge (for example, prepositions, stop words, and function words) are eliminated.
Only the key terms that are described in the geological ontology are preserved. After eliminating
the irrelevant terms from the sentence, the sentence is expressed in the form of a term feature vector.
Certain definitions are listed below.

Definition 1. Assume that the fragment consists of sentences S1, S2, . . . , Sm, where sentence Si consists of the
term (or keyword) set Ni = { Ni1, Ni2, . . . , Nik }. Then, the term set in the fragment can be expressed as follows:

N =
m⋃

t=1
Nt = { N1, N2, . . . , Nm } = { T1, T2, . . . , Tn } (1)

Tn is the term identified from the fragment text that can be used to represent a thematic concept.

Definition 2. The weight of term Ti in a fragment can be expressed as follows:

Wi = Fi × log2
( ni

m + 1
)

(0 < ni ≤ m) (2)

where Fi is the frequency value of term Ti in the fragment; m is the count of all the sentences in the fragment; ni is
the count of the sentences that contain the term Ti; and ni/m reflects the coverage rate of term Ti in the fragment.
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Definition 3. Sentence Si can be expressed in the form of a vector as
(
STWi1, STWi2, . . . , STWij, . . . , STWin

)
,

where STWij is the weight of term Tj in sentence Si and

STWij = Fij ×Wj ×
nj
m
(
0 < nj ≤ m

)
(3)

In the above equation, Fij is the frequency value of term Tj in sentence Si; Wj is the weight of term Tj
in the fragment; nj is the number of sentences that contain the term Tj; and m is the number of sentences in
the fragment.

Definition 4. The weight of sentence Si is as follows:

SWi = STWi1 + STWi2 + . . . + STWin (4)

Finally, all the sentences whose weights are over the threshold value are reserved and formed as an abstract
of the fragment, and all the geological thematic concepts that emerged in the abstract are extracted as the thematic
features of this fragment. Figure 10 illustrates the process of the thematic extraction approach; the left half of
figure describes the input and output during the whole process and right half describes the pivotal processor of
the whole flow.ISPRS Int. J. Geo-Inf. 2017, 6, 166 17 of 26 
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4.3.2. Spatiotemporal Feature Extraction

The spatial information that is included in the geological survey results mainly contains some
toponymy, coordinates, and spatial data. The toponymy and coordinates are mainly extracted from the
text. Although the process of toponymy extraction is similar to the thematic feature extraction process,
the toponymy ontology provides the guidance instead of the geological thematic ontology. Coordinate
extraction would be easier because the coordinates are usually expressed in a specific form. By using
regular expressions, the content of the coordinates can be quickly identified. Then, according to the
specific spatial-information services provided by the GSISSP, the relevant toponymy and geological
body information can be obtained rapidly.



ISPRS Int. J. Geo-Inf. 2017, 6, 166 18 of 27

The spatial files contained in geological archives generally have a specific format or suffix.
Thus, when we serialize the geological contents with a specific data structure, we can determine
whether the contents contain spatial data. The process of identifying spatial data is depicted in Figure 11.
First, all the map documents are converted into the format of MapGIS 10; then, the geographic extent
and annotation context are extracted and stored in the Basic_Content table, and each map document is
stored in its own column in the Basic_Content table. IGServer provides visualizations for spatial data,
and “spatial data processing” can automatically identify, convert and publish GIS data. HDFS stores
the original spatial data file and acts as a data source for map services. The temporal features extraction
process is similar to the thematic feature extraction process, although the geological temporal ontology
will provide the guidance instead of the geological theme ontology.ISPRS Int. J. Geo-Inf. 2017, 6, 166 18 of 26 
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4.4. Multi-Feature Content Association

After organizing the unstructured fragments as content items, the content items in the HBase
table can be formally expressed as a 4-tuple:

C = { k, v, Rc, E } (5)

where C represents a content item, k is the key of content item C and has a unique value, and v is the
text value of C such that one k maps to one v. Moreover, Rc represents the relationships between one
content item C and another content item C′, and these relationships mainly include the parent-child
relationship and inclusion relationships. Using an object-oriented model, such a relationship can
be expressed as a generalization, association, aggregation, composition or dependency. In addition,
E represents multivariate features of C, which can be expressed as follows:

E = { ei|∀ei ∈ Di, 0 ≤ i ≤ n } (6)

where ei is a feature value of one dimension and Di are the value ranges of the feature ei. Theoretically,
E is an n-dimensional feature vector, although each ei belongs to only one Di (e.g., the feature could be
a thematic feature, temporal feature, or spatial feature). D. is defined as the feature range:
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D =
N⋃

i=1
Di (7)

D meets the conditions Di ⊂ D, Dj ⊂ D, Di ∩ Dj = ∅, which implies that D is the union of
a plurality of disjoint feature fields. Therefore, the count of the sub-fields equals the count of the
feature dimensions in a content item. A feature ei that appears in multiple content items is defined
as a flyweight, which is one of the ways in which we achieve the aggregation and classification of
the content items. The composition and structure of the relationship between the content items is
depicted in Figure 12. The upper half of Figure 12 is a schematic representation of the ontology: the
ontology contains different named classes, and some associations exist between the named classes, for
example, an upper or lower relationship (relationship between node A and node B), sibling relationship
(relationship between node C and node D) and other complex relationships. These basic relationships
constitute an ontology tree model. In an ontology, the “class” concept is at an abstract level: individuals
of a class are the real content that is valuable to users. Currently, the individuals are organized as
content items in HBase; therefore, we must associate the content items with specific named classes
to achieve content discovery with assistance from the associations in the ontology. The lower half of
Figure 12 shows the links of the named classes and individuals: the content items build the relationship
with the named classes of thematic, spatial and temporal ontologies through their thematic, spatial and
temporal features; the dotted lines with arrows in Figure 12 reflect these relationships. Corresponding
to Equation (5), Rowkey uniquely identifies a content item (k in Equation (5)), the fragment text field
contains all the unstructured data (v in Equation (5)), the relationships between the named classes
indirectly reflect the associations between content items (Rc in Equation (5)), and all the feature fields
in the content item represent n-dimensional features (E in Equation (5)). These relationships are stored
in RDF format, which can be queried by SPARQL. All the associated content is distinguished to further
identify content that is related to a thematic, location or temporal concept.
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5. Use Case

In our previous work, geological archives from Xinjiang were reorganized and stored in a Hadoop
environment. Xinjiang is in the northwest region of China, which has intensive volcanic activity and
several types of volcanoes, and it presents the most widely distributed volcanic activity in China.
We selected “volcanic distribution in Xinjiang area of China” as a target question to illustrate the
working mechanism of the entire framework. Thus, “volcanic distribution in Xinjiang area of China”
can be classified as a whereIn type of question, which can be semantically expressed as “where is the
volcanic activity in Xinjiang, China”. For whereIn questions, the SWRL rules are defined as follows:

Rule1:
hasQuestionType(“WhereIn”) ∧ hasData(?type)→
WhereIn(?type)
Rule2:
WhereIn(?type) ∧ Overlay(?overlay) ∧ SpatialQuery(?spatialQuery) ∧
hasGISFunction(?type, ?overlay) ∧ hasGISFunction(?type, ?spatialQuery) ∧
hasNextFunction(?overlay, ?spatialQuery)→
whereIn(?type)

In the SWRL rules, the basic workflow of a whereIn question is predefined. These types of questions
involve two categories of spatial operations: overlay operations and spatial query operations. First, the
thematic data in the target area are obtained according to the overlay operation. Then, the spatial query
operation is performed to obtain the thematic contents that meet the proposed criteria. Before we
start the experiment, spatial data, spatial web services and unstructured geological documents were
uploaded into the system in addition to semantic annotations that were previously added to the spatial
data and spatial services. We associate the data and services with the geological domain ontology
and retrieval frame ontology according to the semantic annotations (Figure 13). For unstructured
geological documents, the fragments are reorganized and stored in HBase and associated with the
geological domain ontology after the document splitting and feature extraction (previously described).
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The target question “volcanic distribution in Xinjiang area of China” is submitted, transformed
into <where><volcanic><In><Xinjiang>, and sent into the system. Then, the SWRL rules that
correspond to the whereIn question type are parsed. We found that the overlay and spatial query
analyses must be undertaken one by one because the output of the overlay is the input of the spatial
query. By constructing SPARQL retrieval expressions and executing query operations, we discovered
that the spatial services process_overlay and process_spatialQuery are associated in the ontology.
In addition, according to the <target_theme> and <target_area>, the spatial data and unstructured
content of the target area are retrieved from HBase and HDFS. When all of the data that meet the
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criteria have been found, the workflow services automatically begin. After entering the related data
and invoking the target web services, the analytical results and all the unstructured content that is
related to “volcanic in Xinjiang” are discovered from HBase (Figure 14). Finally, the spatial results in
the maps and unstructured results are comprehensively displayed (Figure 15).ISPRS Int. J. Geo-Inf. 2017, 6, 166 21 of 26 
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Figure 15 shows an integrated result from the query. The left half of the figure represents
the unstructured data that were retrieved from HBase, and the right half of the figure shows the
corresponding spatial analysis result, which is displayed in a map. Usually, the unstructured retrieval
result contains text, tables, images, etc., which is different from keyword matching-based retrieval.
We achieved the content retrieval with a geological ontology to promote the keyword matching-based
retrieval to semantic retrieval. As Figure 15 shows, the system searched for the word “volcanic” from
the database, but other concepts such as basalt and basaltic andesite were also returned because the term
“volcanic” has a close relationship with “basalt” in geology. To measure the effect of semantic-based
retrieval, we conducted a comparative test to verify the change in the precision rate and recall rate
during content-item retrieval. Group 1 adopted the keyword matching-based method, which was
implemented with Lucene (an open source full-text search framework that was developed by Apache),
and Group 2 adopted our semantic-based method. We took a sample that contained 100 content items
and artificially determined the relevance of the search term and each content item. The test results are
shown in Table 4:

Table 4. Comparison of the retrieval results.

Group Item Method a R b H c N d S e Precision f Recall

1
Volcanic rocks

Lucene 51 39 48 100 76.47% 81.25%
2 Semantic 67 46 48 100 68.66% 95.83%

1 Metamorphic rocks Lucene 42 26 33 100 61.90% 78.77%
2 Semantic 40 29 33 100 72.50% 87.88%

1 Arjin Lucene 59 43 57 100 72.88% 75.44%
2 Semantic 74 56 57 100 75.68% 98.25%

a R returned content item; b H related content items of returned content items; c N related content item of sample;
d S total amount of content items in sample; e Precision = H/R; f Recall = H/N.

6. Discussion

This paper is based on previous research results, but it introduces technologies related to big
data and semantics into the GSICCP. Moreover, this paper promotes the following three aspects of the
GSICCP: massive complex geological unstructured data organization, geological knowledge-based
relationship construction and knowledge-driven geological content discovery. This paper constructed
the GSISSP to enhance the information accessibility of the geological survey domain.

1. Massive unstructured complex geological data organization

In this study, we aimed to characterize geological survey data (e.g., massive, complex, diversified, or
unstructured) and enhanced the data-management methods with Hadoop ecosystem technologies.
HDFS was utilized to store the original geological content. Instead of using a traditional file system
or relational database, the original geological content in HDFS had multiple copies. Compared
to traditional file-based storage, the use of the distributed architecture of the Hadoop system
technology may have improved the security of the original data and improved the concurrent data
access efficiency. In addition, massive geological unstructured data were split into fragments, and a
NoSQL database was utilized to reorganize these fragmented contents. Split unstructured data
could help reduce the complexity and heterogeneity of original geological data. Therefore, we fully
exploited the NoSQL database features to efficiently manage the fragmented geological content,
which improved the retrieval and computational efficiency of the geological unstructured data.

2. Constructing geological knowledge relationships

In this paper, we addressed the thematic, spatial and temporal features of the geological
domain, introduced a geological thematic ontology and geological temporal ontology, built a
toponymy ontology, and extracted multi-dimensional features from geological unstructured data.
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The geological domain problem usually contains spatiotemporal characteristics, and the extracted
thematic, spatial and temporal features would be advantageous to geological content discovery
work that considers spatiotemporal attributes. Moreover, associations between the fragments,
spatial data and images were built based on the relationships that were represented in the
ontologies and the extracted features, and these associations subsequently produced intelligent
and semantically driven connections among the geological content. This set of associations built
the foundation for knowledge-driven geological content discovery.

3. Knowledge-driven geological content discovery

Many unstructured content retrieval studies have been performed in the past. However, in our
previous work, we discovered geological content according to keywords in the text by extracting
words from the text and building an index between the words and the content. When a query
request is sent, the index of keywords is used to identify all the fragments that contain the
keywords. However, this strategy has a huge gap: keyword-based searching ignores semantic and
knowledge relationships. Thus, certain concepts that have the same semantics but are expressed
in different forms are lost, which could lead to missing content during the retrieval process.
For example, to find “magmatic” content, the keyword-based searching method finds all the
fragments that contain the string “magmatic”. However, many sub-categories under the concept
of “magmatic”, such as basalt, dacite, and tuff, exist in the geological domain. Although these
concepts also belong to the category of “magmatic” in the geological domain ontology, they do
not contain the keyword “magmatic” in their expressions; thus, fragments that contain these
concepts are not discovered.

Table 4 shows that the precision rate and recall rate were both promoted with the semantic
retrieval method, especially the recall rate. An exception occurred for “Volcanic rocks”: the precision
of the retrieval decreased compared to that of the old method because some unrelated items were
extended as a search item during retrieval, which negatively affected the search.

In addition, semantic-related technologies were introduced into the framework. The GSISSP could
automatically discover spatial information by building a retrieval frame ontology and combining the
SWRL rules and the workflow. If we ask a specific class of geological question, the GSISSP could build
appropriate workflows according to the predefined SWRL rules, which implies that the system could
discover explicit content on the target theme or area and mine implicit information by customizing
the related spatial analysis. Unstructured content discovery was added to our retrieval framework
according to the work by Jung, Sun and Yuan [33]. Spatial content that is related to the target theme and
area could be discovered and displayed on a map through our system. Similarly, unstructured content
(for example, text, images, or tables) that is related to the target theme and area would be discovered,
which would enable the user to fully exploit the information that is implied in the unstructured data.
Therefore, the spatial results integrated the unstructured information to provide more comprehensive
geological information.

7. Future work

In future studies, we plan to introduce data-mining algorithms and machine learning technologies
based on available geological data contents. We will use data-mining algorithms to investigate deeper
mining works and further enrich the associations in the geological domain ontology to discover
potential knowledge and information from geological big data.
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