
 International Journal of

Geo-Information

Article

Development and Comparison of Species
Distribution Models for Forest Inventories

Óscar Rodríguez de Rivera * and Antonio López-Quílez

Department of Statistics and Operational Research, Faculty of Mathematics, University of Valencia,
46100 Burjassot (València), Spain; antonio.lopez@uv.es
* Correspondence: osroderi@alumni.uv.es; Tel.: +44-(0)7858-714047

Academic Editors: Duccio Rocchini and Wolfgang Kainz
Received: 19 January 2017; Accepted: 14 June 2017; Published: 16 June 2017

Abstract: A comparison of several statistical techniques common in species distribution modeling
was developed during this study to evaluate and obtain the statistical model most accurate to
predict the distribution of different forest tree species (in our case presence/absence data) according
environmental variables. During the process we have developed maximum entropy (MaxEnt),
classification and regression trees (CART), multivariate adaptive regression splines (MARS), showing
the statistical basis of each model and, at the same time, we have developed a specific additive model
to compare and validate their capability. To compare different results, the area under the receiver
operating characteristic (ROC) function (AUC) was used. Every AUC value obtained with those
models is significant and all of the models could be useful to represent the distribution of each species.
Moreover, the additive model with thin plate splines gave the best results. The worst capability was
obtained with MARS. This model’s performance was below average for several species. The additive
model developed obtained better results because it allowed for changes and calibrations. In this
case we were aware of all of the processes that occurred during the modeling. By contrast, models
obtained using specific software, in general, perform like “hermetic machines”, because it could
sometimes be impossible to understand the stages that led to the final results.

Keywords: additive model; area under the curve; AUC; forest inventory; receiver operating
characteristic; ROC; species distribution model

1. Introduction

Species distribution models (SDMs) are mathematical tools based on combination of observations
of species occurrence or abundance with environmental variables. These tools are used to analyze
species distributions across landscapes [1].

In SDM we usually follow the following processes: (1) compile the locations of the presence of
the species; (2) from databases we obtain different values of environmental variables (precipitation,
temperature, etc.) for the compiled locations; (3) these environmental variables fit the models to
estimate the relationship between sites of occurrence or species richness; and (4) the models are tools
to predict the variable of interest across the space or time of interest [2].

Species distribution models comprise three main components: an ecological model, data, and a
statistical model [3]. The most pertinent point in statistical modeling is the selection of the mathematical
model, because a wrong selection may reduce the predictive power. Ecological modeling experts
have shown a keen interest in the effects of mathematical methods on the predictive capacity of
distribution models (e.g., [4,5]). A group from California University’s National Center for Ecological
Analysis and Synthesis (NCEAS) carried out the most comprehensive study of modeling techniques
to date [6]. Their research evaluated the predictive ability of sixteen methods with presence-only or
presence-pseudo-absence data on six regions with more than 200 species. Results showed that new
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methods, such as maximum entropy (MaxEnt), have greater predictive power than other methods,
such as logistic regression (both adjusted generalized linear models, GLM, and adjusted generalized
additive models, GAM). Subsequent studies have also obtained better predictive capacity for MaxEnt
than for logistic regression [7–11].

Decision support tools for plant species selection for ecological/environmental management
have been based on species distribution models (also called ecological niche models) that analyze the
probability of the presence of the species as a function of environmental variables (e.g., precipitation,
temperature, or soil properties). The idea of developing statistical models, with several variables,
to predict the potential distribution of species could be a complex task requiring in-depth study of
several statistical methods that provide fairly inconsequential results. Several tools are now available
to facilitate this task. Several studies have compared the performance of different statistical approaches
to predict species distributions, obtaining a variety of suggestions about model selection [5,6,12].

Some of the latest species distribution models only use the presence of the species in the modeling
process. Other methods use presence/absence data or ‘background’ data. Logistic regression is the
traditional approach to analyzing presence/absence data [2]. Our study uses a large dataset with
presence-absence and, therefore, requires a method that can use these data; in other words, a method
with presence-absence data. We understand that MaxEnt is not a presence-absence method; in fact, it
uses the presence-only data and a user-defined number of randomly-selected points, combining these
with the covariates to build an index of habitat suitability for each cell ranging from 0 (least suitable
habitat) to 1 (most suitable habitat). Moreover, MaxEnt was included in this analysis because of is
one of the most commonly used methods as a species distribution model, as we can see summarized
in [13].

The aim of this paper is two-fold. The first aim is to present and explain, from a mathematical
point of view, different common tools designed for species distribution modeling. Our main target
is to show how these tools develop models based on regressions, and explore the advantages and
disadvantages of each model. The second aim is to compare these models and decide which is the
most accurate according to easily understood indicators.

This study uses real data on seventeen forest species obtained from the Spanish National Inventory,
supported with environmental variables. These species, with presence-absence, were first located
with geographical coordinates. We then generated distribution models with tools designed to create
this kind of model. Finally, we developed an additive model with R and compared the results from
it to evaluate the predictive capability of all of the models in an attempt to answer the following
questions: Does any one statistical technique have a regularly greater predictive ability than the others
for all types of relationships between environmental variables and the presence of the species? [14]
Are species with a higher presence easier to predict than others that are less represented?

The paper proceeds as follows: In Section 2 (Material and Methods), we review the principal
properties of different models and the way each model is evaluated in order to compare the prediction
capability. In Section 3 (Results) we summarize the results of each distribution model and evaluate
them to conclude which one we consider to be the most accurate and which has the best prediction
capability. Finally in Section 4 (Discussion), we analyze the potential of that model.

2. Materials and Methods

2.1. Species Occurrence Data

We have used the Spanish National Forest Inventory (NFI) dataset to elaborate our research
project. NFI comprises a systematic grid with 91,889 plots, each of which is 0.2 ha in size. From this
dataset, we started by choosing 17 forest species with presence/absence in each plot. The species
analyzed with the percentage of presence are as follows: Abies alba Miller (<5%), Castanea sativa Miller
(5%), Fagus sylvatica L. (5.5%), Pinus halepensis Miller (15%), Pinus nigra Arnold (9.5%), Pinus pinea L.
(15%), Pinus pinaster Aiton (15%), Pinus sylvestris L. (12.3%), Pinus uncinata Turra (<5%), Quercus
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canariensis Willd. (<5%), Quercus faginea Lam. (11%), Quercus humilis Miller (<5%), Quercus ilex L.
(36%), Quercus petraea (Matt.) Liebl (<5%), Quercus pyrenaica Willd. (8.2%), Quercus robur L. (8.6%),
and Quercus suber L. (5%). In this paper we only report the most characteristic species to evaluate the
statistical processes used in the study.

2.2. Environmental Predictors

We have obtained the climatic data grids by applying the models for climatic estimation produced
by [15] to the Shuttle Radar Topography Mission (STRM) 3-arc-second (≈90 m) elevation dataset [16].
These models interpolate monthly climate data from weather stations using latitude, longitude, and
elevation as independent variables. We have analyzed 10 climatic predictors commonly used in
tree species autoecology in Spain [17]: mean summer rainfall (SR), mean annual rainfall (R), mean
summer temperature (ST), mean annual temperature (T), mean of maximum temperatures of the
warmest month (MTWM), mean of minimum temperatures of the coldest month (MTCM), mean
annual potential evapotranspiration (ETP), mean annual water surplus (SUP), and mean annual water
deficit (DEF). Moreover, we have used the European Soil Database [18] to allocate each plot to a parent
material class (calcareous or siliceous) (C). The distribution of calcareous parent materials is a very
useful predictor of plant species distribution in Mediterranean ecosystems [19].

Model selection was based on the ease of working with each model and the possibility of repeating
each process with the same characteristics using the species studied. Therefore, we constructed the
models with one of the most widely-used models (MaxEnt), and others based on simple software
developed by Saldorf System (San Diego, CA, USA) (CART and MARS). Finally, we built an additive
model using R software.

The statistical methods used in this study are summarized below.

2.3. MaxEnt (Maximum Entropy)

MaxEnt [20,21] is an artificial intelligence method based on the statistical principle of maximum
entropy. Models are limited by the value of the variables used to develop the problem. For example,
the expected value (mean value predicted by the model) of each independent variable must match its
empirical average (the mean value observed when sampling with an independent variable occurrence
data item). MaxEnt obtains the maximum entropy probability of the distribution; in other words, the
distribution nearest to the uniform distribution, with all of the conditions. Additionally, MaxEnt is
based on the following points: (a) the presence of a species is represented by a likelihood function P
on a set x of points in the study zone. P gives a positive value x everywhere so that the sum of P(x)
is unity; (b) building a model of P with a group of constraints obtained from the empirical data of
presence; (c) the restrictions are expressed as a simple function of known environmental variables,
f(v); (d) in the MaxEnt method, the average forces of each function of each variable are close to the
actual average of the variable zones of presence; and e) of the possible options available, a specific
combination of features is selected to minimize the entropy function (measured by the Shannon index).
The entropy function allows optimal selection of variables and functions based on their significance,
and eliminates restrictions that do not provide the model with significance.

The general form of the probability function is, with i environmental variables:

P(x) = eλf(x)/Zλ

where lambda is a weighting coefficient vector and f is the vector corresponding to the functions. Z is
a normalization constant used to ensure that P(x) is the unit. The values P(x) obtained should be
interpreted as relative suitability values. These values are normally processed by a logistic function
that is adjusted to a more comprehensible level in the range between 0 (incompatible) and 1 (ideal).
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Hypothetically, MaxEnt is most similar to generalized linear models and additive models. In what
follows, we use the expressions of [22]. A commonly-used linear model is the Gaussian logit model, in
which the logit of the predicted probability of occurrence is:

α + β1f1 + γ1f1(x)2 + · · · + βnfn + γnfn(x)2

where the fj are environmental predictors; α, βj, and γj are fixed coefficients; and the logit function
is defined by logit(p) = ln(p/(1 − p)). The above expression is no different in form as the log (rather
than logit) of the likelihood of the pixel x in a MaxEnt expression with linear and quadratic structures.
A common method for modeling interactions between variables in a linear model is to create product
predictors, which is equivalent to the use of it in MaxEnt [21].

From a similar point of view, if the probability of presence/absence is modeled with an additive
model using a logit link function, the logit of the predicted likelihood has the form:

g1(f1(x)) + · · · + gn(fn(x))

where fi are the environmental predictors. gi are smooth functions fitted by the expression, with
the quantity of smoothing measured by a measurement factor. This is a similar method as the log
probability in a MaxEnt model, for pixel x, with threshold structures, and regularization has an
equivalent effect to smoothing on the otherwise random functions gi. In both cases, the form of the
response curve to each environmental predictor is determined by the data.

During the process, MaxEnt generates different probability distributions, opening from a uniform
scattering, and improves the fitting to the data. This improvement is defined as the average possibility
of occurrence data, removing a constant, which means that the uniform distribution has a gain of zero.

Regardless of these similarities, several differences exist between generalized models and MaxEnt,
leading them to create different results. When GLM/GAMs are developed to model the probability
of presence, absences are needed. When applied to presence-only data, background pixels should be
used as an alternative of true nonappearances [12,23]. However, the interpretation of the output is less
clear-cut—it must be taken as a relative guide of ambient suitability. Dissimilarly, MaxEnt models a
probability of presence over the pixels in the area of study, and on no account are pixels without records
interpreted as no presences. Additionally, MaxEnt is a generative method, although GLM/GAMs are
discriminative, and generative methods may give better likelihoods when the quantity of training data
is insignificant [24].

For all species we use the model with the same variables, obtaining the following results shown
below for each of the species under study.

2.4. MARS (Multivariate Adaptive Regression Splines)

MARS is a statistical method developed by Friedman [25]. It involves designing flexible models in
which the data are adjusted to partial regressions. When models are nonlinear, they are approximated
by partial linear regression, where the grade of the equation changes from one step to another,
establishing a node between the end of one linear regression and the beginning of the next.

A node indicates the end of one partial regression and the beginning of another. Between two
consecutive nodes, logically, the model is defined by a linear regression. The nodes are selected with
the aid of a search procedure that generates a stepper algorithm. The model generated is overfitted, so
the less relevant nodes are subsequently removed using a statistical approach known as generalized
cross-validation. Finally, we only consider the most significant nodes. The function is a parameter
interceptor β0, and βi is the weighted sum of one or more basic functions FBi. Therefore, the model
will consist of a weighted sum of selected basic expressions from a large number of basic expressions
that link all of the values of the predictor. The model is generated as follows:

f(x) = β0 + ∑βifiFBi
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FBi = max(0, V − N)

FBi+1 = max(0, N − V)

where FB is a basic function and acts as a new variable, V is the variable and N is the node.
Going deeper into the MARS algorithm, note that the models are constructed from double-sided

truncated functions of the form (see Figure 1):

(x − t)+ = (x − t; x > t/0; other
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that only positive values are considered.

Each expression is in linear pieces, with a lump in the value t, where each node is located at the
end of one region of the data and starts at a different one [26]. The Salford Predictive Modeler Builder
v6.6 (www.salford-systems.com) was used to generate these models.

2.5. CART (Classification and Regression Trees)

This method was established by Brieman et al. [27] and generates binary trees (the parent nodes
are divided into two child nodes) by iterative partitions, in a process that can be repeated to attempt to
turn each child node into a parent node. The algorithm searches for the optimal cutoff values among
all of the independent variables to obtain an optimal set of binary divisions, so as to minimize the
variance within each node and maximize it between different nodes; it is, therefore, possible that some
variables will be unused. Once the tree that best classifies the cases has been identified, with no limits
on complexity, the algorithm ‘prunes’, or simplifies, to avoid overfitting of the data. The result is a
tree that establishes yes/no questions. Depending on the kind of dependent variable there can be two
types of trees: regression (continuous dependent variable) and classification (discrete variable).

The aim of this method is to discriminate, estimate, or predict Y-based predictors X1, ..., Xp by
successive partitions or by sets of individuals, maximizing a measure of information content with
respect to the response variable. In the validation phase this same design, a training matrix, or a similar,
but independent, matrix (validation or test sample) can be used; in this case we use the same matrix.

The most important advantages of classification and/or regression trees are [28]: (a) structured
knowledge is obtained in the form of classification rules or the values of a variable interval.
This knowledge is easy to interpret and, in simple language, characterizes the classes or values
of a variable interval; (b) as it is a nonparametric analysis (distribution-free procedure), it requires no
distributional assumptions to validate probability; (c) it allows working with all types of predictor
variables: binary, nominal, ordinal, and interval or ratio; (d) it allows unknown values for the predictor
variables in the individuals, both in the construction phase and in the tree prediction; e) in the case of
classification probability, it can be set to a priori classes; and (f) the observations can be weighed using
an ad-hoc variable.

An expression known as recursive dividing is essential to the nonparametric statistical approach
of classification and regression trees (CART) [27]. Supposing the data are given by D = {(Xi, Yi),
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i = 1, 2, ..., n}, where Yi are widths made on a uninterrupted response variable Y, and the Xi are
measurements on an input r-vector X. We accept that Y is connected to X as in multiple regression, and
the aim is to use a tree-based algorithm to predict Y from X.

Regression trees are built in a parallel way to classification trees, and the technique is generally
stated as recursive-separating regression. In a classification tree, the class of a terminal knot is
demarcated as the class that orders a plurality (generally in the two-class case) of all of the observations
in that node, where ties are randomized. In a regression tree, the output is set to have the constant
value Y(τ) at terminal node τ . Hence, the tree can be characterized as an r-dimensional histogram
approximated of the regression surface, where r is the number of input variables, X1, X2, ..., Xr [29].

i(τ) = ∑(Yi −
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division that delivers the largest decrease in the value of i(T). The reduction in i(τ) due to a division
into τL and τR is expressed by

∆i(τ) = i(τ) − i(τL) − i(τR)

The left daughter node and right daughter node emanating from a (parent) node τ are denoted by
τL and τR, respectively.

The best division at τ is the one that exploits ∆i(τ). The consequence of employing such a splitting
approach is that the best division will split up observations according to whether Y has a small or large
value; in general, where divisions occur, we can see either y(τL) < y(τ) < y(τR), or its opposite, with
y(τL) and y(τR) interchanged.

We note that discovery τL and τR to exploit ∆i(τ) is similar to reducing i(τL) + i(τR). Solving:

minτL,τR{p(τL)s2(τL) + p(τR)s2(τR)}

where p(τL) and p(τR) are the proportions of observations in τ that divide to τL and τR,
individually [28].

The Salford Predictive Modeler Builder v6.6 (www.salford-systems.com) was used to generate
these models.

2.6. Generalized Additive Model with Thin Plate Splines (GAM.TP)

A generalized additive model (GAM) is a generalized linear model in which the linear predictor
be determined by linearly on unidentified smooth expressions of some variables, and interest focuses
on inference about these smooth expressions. Additive models were originally built by [28] to combine
properties of linear models with additive models.

The generalized additive model replaces

∑βjXj

with

∑fj(xj)

where fj is an unspecified (‘non-parametric’) function. It can be in a non-linear form:

E(Y|X1, . . . , Xp) = f(X1, . . . , Xp) = f0 + f1(X1) + ··· + fp(Xp).

The function fj(xj) is estimated in a flexible manner using a spline smoother [30].
A smoother is an instrument for summarizing the tendency of a dependent variable Y as an

expression of one, or more, independent variables X1, . . . , Xp. It generates an estimate of the tendency
that is less mutable than Y itself; therefore, the name ‘smoother’. The most significant characteristic of
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a smoother is its non-parametric nature, so the smooth function is also known as a non-parametric
function. Its greatest difference from the GLM is that it does not undertake an inflexible form for the
dependence of Y on X1, . . . , Xp. It allows an approach with the addition of expressions (expressions
that have separated input estimates), not just with one indefinite expression only. For this reason it is
the building block of the generalized additive model algorithm [31].

Testing the different types of splines reveals that the best model helped with the AIC value is
the additive model with thin plate regression splines. The thin plate spline is the two-dimensional
equivalent of the cubic spline in one dimension. It is the essential resolution to the biharmonic equation,
and has the form

U(r) = r2ln(r).

Assuming a dataset of points, a weighted mixture of thin plate splines concentrated about each
point gives the interpolation expression that passes through the points precisely while reducing the
so-called ‘bending energy.’ Bending energy is defined here as the integral over R2 of the squares of the
second derivatives:

I[f(x, y)] =
∫ ∫

((fxx)2 + 2(fxy)2 + (fyy)2)dxdy.

Regularization should be used to decrease the necessity that the interpolant pass through the data
points exactly.

The designation of ‘thin plate spline’ is a physical analogy referring to the flexibility of a thin
sheet of metal. In the physical situation, the deflection is in the z direction, at a right angle to the plane.
In order to apply this impression to the problem of coordinate conversion, the lifting of the plate is
interpreted as a dislocation of the x or y coordinates within the plane [32].

These splines are short rank isotropic smoothers of any number of variables. The splines are
isotropic because any variation of the covariate co-ordinate system will not modify the output of
smoothing. The low rank means that they have rarer coefficients than there are data to smooth.
They are the default smoother for ‘s’ terms due to there being a clear logic in which they are the ideal
smoother of any given basis measurement/rank [33].

In this case, as we are building the model with R we used the mgcv package [33–37] to construct
the additive model and the ROCR package [38] to obtain the validations, AUC values, and graphics.

2.7. Evaluation

The area under the receiver operating characteristic (ROC) function (AUC) is taken to be an
important index because it provides a single measure of overall accuracy that is independent upon a
particular threshold [39]. If the objective is to rank the classifiers, comparisons using ROC plots are
more robust since they are not dependent of the values in a confusion matrix [40]. An ROC graph is a
method for visualizing, establishing, and selecting classifiers based on their presentation. ROC curve
analysis was developed during World War II as a tool in signal processing, and is now used in many
branches of science. Standard references for ROC curve analysis are [40–45].

Although ROC graphs are conceptually simple, their application in research contexts gives rise to
some complexities that are not obvious and their practical use entails some common misconceptions
and pitfalls [46].

Some formulae typical in ROC curves are

tp rate ≈ (Positives correctly classified)/(Total positives)

fp rate ≈ (Negatives incorrectly classified)/(Total negatives).

ROC graphs are two-dimensional graphs where the true positive rate is presented on the Y axis
and the false positive rate is presented on the X axis. An ROC graph represents relative adjustments
between profits (true positives) and expenses (false positives). Figure 2 shows the area under two ROC
curves, A and B. Classifier A has a greater area and, therefore, better average performance.
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Finally, it is probable for a low-AUC classifier to perform better in a specific region of the ROC
space than a high-AUC classifier. Figure 2 shows an example of this: classifier B is generally worse
than A, except at an fp rate > 0.6 where B has an insignificant advantage. However, in practice the
AUC performs very well and is often used when a general measure of predictiveness is desired.

In order to analyze suitability of the different models, we have used 10% of the data available for
each species.
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3. Results

The study performed with the 17 species reveals some important results. For the sake of simplicity,
we present here only the results summarizing the species using the two species with the highest and
lowest results.

A two-way ANOVA shows that all the environmental variables included in the models are
significant for all measures of performance (p < 0.05). All models designed have good predictions and
obtain high AUC values.

Analyzing predictability, based on the AUC, we have obtained that for all the species analyzed,
MARS and MaxEnt are the models with the lowest predictability and, consequently, with the lowest
AUC average. However, CART and GAM generally have the highest AUC values.

Below are the AUC values obtained in the verification process for the species analyzed.
The following ecological modeling methods are compared: MARS and MaxEnt, CART, and GAM.TP.
The scatterplot graph shows the different models’ behavior, demonstrating that all have good
predictability based on their AUC values.

Figure 3 shows that MaxEnt, CART, and GAM.TP have AUC values near to 1, and that all
of the models have good results for predicting species distribution. For the different species,
all of the statistical models show similar behavior and performed in the same way. Comparing
model predictability, the AUC values in GAM.TP have better results, on average, than the others.
A comparison of one particular species with the highest AUC results and another with the lowest
reveals no important differences between the models. As we can see in the table below, AUC values
are very similar across all models.

In Table 1, we can see that the average for the best species modeled was 0.986 with a deviation
value of 0.029. Moreover, one of the species with the lowest AUC value was Pinus pinea with an
average of 0.876; in this case the deviation was 0.019. In both cases MARS obtained the lowest AUC
values. In contrast, the best values were obtained with GAM.TP, although the few differences between
this model and the others were not very significant. Finally, we can see Quercus ilex, a species with
greater presence in the dataset, and also the species with the lowest AUC for all the models.
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Figure 4a (Quercus canariensis) and 4b (Pinus pinea) show the results. Models are represented in
different colors to facilitate understanding: MaxEnt (red), MARS (green), CART (blue), and GAM.TP
(black). Figure 4a shows that every model has very good results, but GAM.TP exceeds the others.
However, Figure 4b shows that MARS obtains worse results than the others and, for this reason, the
line is well below the rest.ISPRS Int. J. Geo-Inf. 2017, 6, 176  9 of 14 
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Table 1. Average of values of AUC for each model with Quercus canariensis and Pinus pinea.

Species MAXENT MARS CART GAM.TP

Q. canariensis 0.986 0.920 0.970 0.995
P. pinea 0.884 0.847 0.874 0.899
Q. ilex 0.783 0.814 0.847 0.834
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Models are represented in different colors to facilitate understanding: MaxEnt (red), MARS (green),
CART (blue), and GAM.TP (black).

Analyzing the results, species with the highest number of presences have lower values in the
predictions due to a wide range of the environmental variables. In contrast, the species with the most
absences have the highest AUC values, perhaps due to the representative environmental characteristics
that give rise to the presence of these species.
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If we analyze presence-absence from the dataset and compare it with the AUC average, we find
that the relationship between AUC and percentage of presence is negative (based on the correlation
index), with a value of −0.75. Species with the highest percentage of presence have lower AUC values
than other less-represented species in the area of study.

Figure 5 represents the relationship between the presence percentage and the AUC value, showing
it to be negative; when the percentage of presence increases, the AUC value decreases. A simple trend
line clearly shows the behavior between these values. The trend line is represented with the expression
y = −0.0038x + 0.9365, and an R2 value of 0.508.
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In summary, every AUC value obtained with those models is significant and all the models could
be useful to represent the distribution of each species. Overall, the additive model with thin plate
splines gave the best results. MaxEnt, CART, and GAM.TP with thin plates splines obtained similar
AUC values. The worst capability was obtained with MARS. This model’s performance was below the
average for several species. The models we developed obtained better results because they allowed for
changes and calibrations. In this case we were aware of all of the processes that occurred during the
modeling. By contrast, models obtained using specific software, in general, perform like “hermetic
machines” because it could sometimes be impossible to understand the stages leading toward the
final results.

4. Discussion

Our modeling framework examines how applicable some of the most widely used models are to
species, the presences of which are largely set by the physical environment.

As we can see, all of the techniques developed here proved capable of successfully predicting
species distribution. Factually, all of the models obtain similar performance based in the AUC and,
over all, all of the methods show good results for predicting species distribution. Thus, there are no
important differences between the different techniques developed in this analysis. Moreover, we can
highlight interesting points based in our results to try to clarify and support our model selection:

GAM.TP performed better overall than MaxEnt and MARS, even though these differences are
not substantial when compared with regression trees. This result differed from other comparative
analyses [5,14,47,48], where linear models and additive models performed better than classification
trees. We establish that, despite the dissimilarities in model suppositions, all statistical techniques
seem to provide the best predictions for additive models.



ISPRS Int. J. Geo-Inf. 2017, 6, 176 11 of 14

As we said in the introduction, MaxEnt was included in this analysis due to the popularity
of the method. We can understand that, in some points, it is not comparable to presence/absence
models. Moreover, the similarity in results gave us some chances to compare the models. As we said,
MaxEnt is presence-only data; for this reason the interpretation of the output is less clear than the
models for presence/absence data. MaxEnt output must be taken as a relative guide of environmental
suitability. On the other hand, presence/absence models could be more reliable because these models
use information from the real absences.

From the user perspective, if we compare the different modeling techniques, CART and MARS
required the least amount of user guidance (probably because they were developed in tools designed
in a friendly environment). Moreover these tools are less flexible than the other statistical techniques
developed in this research and, also, there is a high complexity if the user tries to manipulate the
default settings in order to improve the accuracy of the outputs.

GAM.TP requires some knowledge of statistical techniques due to the amount of possibilities
that it offers for building one’s own model. Moreover, this flexibility and the possibilities offered by
this approach make this approach more attractive. Currently, several tutorials available for several
packages in R make the possibility to elaborate advanced statistical models more affordable without
master knowledge (although we recommend a deeper research in statistical techniques before applying
any model to avoid misunderstanding and frustration).

In conclusion, additive models with thin plate splines may be considered one of the greatest
methods to analyze species distribution models working with presence-absence data, comparable to
MaxEnt, CART, and MARS. Our results show a better fit and more flexibility in the design.

Looking at the quality of the data and the possibility to work with presence/absence values, and
also with a systematic survey, we can confirm, looking our results, that the information obtained from
the absences could be more important than the presences. Analyzing this result from an ecological
perspective, absences deliver more information about the species due to the combination of several
environmental predictors.

From an ecological perspective, analyzing the variables used in all of the models, we can see some
differences between the variables’ importance, depending of the model used. Comparing the species
used before, we can see in Table 2 that different models have different variables’ weight. In our case,
MARS and CART have the same set of the most important variables for both species (SUP, MTCM, C,
SR). Moreover, MaxEnt uses different variables for the different species: MTCM, C, R, and ETP with Q.
canariensis, and ST, SUP, MTCM, and SR in P. pinea model. Finally, with GAM. TP, the most important
variables were MTCM, SR, R, and WD in Q. canariensis, and in P. pinea, all of the variables have similar
weight, but the more important four were R, SR, MTWM, and ST.

Table 2. Summary of the most important variables for each model with Quercus canariensis and
Pinus pinea.

Species MAXENT MARS CART GAM.TP
Q. canariensis MTCM SUP SUP MTCM

C MTCM MTCM SR
R C C R

ETP SR SR WD

P. pinea ST SUP SUP R

SUP MTCM MTCM SR
MTCM C C MTWM

SR SR SR ST

As we have seen in the results (Table 1 and Figure 5), species that are less represented (i.e., with
more absences), have better predictability than species with more presences. This situation shows
us the importance of absences in predictive models. These absences give us several pieces of
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information about the suitability of species and defining absence areas. If we analyze these models
as management tools, this information is essential regarding the species selection and, in our case,
for forest management.

Finally, we understand that there are more advanced approaches that can be applied in species
distribution models, most of them through the Bayesian approach (i.e., R-INLA (Integrated nested
Laplace approximation) can be compiled with the stochastic partial differential equations (SPDE)
approach [49] which, through a discretization of a continuous Gaussian field, can cope efficiently
with variables characterized by a complex spatial structure). However, our objective was to show
the interesting opportunities that these explanatory techniques offer and to assess the relationships
between environmental variables.
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