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Abstract: Missing data reconstruction is a critical step in the analysis and mining of spatio-temporal
data; however, few studies comprehensively consider missing data patterns, sample selection and
spatio-temporal relationships. As a result, traditional methods often fail to obtain satisfactory
accuracy or address high levels of complexity. To combat these problems, this study developed
an effective two-step method for spatio-temporal missing data reconstruction (ST-2SMR). This
approach includes a coarse-grained interpolation method for considering missing patterns, which
can successfully eliminate the influence of continuous missing data on the overall results. Based
on the results of coarse-grained interpolation, a dynamic sliding window selection algorithm was
implemented to determine the most relevant sample data for fine-grained interpolation, considering
both spatial and temporal heterogeneity. Finally, spatio-temporal interpolation results were integrated
by using a neural network model. We validated our approach using Beijing air quality data and
found that the proposed method outperforms existing solutions in term of estimation accuracy and
reconstruction rate.

Keywords: spatio-temporal interpolation; spatio-temporal heterogeneity; dynamic sliding window;
neural network

1. Introduction

Following both the rapid development and popularization of geographic information and the
enhancement of data collection, data with temporal and spatial attributes are quickly accumulated and
form large numbers of spatio-temporal datasets [1]; however, missing data are extremely common; for
example, missing data on air quality monitoring sensor readings, missing data on floating car track
points or the absence of mobile phone signaling records. If these gaps in data cannot be accurately
filled, subsequent analysis and modeling of the data can lead to inaccurate results and unreasonable
inference [2]. Simply deleting records containing missing data would lead to significant loss of original
information and would be a waste of data resources [3]; therefore, methods to accurately and efficiently
interpolate missing data are urgently needed.

In past decades, a large number of interpolation methods has been proposed to solve the problem
of spatio-temporal missing data [4–10]. These methods can be roughly divided into three categories:
spatial interpolation, temporal interpolation and spatio-temporal interpolation.

Spatial interpolation methods mainly use spatial correlation among data to interpolate missing
data. Traditional methods (e.g., inverse distance weighting (IDW)) simply assume that the data
distribution obeys the first law of geography, namely the closer data are in spatial distribution, the
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greater the contribution they make to missing data interpolation. During interpolation, each site is
assumed to be independent of the others, and weights are calculated by computing the distance
between missing data and the surrounding site [11,12]. Most approaches use kriging, a linear
regression method that utilizes minimum mean square error and does not treat each site independently.
The method assumes consistent sample mean and variance to meet second order stationarity and
assumes that the covariance between any two spatio-temporal points is only associated with the
distance (i.e., the absolute position of time and space is irrelevant) [13,14]. However, due to the
existence of spatial and temporal heterogeneity, the data distribution can show uneven characteristics
and relationships according to different regions [15]; therefore, the accuracy of interpolation results
obtained by existing methods remains unsatisfactory if data are not homogeneously distributed.
To solve this problem [16] considered spatial autocorrelation and heterogeneity in a study area and
proposed a point estimation model of biased hospital-based area disease estimation (P-BSHADE). The
P-BSHADE method calculates the covariance and correlation coefficient of historical observational data
and uses the expectation between surrounding stations and interpolation sites to get an optimal linear
unbiased estimator. However, in cases of continuous missing data, the method leads to a singular
value of the missing data matrix, which results in large interpolation error. At the same time, this
method does not consider the heterogeneity of the time dimension [2].

Time series prediction methods typically use historical data for a given location to build
a prediction framework for predicting the values of missing data points at the same site. The
autoregressive integrated moving-average (ARIMA) model [17] and simple exponential smoothing
(SES) [18] are two representative examples of this approach. However, this approach fails to address
two major problems. First, many prediction models do not fully utilize the essential characteristics of
spatio-temporal data, which can degrade performance; second, if a consecutive series of data is all lost,
prediction methods often cannot achieve complete reconstruction [19].

Given that single dimension interpolation methods only consider spatial or temporal dimensions,
achieving satisfactory interpolation results is challenging. In recent years, a number of studies
have extended single dimension interpolation methods to consider both space and time; for
example, spatio-temporal probabilistic principal component regression (ST-PCR), spatio-temporal IDW
(ST-IDW), spatio-temporal kriging (ST-kriging) and the spatio-temporal heterogeneous covariance
method (ST-HC) [2,3,7,9,10,20–22]. ST-PCR [9] is a statistical learning-based method, which takes
advantage of the statistical feature of observed data. However, it often needs a strong hypothesis over
the data. ST-IDW [23] defined a three-dimensional space-time distance, which then applied IDW to
estimate missing values; however, due to the existing problems with the IDW method, application of
ST-IDW remains limited and fails to achieve unbiased estimation. The ST-kriging method [14] estimates
the interpolation function by adopting a spatio-temporal covariance function, but it does not take
into account the effects of spatial and temporal heterogeneity on interpolation results. To address this
issue, the ST-HC method, which is an extension of P-BSHADE, estimates missing data by considering
temporal and spatial heterogeneity. Missing datasets are firstly partitioned into homogenous spatial
regions, and then, the most correlated spatial sampling and time sampling series are selected for
the partition of missing data. According to the P-BSHADE algorithm, both spatial and temporal
contribution weights are calculated to obtain the best linear unbiased estimates in spatial and temporal
dimensions. Finally, using the correlation coefficient to determine the spatial and temporal weights,
estimated values in spatial and temporal dimensions are integrated to obtain overall estimated values
of missing data [2]. However, this method requires the whole dataset to participate in computation,
which leads to high computational complexity and a large volume of redundant data. For example,
when the time span of the dataset is large, including the n dimensional space sequence, both n2

covariance and the correlation coefficient need to be calculated for each missing data point. In addition,
when data are missing continuously, interpolation accuracy is low, and it may even be impossible to
obtain a final interpolation result.
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Missing data reconstruction methods are further challenged by the variation in patterns of missing
data [24,25]; for example, missing data completely at random, non-random missing data [26], or whole
blocks of missing data [27] (Figure 1). The work in [10] formulates the spatio-temporal sensory data as
a high-dimensional tensor, using the tensor completion method to recover missing values. However,
when a whole temporal or spatial dimension of the data is missing, this method may fail. The same
problem exists for other spatio-temporal interpolation methods (e.g., IDW, kriging, P-BSHADE,
ST-IDW, ST-kriging, ST-HC). Furthermore, most existing methods assume a linear relationship between
spatial and temporal data (e.g., ST-HC, ST-IDW, ST-kriging); however, the relationship between spatial
and temporal data may be linear or nonlinear. To address these issues, in this study, we developed a
new two-step method to reconstruct missing spatio-temporal data (ST-2SMR).
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2. Materials and Methods

2.1. Problem Definitions

Definition 1. Suppose that y(S, T) represents a spatio-temporal missing dataset, where S and T are the spatial
and temporal dimension, respectively; S = {s1,s2, · · · , sm}, T = {t1,t2, · · · , tn}, m is the total number
of spatial objects and n is the total number of timestamps. An entry Vij = y

(
si, tj

)
refers to the value of

the i-th spatial object at the j-th timestamp (1 ≤ i ≤ m, 1 ≤ j ≤ n). The definition of the size of the sliding
window is w (1 ≤ w ≤ n). If there exist {Vij 6= ∅

∣∣∣∀(j− w−1
2 ) ≤ j ≤ (j + w−1

2 )} , then si is a complete

temporal sequence. If there exist {Vij 6= ∅
∣∣∣ ∃(j− w−1

2 ) ≤ j ≤ (j + w−1
2 )} , then si exists, missing at the j-th

timestamp. Similarly, if there exist {Vij 6= ∅
∣∣∀1 ≤ i ≤ m} , then tj is a complete spatial sequence. If there exist

{Vij 6= ∅
∣∣∃1 ≤ i ≤ m}, it means that tj exists, missing at the i-th spatial object.

Definition 2. Suppose that ẑi = ŷ(si, ti) is the estimated value of zi = y(si, ti), then the problem can be
defined as: {

minMSE = E(ẑi − zi)

s.t.E(ẑi) = zi
(1)

where MSE is the minimum mean square error and E is the statistical expectation. Meet E(ẑi) = zi to ensure
that the process of interpolation results in an unbiased estimate.
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2.2. Method Framework

The method developed in this study (ST-2SMR) takes into account the problems of existing
missing data interpolation methods and was constructed using 5 main steps (Figure 2): the partition
of dataset into training and testing parts, coarse-grained interpolation, fine-grained interpolation,
integration of temporal and spatial interpolation results and model performance evaluation.

1. First, because the ST-2SMR method uses a neural network model to combine the interpolation
results in spatial and temporal dimensions, the space-time missing dataset was divided, with 80%
selected for parameter training and 20% used as a test dataset to evaluate model performance, to
avoid overfitting and to improve generalization ability.

2. Second, to avoid the influence of continuous missing data on fine-grained interpolation,
coarse-grained interpolation for missing datasets was applied.

3. Based on the results of coarse-grained interpolation, spatial and temporal heterogeneity was
used to perform fine-grained interpolation. During this process, it was necessary to calculate the
correlation coefficient and covariance between time and space sequences to fit the parameters.
If whole time series or spatial sequences are involved in interpolation, redundant sample data
increase computational complexity; therefore, to improve the accuracy and speed of interpolation,
a suitable sliding window was introduced to ensure the strongest correlation between sample data
and missing data. Next, a heterogeneous covariance function was constructed for the space-time
dimension. The best unbiased estimate of missing data can then be obtained by maximizing the
objective function.

4. After interpolation of temporal and spatial dimensions, estimated values without missing data
were chosen as training samples for the neural network, which is used to mine nonlinear
relationships in spatio-temporal data. Estimated values of missing data were then obtained
by inputting the spatio-temporal interpolation results of missing data into the trained neural
network model.

5. Finally, the performance of the model was evaluated using the test dataset.
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3. Detailed Design of ST-2SMR

3.1. Coarse-Grained Interpolation

Using existing spatial and temporal interpolation methods, it is difficult to obtain accurate
interpolation estimates where there is a lack of sample points around missing points (Figure 1b,c).
In some cases, it may even be impossible to obtain interpolation estimates (Figure 1d). We overcame
this issue by introducing coarse-grained interpolation before fine-grained interpolation in order to
eliminate the influence of continuous missing data. Using this approach, the ST-2SMR method is
able to locate missing patterns in any combination, which ensures that the method is suitable for any
serious loss situation.

In the spatial dimension, we used a classical multivariate statistical model (IDW) to interpolate
missing data. IDW adopts the observed data of adjacent space points to estimate unknown data [11,28].
When the distance of the adjacent space points is closer to the point of interpolation, the spatial
contribution value is larger. Interpolation estimates for missing data ˆv_spatial0 are calculated
as follows:

ˆv_spatial0 =
m

∑
i=1

χiv_spatiali (2)

χi =
d−α

i

∑m
i=1 d−α

i
(3)

where di denotes the distance between interpolation points and observation points and α is the decay
weight rate, where a larger α denotes a faster decay by the distance.

In the time dimension, an exponential moving average model (SES) was used to estimate missing
data [18]. SES assumes that there is strong temporal correlation between data, and the closer the
sampling point is to the missing point, the bigger the weight that it is given. Traditional SES uses
only the sampling data that are before the interpolation time point; however, when the time span is
large, this can lead to too many irrelevant data involved in the calculation, which reduces interpolation
accuracy. Here, we extended it to set a sliding window wc, which takes only before the wc time
slice of the missing data and the last wc time slice of the missing data as the sampling point for the
interpolation calculation. The model can be expressed as:

ˆv_temporal0 =
∑wc

j=1 v_temporalj ∗ β ∗ (1− β)thj−1

∑wc
j=1 β ∗ (1− β)thj−1 (4)

where ˆv_temporal0 is the estimated value for missing data, thj is a time interval between the sampling
data and the missing data and β is a smoothing parameter with a range of (0, 1).

Assuming that V4,6 are the data to be interpolated, we first selected all no missing data at t6, using
IDW interpolation estimation (Figure 3). In the temporal dimension, we set the sliding window to be
wc = 4 and selected {V4,2, V4,3, V4,5, V4,7, V4,8, V4,10} as the sampling data for interpolation. If both the
IDW and SES methods can obtain an estimated value, the mean of the two is taken as the interpolation
result of V4,6. If SES or IDW fail to get an interpolation result, the other estimated value is taken as the
estimated value. If both SES and IDW fail to obtain an interpolation result, then V4,6 is still missing,
and the fine-grained interpolation algorithm is needed to estimate its value. The pseudocode of this
process is shown in Algorithm 1.
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Algorithm 1: Coarse-Grained interpolation.

Input: Original Missing Matrix Vm×n

Temporal Threshold wc
Parameter of IDW α

Parameter of SES β

Output: Coarse-Grained Imputing Matrix C_Mm×n

1 C_Mm×n ← Initialization(Vm×n)

2 For i = 1 to m
3 For j = 1 to n
4 If Vij is missing value then
5 vc_spatial ← 0
6 vc_temporal ← 0

7 vc_spatial ← IDW
(

Vij, α
)

8 vc_temporal ← SES
(

Vij, β, wc
)

9 If vc_spatial , vc_temporal are not missing value then

10 C_Mij ←
(

vc_spatial + vc_temporal

)
/2

11 Else if vc_spatial is not missing value then
12 C_Mij ← vc_spatial
13 Else if vc_temporal is not missing value then
14 C_Mij ← vc_temporal
15 Else
16 C_Mij ← ∅
17 End for
18 End for

ISPRS Int. J. Geo-Inf. 2017, 6, 187  6 of 26 

 

 
Figure 3. Coarse-grained interpolation method. 

Algorithm 1: Coarse-Grained interpolation. 
Input: Original Missing Matrix ×  
      Temporal Threshold  

Parameter of IDW  
      Parameter of SES  
Output: Coarse-Grained Imputing Matrix _ ×  
1 _ × ← ( × ) 
2 For  = 1 to  
3    For  = 1 to  
4       If  is missing value then 
5          _ ← 0 
6          _ ← 0 
7         _ ← ,  
8         	 _ ← , ,  
9         If _ , _  are not missing value then 

Figure 3. Coarse-grained interpolation method.



ISPRS Int. J. Geo-Inf. 2017, 6, 187 7 of 25

3.2. Fine-Grained Interpolation

3.2.1. Sliding Window

Before fine-grained interpolation, the ST-2SMR model needs to set up a dynamic sliding window
to determine sample data. Owing to the strong temporal dependence of spatial and temporal data,
selecting different numbers of data for interpolation estimation can lead to different results. If the
window is set too small, sample data cannot fully reflect spatio-temporal relationships; if the window
is too large (i.e., too many data are used), significant redundant data are introduced to the calculation,
and the computational complexity increases.

Considering the fact that spatio-temporal data from a short period of time remain within the
approximate correlation, take the average correlation of the missing data sequence and their adjacent
spatial sequences to determine the optimal sample data using the expressions:

Rbegin = 1
n−wbegin

wbegin

∑
j=n−1

Corr
(
tn, tj

)
objective : minw_begin

subject to : R_begin = max(R_begin)

(5)

R_end = 1
w_end−n

w_end
∑

i=n+1
Corr(tn, ti)

objective : minw_end
subject to : R_end = max(R_end)

(6)

where n is the timestamp for missing data, j are the first j moments of missing data, i are the last i
moments of missing data, Corr

(
tn, tj

)
is the correlation coefficient between the spatial sequence of

missing data and the first j spatial sequences, Corr(tn, ti) is the correlation coefficient between the
spatial sequence of missing data and the last i spatial sequences, w_begin is the beginning of the
window and w_end is the end of the window. w_begin and w_end are determined heuristically and
are initially set to n− 1 and n + 1. Corr

(
tn, tj

)
and Corr(tn, ti) are first calculated, then w_begin moves

forward, and w_end moves backwards until the mean correlation coefficient reaches the maximum.
Assuming that V4,6 is the missing datum to be interpolated, t6 is the spatial sequence of missing data,
and t2 ~t10 is the sliding window (Figure 4). The pseudocode of this process is shown in Algorithm 2.

Algorithm 2: Selected optimal window (SOM).

Input: Missing Spatial Series tn

Output: Start of Window w_begin
End of Window w_end

1 R_begin← 0
2 R_end← 0
3 For j = n− 1 to 1
4 R_last← R_begin

5 R_begin←
(

R_begin + Corr
(

tn, tj

))
/(n− j)

6 If R_begin < R_last
7 Return j
8 End if
9 End for
10 For i = n + 1 to end of the timestamp
11 R_last← R_end
12 R_end← (R_end + Corr(tn, ti))/(i− n)
13 If R_end < R_last
14 Return i
15 End if
16 End for
17 w_begin← j
18 w_end← i
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3.2.2. Fine-Grained Spatial Dimension Interpolation

In the spatial dimension, we first selected a sliding window based on the optimal window
selection algorithm (SOM), whose size is ws. Assuming that V4,6 is the missing data to be interpolated,
the start and end positions of the selected window are centered on the V4,6 in the first 4 columns and
the last 4 columns of Figure 5. In this window, we chose the ms time series with the largest correlation
of missing data. In detail, we adopted a pair-wise approach for calculating the correlation between the
time series of missing data and its spatial neighbor sampling data, and then, ms spatial sampling data
were selected to calculate the estimated value using the expression:

ŷ0 =
ms

∑
i=1

wiyi (7)
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where yi denotes the i-th spatial neighbor sampling data of missing data and wi denotes the
corresponding contribution weight of yi. As shown in Figure 5, suppose ms = 3, if {s2, s6, s8} is
the most relevant time series with missing data, then we take {V2,6, V6,6, V8,6} as the sampled data
for interpolation.
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In order to ensure ŷ0 is an unbiased estimator of missing data, the following conditions must
be satisfied:

E(ŷ0) = E(y0) (8)
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where E(.) represents the statistical expectation. Considering the heterogeneity of the spatial dimension,
we introduced the parameter bi to calculate the ratio between the statistical expectation of ŷ0 and y0 to
characterize spatial heterogeneity.

bi = E(yi)/E(y0) (9)

Combining Formulae (7)–(9), the constraint condition of wi is as follows:

ms

∑
i=1

wibi = 1 (10)

In order to obtain the parameter wi, the objective function was constructed to minimize the
variance between the missing and true data.

minw

[
σ2

ŷ0 = E(ŷ0 − y0)
2
]

(11)

Among them, Formula (11) can be resolved as follows:

σ2
ŷ0 = C(ŷ0, ŷ0) + C(y0, y0)− 2C(ŷ0, y0) = σ2

y0 +
ms

∑
i=1

ms

∑
j=1

wiwjC
(
yi, yj

)
− 2

ms

∑
i=1

wiC
(
yi, yj

)
(12)

where C represents the covariance between different spatial points. Considering Formula (10),
Formulae (11) and (12) can be written as: argwminσ2

ŷ0 = argminE(ŷ0 − y0)
2

s.t.
ms
∑

i=1
wibi = 1

(13)

Then, the problem of solving the parameter wi was transformed into a standard Lagrange
constrained optimization problem, and Formula (13) was re-written as:

σ2
ŷ0 = σ2

y0 +
ms

∑
i=1

ms

∑
j=1

wiwjC
(
yi, yj

)
− 2

ms

∑
i=1

wiC(yi, y0) + 2µ

(
ms

∑
i=1

wibi − 1

)
(14)

where µ is a Lagrange multiplier. The partial derivatives of σ2
ŷ0 produces the equations:

δσ2
ŷ0

δwi
= 0 => 2

ms
∑

i=1
wiC

(
yi, yj

)
− 2C(yi, y0) + 2µbi = 0

=>
ms
∑

j=1
wjC

(
yi, yj

)
+ µbi = C(yi, y0)

(15)

Formula (15) can be written in the matrix form:
C(y1, y1) · · · C(y1, yms) b1

...
. . .

...
...

C(yms, y1) . . . C(yms, yms) bms

b1 · · · bms 0




w1
...

wms

µ

 =


C(y1, y0)

...
C(yms, y0)

1

 (16)

In order to obtain the parameter wi in Formula (16), we first calculated the covariance matrix C_S
between the most relevant temporal series and the ratio of statistical expectation bi and covariance Ci
between the most relevant temporal series and the missing temporal series (Lines 6–9 of Algorithm 3).
Then, we joined these values into a matrix like Formula (16) and solved this matrix to get parameter wi
(Lines 10–12 of Algorithm 3). Finally, through Formula (7), we obtained estimated values of missing
data. As shown in Figure 5, parameter wi of V4,6 can be calculated by: (1) obtaining the covariance
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of {s2, s6, s8} and the covariance C(s2, s4), C(s6, s4) and C(s8, s4); (2) calculating the ratio of statistical
expectation b1 = E(s2)/E(s4), b2 = E(s6)/E(s4) and b3 = E(s8)/E(s4); (3) obtaining weights w1, w2

and w3 by solving the matrix; and finally, (4) interpolating V4,6 from w1 ×V2,6 + w2 ×V6,6 + w3 ×V8,6.

Algorithm 3: Fine-Grained spatial interpolation.

Input: Coarse-Grained Matrix C_Mm×n

Number of Spatial Neighbors ms
Output: Fine-Grained Spatial Matrix F_Sm×n

1 For i = 1 to m
2 For j = 1 to n

3 ws← SOM
(

C_Mm×n, C_Mij

)
4 Rss← Corrcoe f (M_Wm×ws, column)
5 S_Correlate← Max Ms Correlate(Rss, S_Missingi, ms)
6 C_S← Cov(S_Correlate)
7 For each Sk ∈ S_Correlate
8 Ck ← Cov(Sk, S_Missingi)

9 bk ← Mean(Sk)/Mean(S_Missingi)

10 C_Matrix_Le f t(ms+1)×(ms+1) ← Combine(C_S, b)
11 C_Matrix_Right(ms+1)×1 ← Combine(C, 1)
12 w← C_Matrix_Le f t(ms+1)×(ms+1)C_Matrix_Right(ms+1)×1
13 F_Sij ← Dot Product(S_Correlatei, w)

14 End for
15 End for

3.2.3. Fine-Grained Temporal Dimension Interpolation

In the temporal dimension, we used the SOM algorithm to select an optimal window as the data
matrix for fine-grained temporal dimension interpolation. In this sliding window, the nt sample data
with the largest correlation of missing data were chosen. The estimated value of missing data t̂0 was
calculated as follows:

t̂0 =
nt

∑
j=1

ϕjtj (17)

where tj denotes the j-th temporal neighbor sampling data of missing data and ϕj denotes the
corresponding contribution weight of tj. Similar to Formulae (12)–(14), to ensure t̂0 is an unbiased
estimator of missing data and to calculate the weight ϕj, the following conditions must be satisfied:

σ2
t̂0
= σ2

t0

nt

∑
j=1

nt

∑
g=1

ϕj ϕgC(tj, tg)− 2
nt

∑
j=1

ϕjC(t̂0, t0) + 2v(
nt

∑
j=1

ϕjaj − 1) (18)

where v is a Lagrange multiplier, t0 is the true value of missing data and aj is the ratio of statistical
expectation between the most relevant spatial series and the spatial series of missing data. The partial
derivatives of σ2

t̂0
can be written as:

δσ2
t̂0

δϕi
= 0 =>

nt

∑
j=1

ϕjC
(
ti, tj

)
+ vaj = C(ti, t0) (19)
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Formula (19) can be written in the form of a matrix:
C(t1, t1) · · · C(t1, tnt) a1

...
. . .

...
...

C(tnt, t1) · · · C(tnt, tnt) ant

a1 · · · ant 0




ϕ1
...

ϕnt

v

 =


C(t1, t0)

...
C(tnt, t0)

1

 (20)

As shown in Figure 6, in order to estimate the value of missing data V4,6, we first adopted the
SOM algorithm to select t2 − t10 as the sliding window. In this window, we choose the nt spatial series
with the largest correlation of missing data. For example, when nt = 4, the spatial series would be
{t2, t4, t8, t9}, and we would take {V4,2, V4,4, V4,8, V4,9} as the sampled data for interpolation (Lines 3–5
of Algorithm 4). The covariance matrix C_T was calculated from the most relevant spatial series and
the ratio of statistical expectation aj and covariance Cj by using the most relevant spatial series and the
missing spatial series (Lines 6–9 of Algorithm 4). Then, we joined these values into matrix Formula (20)
and solved this matrix to get parameter ϕj (Lines 10–12 of Algorithm 4). Finally, through Formula (17),
interpolation result V4,6 was calculated as ϕ1 ×V4,2 + ϕ2 ×V4,4 + ϕ3 ×V4,8 + ϕ4 ×V4,9.

ISPRS Int. J. Geo-Inf. 2017, 6, 187  13 of 26 

 

be { , , , } , and we would take { , , , , , , , }	  as the sampled data for interpolation  
(Lines 3–5 of Algorithm 4). The covariance matrix _  was calculated from the most relevant spatial 
series and the ratio of statistical expectation  and covariance  by using the most relevant spatial 
series and the missing spatial series (Lines 6–9 of Algorithm 4). Then, we joined these values into 
matrix Formula (20) and solved this matrix to get parameter  (Lines 10–12 of Algorithm 4). Finally, 
through Formula (17), interpolation result ,  was calculated as  × , + × , + × , + × , . 

 

Figure 6. Fine-grained interpolation in the temporal dimension. 

  

Figure 6. Fine-grained interpolation in the temporal dimension.



ISPRS Int. J. Geo-Inf. 2017, 6, 187 13 of 25

Algorithm 4: Fine-Grained temporal interpolation.

Input: Coarse-Grained Matrix C_Mm×n

Number of Temporal Neighbors nt
Output: Fine-Grained Temporal Matrix F_Tm×n

1 For i = 1 to m
2 For j = 1 to n

3 wt← SOM
(

C_Mm×n, C_Mij

)
4 Rtt← Corrcoe f (M_Wm×wt, row)

5 T_Correlate← Max Nt Correlate
(

Rtt, T_Missingj, nt
)

6 C_T ← Cov(T_Correlate)
7 For each Tk ∈ T_Correlate

8 Ck ← Cov
(

Tk, T_Missingj

)
9 bk ← Mean(Tk)/Mean

(
T_Missingj

)
10 C_Matrix_Le f t(nt+1)×(nt+1) ← Combine(C_T, b)
11 C_Matrix_Right(nt+1)×1 ← Combine(C, 1)
12 ϕ← C_Matrix_Le f t(nt+1)×(nt+1)C_Matrix_Right(nt+1)×1

13 F_Tij ← Dot Product
(

T_Correlatej, ϕ
)

14 End for
15 End for

3.3. Spatio-Temporal Integration

After obtaining interpolation results for the time and space dimensions, the BP (back propagation)
neural network was trained to integrate spatial and temporal interpolation results to obtain final
missing data estimation values [5]. The BP neural network can be regarded as a nonlinear function.
When the number of input nodes is n, the output node is m, and the BP neural network expresses the
mapping function from n independent variables to m dependent variables [29].

Appropriate samples are needed for training and testing neural networks. In this study, we
first detect no missing data in the fine-grained temporal matrix F_Tm×n, fine-grained spatial matrix
F_Sm×n and coarse-grained matrix C_Mm×n to construct the samples (Lines 1–7 of Algorithm 5). Then,
the samples were divided into three parts: 80% as a training dataset, 10% as a test dataset and 10%
as a cross-validation dataset to control early stopping (Lines 8–10 of Algorithm 5). Next, the error
back-propagation algorithm was used to train the neural network model (Figure 7). Assuming that the
input variables of the neural network model are X = {F_S, F_T}, the connection weights between the
input layer and the hidden layer are γij and the hidden layer bias value is bias1, then the output of the
hidden layer is:

Hj = f (
n

∑
i=1

γijxi − biasl) j = 1, 2, · · · , l (21)

where l is the number of hidden layer nodes and f is the activation function. Activation function f has
many forms, from which we selected the sigmoid, which can be expressed as:

f (x) =
1

1 + e−x (22)



ISPRS Int. J. Geo-Inf. 2017, 6, 187 14 of 25

ISPRS Int. J. Geo-Inf. 2017, 6, 187  15 of 26 

 

= + 1 − ( ) = 1,2,⋯ , ; = 1,2,⋯ ,  = + = 1,2,⋯ ,  
(24) 

1 = 1 + 1 − = 1,2,⋯ ,  2 = 2 +  
(25) 

where  is the learning rate and 	is the prediction error of the neural network (i.e., the difference 
between the predicted and expected outputs). The training process of the neural network was 
completed when the algorithm reached the set of training objectives (i.e., the number of iterations 
and the minimum error). 

After completing the neural network model, we were then able to predict the missing data. We 
first detected missing data in the coarse-grained matrix _ × .Then, the results of fine-grained 
spatial interpolation (FGSI) and fine-grained temporal interpolation (FGTI) algorithms were input to 
the neural network to calculate the estimated values (Lines 12–18 of Algorithm 5). Meanwhile, the 
results of FGSI and FGTI in the testing dataset were input to the neural network to evaluate the 
performance of the model (Lines 19–25 of Algorithm 5). 

 

Figure 7. Neural network training. 

Algorithm 5: Combining spatial and temporal. 

Input: Fine-Grained Spatial Matrix _ ×  
      Fine-Grained Temporal Matrix _ ×  
       Coarse-Grained Matrix _ ×  

Number of Spatial Neighbors  

Number of Temporal neighbors  
Output: Test Estimated Matrix ×  
        Missing Estimated Matrix _S ×  
1  For = 1 to  
2    For = 1 to  
3       If _  _ 		 _  are not missing values then 

Figure 7. Neural network training.

The interpolation estimate of missing data ST was calculated as follows:

ST =
l

∑
j=1

Hjγj1 − bias2 (23)

where γj1 is the connection weight between the hidden layer and the output layer and bias2 is the bias
of the output layer. The weights and bias of Formula (23) can be calculated from:

γij = γij + ηHj
(
1− Hj

)
x(i)γjle i = 1, 2, · · · , n; j = 1, 2, · · · , lγjl = γjl + ηHje j = 1, 2, · · · , l (24)

bias1 = bias1 + ηHj
(
1− Hj

)
wjl j = 1, 2, · · · , lbias2 = bias2 + e (25)

where η is the learning rate and e is the prediction error of the neural network (i.e., the difference
between the predicted and expected outputs). The training process of the neural network was
completed when the algorithm reached the set of training objectives (i.e., the number of iterations and
the minimum error).

After completing the neural network model, we were then able to predict the missing data. We
first detected missing data in the coarse-grained matrix C_Mm×n. Then, the results of fine-grained
spatial interpolation (FGSI) and fine-grained temporal interpolation (FGTI) algorithms were input
to the neural network to calculate the estimated values (Lines 12–18 of Algorithm 5). Meanwhile,
the results of FGSI and FGTI in the testing dataset were input to the neural network to evaluate the
performance of the model (Lines 19–25 of Algorithm 5).
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Algorithm 5: Combining spatial and temporal.

Input: Fine-Grained Spatial Matrix F_Sm×n

Fine-Grained Temporal Matrix F_Tm×n

Coarse-Grained Matrix C_Mm×n

Number of Spatial Neighbors ms
Number of Temporal neighbors nt

Output: Test Estimated Matrix STm×n

Missing Estimated Matrix M_STm×n

1 For i = 1 to m
2 For j = 1 to n
3 If F_Sij F_Tij C_Mij are not missing values then

4 Sample← Sample
(

F_Tij, F_Sij, C_Mij

)
5 End if
6 End for
7 End for
8 Training_Spl ← Divide(Sample, 0.8)
9 Testing_Spl ← Divide(Sample, 0.1)
10 CrossValidation_Spl ← Divide(Sample, 0.1)
11 Net← Train(Training_Spl) ∇Neural Network Training
12 For i = 1 to m
13 For j = 1 to n
14 If C_Mij is missing value then

15 M_STij ← Sim
(

Net, F_Tij, F_Sij

)
16 End if
17 End for
18 End for
19 For i = 1 to m
20 For j = 1 to n

21 If
{

F_Sij, F_Tij

}
∈ Testing_Spl then

22 STij ← Sim
(

Net, F_Tij, F_Sij

)
23 End if
24 End for
25 End for

4. Results

4.1. Datasets

We evaluated our model based on real air quality datasets from Beijing, which were collected
between 5 January 2014 and 30 April 2015. Data included PM2.5, CO, SO3, O3, NO2 and other attributes,
each of which was collected at 36 air quality monitoring stations at hourly intervals, as depicted in
Figure 8. The dataset contained a total of 8759 records [30] (Table 1).

Table 1. Experimental dataset.

Data Ratio of Missing Complete Case Number of Missing

PM2.5 13.25% 29.11% 41,771
CO 15.10% 0.00% 47,604
SO3 15.24% 0.00% 48,041
O3 15.43% 0.00% 48,667

NO2 16.01% 0.00% 50,470
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The different air quality variables have different degrees of missing data (Table 1). Among them,
only PM2.5 contains a complete case. For the other attributes, we used combination analysis to explore
the patterns of missing spatio-temporal missing data (Figure 9).
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Using the PM2.5 dataset as an example, we set wt = 48 as the time sliding window, which took
48 h of data to explore the missing pattern. The missing numbers of st19, st27, st35 and st36 at the
same time were eight (i.e., the missing pattern in Figure 1c). Data for st19, st27, st36 were completely
missing (Figure 1d). Data for {st18, st19}, {st35, st36} showed random block loss (Figure 1b). Finally, a
large number of patterns showed random missing data (Figure 1a). These patterns show that if the
interpolation process was performed directly on the original dataset (i.e., without coarse-grained
interpolation to eliminate the effect of successive missing data), it would be difficult to obtain
accurate evaluation.
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4.2. Evaluation Criteria

In order to evaluate the ST-2SMR method, we compared three existing methods (ST-kriging [31],
P-BSHADE [16,32] and ST-HC [2,33]), each constrained in three different ways (i.e., increasing
coarse-grained interpolation, increasing the sliding window or both; Table 2). We adopted mean
absolute error (MAE), mean relative error (MRE) and the ratio of construction (RC) as the evaluation
criteria to verify the performances of the proposed method.

Table 2. Combination of different methods. P-BSHADE, point estimation model of biased
hospital-based area disease estimation; ST, spatio-temporal; HC, heterogeneous covariance.

Method Coarse-Grained Window Coarse-Grained + Window

ST-kriging ST-kriging-C ST-kriging-W ST-kriging-C-W
P-BSHADE P-BSHADE-C P-BSHADE-W P-BSHADE-C-W

ST-HC ST-HC-C ST-HC-W ST-HC-C-W

4.3. Experimental Results

The proposed method was implemented in MATLAB 2016b. The PM2.5 dataset was selected
to validate the proposed method. Through the comparative analysis of different experiments, the
relevant parameters were set as follows: α = 4, β = 0.85, wc = 14, ms = 10, nt = 10, η = 0.01.

4.3.1. Overall Results

Among the first group of experiments (i.e., those using unaltered spatio-temporal interpolation
methods), the ST-HC and ST-2SMR have the same reconstruction ratio, but different accuracy.
The ST-2SMR method had the highest accuracy, reflecting in the effect of the nonlinear combination
on the integration of spatial and temporal results (Table 3). The ST-HC and ST-2SMR have the same
reconstruction ratio because they adopt the same spatio-temporal interpolation algorithm; however,
the reconstruction rate was the lowest, which is owed to the introduction of heterogeneity in the time
dimension. When we calculate the correlation coefficient and covariance between the spatial sequence
of the missing data and the time slice, these sequences may seriously be missing. If the data sequence
in the calculation is completely missing or using the pare-wise method makes the data sequence be
completely missing, which may lead to the covariance matrix still having missing data, therefore we
cannot get the final estimates, and this results in lower rate reconstruction.

In the second group of experiments (i.e., those with the original algorithms, but with the sliding
window increased), interpolation precision was improved because the increased sliding window
ensured that the sample data have the strongest correlation with missing data. In the third group of
experiments (i.e., algorithms with coarse-grained interpolation added before the original interpolation
method; here, we use IDW + SES as the coarse-grained interpolation method), the interpolation
accuracy was also improved, and the complete reconstruction results were obtained because of the
influence of continuous missing data has been eliminated. This result also validates the point of view
in [34]: the accuracy and reliability of spatio-temporal interpolation methods depend on the pattern of
missing data. However, interpolation accuracy improved the most when both constraints were applied
at the same time, as demonstrated by the significant improvements in MAE and MSE (Table 3).

4.3.2. Effect of Coarse-Grained Interpolation

Through coarse-grained interpolation, continuous missing data were eliminated, significantly
improving accuracy. Our experiments demonstrated that, regardless of the coarse-grained interpolation
method chosen, interpolation accuracy improves when coarse-grained interpolation is first used
(Table 4; here, we compare with the accuracy of those using unaltered spatio-temporal interpolation
methods in Table 3). Among the methods tested, ST-2SMR showed the most significant improvement in
accuracy, reflecting the nonlinear integration of spatial and temporal interpolation results, an approach
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that is particularly suitable for describing complex relationships between spatial and temporal data.
However, overall, the accuracy of the IDW + SES method was found to be the best, so this method was
chosen for coarse-grained interpolation in subsequent experiments.

Table 3. Performance comparison of different methods. RC, ratio of construction; ST-2SMR,
spatio-temporal missing data reconstruction.

Condition Method MAE MSE RC

ST-Kriging 18.3796 0.2211 96.20%
P-BSHADE 18.2085 0.2190 96.20%

ST-HC 26.4273 0.3066 65.94%
ST-2SMR 15.5247 0.1319 65.94%

Window

ST-Kriging-W 14.3281 0.1724 99.60%
P-BSHADE-W 14.6172 0.1758 99.29%

ST-HC-W 11.2211 0.1349 93.69%
ST-2SMR 9.5920 0.0822 93.69%

Coarse-Grained

ST-Kriging-C 13.1726 0.1585 100%
P-BSHADE-C 12.9178 0.1554 100%

ST-HC-C 8.7650 0.1054 100%
ST-2SMR 7.4292 0.0470 100%

Coarse-Grained +
Window

ST-Kriging-C-W 12.9717 0.1560 100%
P-BSHADE-C-W 12.6669 0.1524 100%

ST-HC-C-W 7.9196 0.0953 100%
ST-2SMR 7.2285 0.0623 100%

Table 4. Performance of different coarse-grained interpolation methods 1. SES, simple
exponential smoothing.

Method
IDW + SES ST-Kriging P-BSHADE

MAE MRE MAE MRE MAE MRE

ST-kriging 13.1726 0.1585 13.6027 0.1636 13.6010 0.1636
P-BSHADE 12.9178 0.1554 13.5883 0.1635 13.6081 0.1637

ST-HC 8.7650 0.1054 9.0637 0.1089 9.1601 0.1101
ST-2SMR 7.4292 0.0470 7.4826 0.0475 7.6002 0.0484
1 The abscissa represents fine-grained interpolation; the ordinate represents coarse-grained interpolation.

4.3.3. Effect of the Coarse-Grained Missing Data Rate

According to Algorithm 1, the results of coarse-grained interpolation are mainly affected by the
decay rate of weight α, smoothing parameter β and by time threshold wc. According to the experimental
results of [27], performed using the same PM2.5 dataset, IDW and SES achieve a minimum MAE value
when α = 4 and β = 0.85. For the time threshold, different values exert a significant influence on the
coarse-grained interpolation results. In this study, we determined wc heuristically, with the value
initially set to one (i.e., the center of missing data, taking the first hour and last hour as the sample
data). With the increase in wc, the reconstruction rate of the missing data increased until complete
reconstruction was achieved (Figure 10). We found that MAE was smallest when wc = 1 and stable
when wc > 3. At wc > 3, the contribution weight of the sample data for missing data was nearly
equal to zero, resulting in a small effect on the interpolation results. Furthermore, the termination
condition of wc was set to ensure no continuous deletion of the whole space sequence and time series
after coarse-grained interpolation, so as to obtain a complete interpolation result in the fine-grained
interpolation. When wc < 14, the dataset from the coarse-grained interpolation still exhibited complete
missing data in both the time and space sequences (Figure 11); therefore, fine-grained interpolation
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was required to achieve reconstruction. When wc = 14, coarse-grained interpolation eliminated the
influence of successive missing data, so the reconstruction rate was 100%.
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4.3.4. Effect Sample Point Number

During fine-grained interpolation, we were required to select ms spatial neighbors and nt temporal
neighbors for missing data. The number of sample points impacted the assessment results. Too
few sample data points fail to reflect the correlation of spatial and temporal data, while excessive
sample data increase computational complexity and also reduce the accuracy of assessment because of
redundant data. According to the experimental results of [16], when the number of sampling points is
set to between five and 15, the interpolation results are perfect; therefore, we set three sets of adjacent
point selection patterns (5, 10 and 15) in both the spatial and temporal dimensions (i.e., a total of nine
sets of experiments) and performed experiments to determine the most suitable number of samples.
When ms = 10 and nt = 10, the ST-2SMR method achieved its best performance (Table 5); however,
the results show that the number of neighbor points had no effect on the reconstruction rate. This
result reflects the elimination of continuous missing data during coarse-grained interpolation, which
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meant that all missing data had access to observed data for interpolation, allowing the whole dataset
to obtain corresponding estimates.

Table 5. Influence sample point number on interpolation results.

Neighbor Station Number
MAE MRE RC

Spatial Temporal

5 5 7.3300 0.0625 100%
5 10 7.3276 0.0635 100%
5 15 7.4736 0.0643 100%

10 5 7.2787 0.0630 100%
10 10 7.2285 0.0623 100%
10 15 7.2761 0.0630 100%
15 5 7.2952 0.0631 100%
15 10 7.2892 0.0631 100%
15 15 7.3332 0.0650 100%

4.3.5. Effect of Sliding Window

Our experimental results show that the SOM algorithm can dynamically select the size of each
window through the interaction information for time and space (Figure 12). As a result, interpolation
accuracy was greatly improved.
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4.3.6. Performance of Two- and Three-Step Interpolation

In order to explore the convergence of the two-step interpolation, we further introduced a
third-step interpolation (Table 6). The two-step interpolation used IDW + SES for coarse interpolation,
while the three-step interpolation was based on the results of two-step interpolation using ST-kriging,
P-BSHADE and ST-HC. The results demonstrate that three-step interpolation slightly improved
accuracy, but the change was marginal. In addition, regardless of the method used for the third
interpolation, the overall results tended to be stable; therefore, we concluded that the additional
computational complexity of the three-step method was not justified by the minor improvement
in performance.
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Table 6. Two- and three-step interpolation results.

Method

Three-Step Two-Step

ST-Kriging P-BSHADE ST-HC IDW + SES

MAE MRE MAE MRE MAE MRE MAE MRE

ST-Kriging 13.0498 0.1570 13.0235 0.1567 13.0741 0.1573 13.1726 0.1585
P-BSHADE 12.7898 0.1539 12.7964 0.1539 12.8304 0.1543 12.9178 0.1554

ST-HC 8.7075 0.1048 8.7206 0.1049 8.6618 0.1042 8.7650 0.1054
ST-2SMR 7.4143 0.0651 7.4215 0.0652 7.4080 0.0641 7.4292 0.0470

4.3.7. Performance Comparison for Different Datasets

To verify the universality of the proposed method, the approach was tested using the NO2, CO,
SO3 and O3 datasets (Figure 13). The results confirmed that the proposed method is superior to
the other three methods in terms of accuracy. We found that only our new method can guarantee a
complete reconstruction result and is able to maintain consistent stability across different datasets.
For example, the P-BSHADE method performed better on the SO3 dataset, but worse for other datasets.
The ST-HC method performed better on the NO2 dataset, but worse on the other datasets. This variable
performance reflects the fact that different datasets have completely different missing data patterns,
from which existing methods directly interpolate results (i.e., they do not eliminate the influence of
missing patterns before interpolation).
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4.3.8. Evaluation of Computational Efficiency

The computational efficiency is also an important factor worth evaluation for missing data
reconstruction. We conducted a comparison of the computational efficiency on a 3.4-GHz Intel i7 CPU,
with a 64-bit operating system, and 16.0 GM RAM. The CPU time costs of each interpolation method
in the forecasting stages (i.e., we select 10% of samples as a test dataset) are shown in Figure 14. The
computational efficiency of all of the four methods has no distinct difference. Obviously, ST-kriging is
the fastest one among the interpolation methods because it does not take into account the effects of
spatial and temporal heterogeneity on interpolation results. ST-HC and ST-2SMR consume only a little
more time than ST-kriging and P-BSHADE because they are the extensions of P-BSHADE and consider
the temporal and spatial heterogeneity. In addition, the linear combination of ST-HC to integrate
spatio-temporal interpolation results almost spends the same time as nonlinear ways using a trained
neural network, so the time complexity of ST-HC and ST-2SMR is nearly the same. However, the
ST-2SMR method makes a significant trade-off between the efficiency and accuracy because the MSEs
resulting from other methods are far larger than that of ST-2SMR (see Table 3). Therefore, when both
efficiency and accuracy are considered, the proposed ST-2SMR outperforms the other methods.
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5. Summary

Given the problem with existing missing data interpolation methods, this study developed a
novel method called ST-2SMR. In the ST-2SMR method, missing data patterns in spatio-temporal
datasets are first identified, and information on temporal and spatial dimensions is integrated to
obtain a partial reconstruction. Using the output of this partial reconstruction, spatial and temporal
heterogeneity is taken into account and a sliding window is set to both remove redundant sample data
(i.e., to reduce computational complexity) and to ensure that the strongest correlation with missing
data is selected (i.e., the most suitable data are chosen to improve the accuracy of the analysis). Finally,
spatio-temporal interpolation results are integrated through a neural network model. We evaluated
ST-2SMR using a real and open air quality dataset collected from Beijing. It is argued that the proposed
method performs better than other existing methods. Providing the characteristics of the black box
neural network models, the best way to integrate the results of spatio-temporal interpolation and to
depict the nonlinear relationships between space and time requires further consideration.
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