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Abstract: Trajectory pattern mining is becoming increasingly popular because of the development
of ubiquitous computing technology. Trajectory data contain abundant semantic and geographic
information that reflects people’s movement patterns, i.e., who is performing a certain type of activity
when and where. However, the variety and complexity of people’s movement activity and the large
size of trajectory datasets make it difficult to mine valuable trajectory patterns. Moreover, most
existing trajectory similarity measurements only consider a portion of the information contained
in trajectory data. The patterns obtained cannot be interpreted well in terms of both semantic
meaning and geographic distributions. As a result, these patterns cannot be used accurately for
recommendation systems or other applications. This paper introduces a novel concept of the
semantic-geographic pattern that considers both semantic and geographic meaning simultaneously.
A flexible density-based clustering algorithm with a new trajectory similarity measurement called
semantic intensity is used to mine these semantic-geographic patterns. Comparative experiments
on check-in data from the Sina Weibo service demonstrate that semantic intensity can effectively
measure both semantic and geographic similarities among trajectories. The resulting patterns are
more accurate and easy to interpret.
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1. Introduction and Motivations

Owing to advanced positioning technologies, a large amount of movement data can now be
conveniently collected from daily activities. Some activities share the same movement pattern, which
reflects similar lifestyles, habits, or behaviors. The study of movement data can reveal individual
movement patterns, facilitate the understanding of the characteristics of human dynamics, and thus
support recommendation, activity prediction, urban planning, and traffic monitoring alike. Therefore,
movement pattern mining has become a hot topic when considering human movement activities [1,2].

Trajectories can be derived from movement data sampled from daily activities. They typically
consist of a sequence of spatiotemporal points represented as (latitude, longitude) tagged with
timestamps. Trajectory data can be divided into three main types based on sampling mode:
time-frequency sampling data (e.g., animal migration, hurricane data), location-based sampling
data (e.g., population migration data) and event-triggered sampling data (e.g., mobile phone call,
check-in data). Whereas previous studies have mainly focused on processing the geometric and/or
temporal properties of trajectory data, recent studies have gone one step further. They enrich a
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movement track with more semantic, application-oriented information by adding geographical context.
Figure 1 shows an example in which trajectories 1 and 2 are geometrically similar according to their
shapes and distance. In addition, trajectories 1 and 3 have the same sequence of actions and share the
same semantic pattern (i.e., school, park, and restaurant). In fact, these are two different trajectory
similarity measurements that can generate two types of movement patterns: a geographic pattern and
a semantic pattern.
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However, these two types of patterns are not sufficiently accurate to incorporate into
recommendation systems or other applications. In Figure 1, two trajectories in the geographic pattern
do not share similar semantic meanings because they pertain to different types of activities in their
second and third steps. On the other hand, two trajectories in the semantic pattern are not geometrically
similar; they pertain to the same type of activity in different places. Therefore, users who define these
patterns are not actually similar. More accurate and valuable trajectory patterns that contain both
semantic and geographic information are required. People who perform similar activities in nearby
places share the same movement activity pattern, and they may have more common interests. Here,
“similar activities” are determined by semantic similarity, and “nearby places” are determined by
geographic similarity. It is thus necessary to combine these two similarities. However, it is not a trivial
task to calculate geographic and semantic similarity simultaneously. Challenges are posed by the
complexity of people’s movement activity, the large size of trajectory datasets, different sampling
strategies, and innate differences between these two types of dimensions. To the best of our knowledge,
an appropriate method is still lacking.

To obtain more valuable trajectory patterns that share the same movement activities according to
both sematic meaning and geographic distribution, we first define a novel trajectory pattern called a
semantic-geographic pattern. Then, a flexible density-based clustering algorithm is used to mine this
new type of pattern. The clustering algorithm involves a new similarity measurement called semantic
intensity to calculate similarities between trajectories by combining the geographic and semantic
features. We prove the effectiveness of our method through comparative trajectory pattern mining
experiments on 4340 users over 14,729 check-in traces using four different similarity measurements.

The remainder of this paper is organized as follows. Section 2 provides a review of
existing trajectory similarity measurements. Section 3 outlines the definitions of the proposed
semantic-geographic pattern. Section 4 describes the framework and major steps of the new pattern
mining method. We present the experimental results obtained for a real social media dataset in
Section 5 and discuss our conclusions and future work in Section 6.

2. Related Work

There are three major steps to convert raw trajectory data to interesting movement patterns:
which are trajectory representation, similarity calculation, and pattern mining [3,4]. Among them,
the similarity calculation can be the most important step [5]. Different similarity measurements
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will generate quite different trajectory patterns. Early research on similarity analysis was based on
spatial and/or temporal information in trajectories. For the spatial dimension, classical methods like
average distance [6], Hausdorff distance [7], Fréchet distance [8], and Minkowski distance can be used
for the similarity calculation. For the temporal dimension, several sequence matching approaches
can be directly applied to trajectory similarity analysis, such as Edit Distance [9], Longest Common
Subsequence [10], and Dynamic Time Warping [11]. More recently, a number of extensions were
developed to deal with trajectory data more effectively. These extension methods can be divided into
two categories: spatiotemporal-based and semantic-based.

(1) Spatiotemporal-based methods focus on both spatial and temporal features of trajectories.
It’s not an easy task to measure two moving objects’ spatiotemporal similarity, because their activities
are updating asynchronously in both spatial and temporal dimensions. Giannotti et al. [12] defined
the T-pattern in a collection of GPS trajectories. A T-pattern is a region-of-interest (ROI) sequence with
temporal annotations, where each ROI is a rectangle corresponding to a trajectory density greater
than a threshold. Lu et al. [13] proposed a transaction similarity measurement named LBS-Alignment
to calculate the similarity of mobile users. By using the longest common sequence, the ratio of
the common parts of the sequential motion patterns was taken as the similarity. Etienne et al. [14]
defined an ordered sequence of spatial zones (called a “zone graph”) to extract and filter trajectories
following a similar itinerary, and then qualified spatiotemporal patterns such as the main routes and
spatiotemporal channels through statistical computations. Buchin and Purves [8] used space-time
prisms to model trajectories, and then computed the similarity of these prisms based on equal time
and Fréchet distance. Lv et al. [15] addressed the problem of mining mobile users’ long-term activity
similarity. After transforming users’ GPS trajectories into reference places using a three-layered
hierarchical clustering algorithm, a bottom-up agglomerative clustering algorithm based on cosine
coefficient similarity was used to group users’ one-day activities. Each cluster contained a set of
users’ one-day activities, which represented a routine activity. Then, the similarity of users’ routine
activities was calculated based on the optimal matching sequence similarity of their reference place
sets. Finally, users’ similarities were calculated based on all of their routine activities multiplied by the
number of times the user follows each routine activity as weights. Dodge et al. [4] introduced a novel
technique for spatiotemporal trajectory similarity that relied on trajectory segmentation based on the
movement parameters (e.g., speed, acceleration, or direction). Each segmentation was assigned to a
movement parameter class, which can transform a trajectory into a sequence of class labels. Then, a
modified version of edit distance called normalized weighted edit distance was developed to measure
the similarity between different sequences. Yuan and Raubal [16] also extended the traditional edit
distance algorithm by incorporating the spatial distribution of cell towers, and then applied a newly
developed spatiotemporal edit distance to compare the trajectories extracted from call detailed records
and conduct a hierarchical clustering analysis. Etienne et al. [17] defined a new spatiotemporal pattern
called Trajectory Box Plot (TBP) to describe trajectories by a median trajectory, a 3D box and a 3D fence.
The median trajectory depicts the typical movement of mobile objects. The box and the fences describe
the spatial and temporal spreading around the central tendency. Etienne et al. then used visual analysis
to highlight the density of trajectory cluster that changes over time. The above methods measure
the trajectories’ similarity based on the geometric and temporal information without considering
the semantics information. As a consequence, they tend to discover spatiotemporal patterns such as
sequences of locations, which for some applications may not help the user extract more meaningful
information. Moreover, similar spatiotemporal trajectories may not necessarily be semantically similar,
because the activities implied by the nearby locations they pass through may be different.

(2) Semantic-based methods aim to obtain more meaning from trajectory information. A semantic
trajectory fundamentally consists of a sequence of locations with semantic tags describing the
corresponding landmarks [18]. According to the encoding and organization of semantic knowledge,
there are mainly three kinds of semantic similarity approaches [19–21]: semantic or taxonomic relations
(also called path distance measures) based, information content-based, and feature models (also called
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classic models) based. They all can be used for carrying the semantic meaning of trajectories beyond the
low-level pure geographic positions. Alvares et al. [18] first identified the stops in the GPS trajectories
of mobile users, and mapped these stops to semantic landmarks by using a background map. They then
applied a sequential pattern-mining algorithm to extract the frequent place sequences (i.e., the semantic
trajectory pattern) to represent the frequent semantic behaviors. Unfortunately, because of spatial
discontinuities and the randomness of users’ movement activity, such place-level sequential patterns
can appear only when the support threshold is very low. Bogorny et al. [22] took both hierarchical
geographic and semantic properties into consideration, and provided two different methods (IB-SMoT
and CB-SMoT) to automatically integrate trajectory samples and geographic information in a higher
abstraction level (i.e., stops and moves), where the user can define the important parts of trajectories.
Ying et al. [5] proposed a novel similarity measurement called Semantic Trajectory Pattern Similarity to
evaluate the similarity between two trajectories. First, a frequent sequence pattern mining algorithm
was used to get users’ Maximal Semantic Trajectory Patterns (MSTPs). Then, the similarity between two
MSTPs was calculated by the MSTP-Similarity measurement, which was based on the longest common
sequence. Finally, a sequential pattern in the form of a sequence of semantic labels (e.g., school to park)
was obtained. Xiao et al. [23] proposed a method to estimate the similarity between user trajectories.
Their method first modeled a user’s GPS trajectories with a semantic location history (SLH) based on the
semantic location hierarchy and users’ stay points. Then, the similarities between different users’ SLHs
were calculated by using a maximal travel match algorithm that summarized the weighted similarity
of semantic location sequences detected at each layer of the hierarchy. Although these approaches
overcome the geographic constraint on user similarity measurements, the patterns obtained lack
detailed geographic distribution information, and are difficult to display using geo-visualization tools.
Moreover, the patterns are usually represented with a high-level abstraction of semantic landmarks
(e.g., <school, park>, <school, hospital, restaurant>) [5,24], which may be difficult to interpret.

To obtain more valuable trajectory patterns that share the same movement activities according to
both semantic meaning and geographic distribution, it is necessary to combine these two measurements
and create a unified framework to calculate the similarity between trajectories. Recently, Ying et al. [25]
provided a new definition of geographic-temporal-semantic (GTS) pattern tree to model users’
historical trajectories. They measured GTS similarity between two users’ trajectories by the sum
of three weighted dimensional similarity scores to predict a mobile user’s next location. However, the
efficiency for GTS similarity to mining interesting trajectory patterns is uncertain. Buchin et al. [26]
defined a context-aware similarity measure to integrate the various surrounding contexts of trajectories.
The final similarity score was obtained by summing up all the weighted context distances. However,
suitable prior knowledge is needed to set proper weights for each factor, and the calculation of the
trajectory’s context distance requires refined and classified land cover and land use data, which is
difficult to fetch.

3. Problem Statement

This section presents and defines a new trajectory pattern called a semantic-geographic pattern
to describe people’s movement activity. Several related preliminaries are provided to help explain
this pattern.

3.1. Semantic-Geographic Trajectory Pattern

Generally, people who conduct similar activities in nearby places may share common interests
and the same movement activity pattern. This type of pattern involves both semantic and geographic
similarity; therefore, we refer to it as a semantic-geographic pattern. In contrast to a purely geographic
pattern, people with similar semantic-geographic patterns must conduct semantically similar activities.
In contrast to a purely semantic pattern, people must be geographically close within a certain
geographic scale when they are conducting these similar activities.
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3.2. Preliminaries

Several strategies have been proposed to transfer the original GPS trajectory into a semantic
trajectory [23,25]. This paper does not focus on this preprocessing step. Instead, a special type of
event-triggered trajectory called “check-in” data is used. Check-in data always contains geographic
locations, and the semantic meaning in most check-in records can be easily obtained from a POI
(Point Of Interest) database. We provide definitions of terms relevant to the use of this type of data.
In addition, Figure 2 describes three users’ check-in traces to provide examples of all definitions.
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Definition 1. Check-in trace. A user’s check-in trace (CTrace) is a set of POIs with the check-in time of each
POI. The POIs contain both geographic locations and semantic categories, which are usually based on land use
and land cover classification standards or certain domain knowledge.

Example 1. The three users’ check-in traces in Figure 2 are as follows (where Pij is a serial of POIs for one POI
category Ci, and ti is the time sequence in the corresponding POI serial):

CTrace(user1) = {(P11, t1), (P12, t2), (P13, t3), (P23, t4), (P24, t5), (P35, t6), (P36, t7)}.
CTrace(user2) = {(P11, t1), (P12, t2), (P31, t3), (P23, t4), (P34, t5), (P25, t6), (P36, t7)};
CTrace(user3) = {(P21, t1), (P22, t2), (P32, t3), (P33, t4), (P14, t5), (P15, t6)}.

Definition 2. Geographic pattern. Users who have small distance values among their check-in traces are
grouped together, and their common location pairs and check-in times are considered a geographic pattern
(GPattern). Note that the check-in times for a user at a certain location are not always the same; therefore, a time
duration is set for each check-in location.

Example 2. One geographic pattern between user1 and user2 in Figure 2 is as follows (where Gij is the id of a grid,
and POIs are considered nearby and grouped together when they locate in the same grid): GPattern(user1,user2)
= {(G12, t1~t3)→ (G21, t4~t5), (G21, t4~t5)→ (G23, t6~t7)}.

Definition 3. Semantic trace. A user’s semantic trace (STrace) is a set of POI category pairs with the
corresponding check-in times and frequencies.

Example 3. STrace(user1) = {((C1, t1~t3)→ (C2, t4~t5), count1), ((C2, t4~t5)→ (C3, t6~t7), count2)}, where
the counts represent the check-in frequency of the corresponding semantic category pairs.

Definition 4. Semantic pattern. Users with high semantic similarities in their semantic traces are grouped
together. Their common POI category pairs and check-in times are considered a semantic pattern (SPattern).
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Example 4. One semantic pattern between user1 and user2 in Figure 2 is as follows: SPattern(user1, user2) =
{(C1, t1~t2) → (C2, t4), (C2, t4)→ (C3, t7)}.

Definition 5. Semantic-geographic trace. A user’s semantic-geographic trace (SGTrace) consists of several
sets of timestamped POI locations that are grouped by the semantic category of his/her check-in place.

Example 5. SGTrace(user1) = {(C1, G12, t1~t3), (C2, G21, t4~t5), (C3, G23, t6~t7)}.

Definition 6. Semantic-geographic pattern. Users who have high semantic similarity in their semantic
trace and small distances in their semantic-geographic trace are grouped together. Their user set and common
SGTraces comprise a semantic-geographic pattern (SGPattern).

Example 6. One semantic-geographic pattern between user1 and user2 in Figure 2 is as follows, and its
geographic distribution is the same as the geographic pattern: SGPatten(user1,user2) = {(C1, G12, t1~t2)→ (C2,
G21, t4), (C2, G21, t4)→ (C3, G23, t7)}.

4. Semantic-Geographic Pattern Mining Method

From the data mining perspective, clustering is one of the most powerful methods for trajectory
pattern mining [27–29]. In this study, the semantic-geographic pattern mining process consists of two
parts and four main steps, as shown in Figure 3. First, in the data preprocessing step, users’ original
check-in traces are transformed into semantic-geographic traces and semantic traces according to the
definitions presented in Section 3. Then, in the pattern mining step, geographic similarity and semantic
similarity are calculated for each type of trace. The semantic-geographic pattern combined semantic
intensity similarity is then calculated to obtain the final similarities. Finally, a density-based clustering
algorithm is used to detect the semantic-geographic combined movement patterns.
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4.1. Semantic-Geographic Combined Similarity Measurement

Similarity measurement is the key step of semantic-geographic pattern mining. In this context,
a new concept called semantic intensity is introduced to calculate trajectory similarities based on both
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semantic and geographic features. Semantic intensity is a combination of semantic similarity and
geographic similarity. It can be considered the average semantic similarity in a geographic unit distance.
The calculation of this new semantic intensity measurement is described in the following subsection.

4.1.1. Semantic Similarity Calculation

Because trajectory data are transformed into semantic vectors according to Definition 3, the
feature model-based method is suitable for measuring their similarity. Cosine similarity is a feature
model-based method that is widely applied in the field of information retrieval [30] and text mining [31],
and for this reason is chosen to calculate the semantic similarity between two users’ semantic traces.

The semantic similarity of the users’ semantic traces STrace1 and STrace2 is as follows:

Semantic similarity(STrace1, STrace2) =
∑n

i=1 W1i ∗W2i√
∑n

i=1 (W1i)
2 ∗
√

∑n
i=1 (W2i)

2
(1)

where n is the total number of POI category pairs (e.g., school→ park) and Wji is the corresponding
weight for each type of POI category pair. In addition, the start time and end time in each POI category
pair must overlap in order to calculate the two traces’ inner product.

Different weighting schemes might be used in this context; one that is effective and widely used
is term frequency and inverse document frequency (TF-IDF):

Wji = t fi,j × log2(
N
d fi

) (2)

where tfi,j is the number of times term i appears in a document dj, and dfi is the number of documents
in which the certain term appears. In this paper, a term corresponds to one POI category pair, and a
document corresponds to a semantic trace. The TF factor indicates the importance of a POI category
pair in the trace. The IDF factor is a global statistic that measures how widely a POI category pair
is distributed over a collection. POI category pairs that appear often in a trace and do not appear in
many traces therefore carry significant weight. Unlike in the weighting strategies of Buchin, et al. [26],
the TF-IDF weight is directly obtained from original data. This weight carries more accurate semantic
meaning, and does not require any prior knowledge. For detailed explanations of cosine similarity
and TF-IDF weight please refer to [30–32].

4.1.2. Geographic Similarity Calculation

Calculating the geographic similarity calculation between two semantic-geographic traces is
not a trivial task. Because trajectory data are collected over a long period, the places visited may
not be the same for one person at a certain time. Thus, unlike in traditional trajectory distance
measurements (such as DTW (Dynamic Time Warping), Fréchet, and edit distance), two polyline sets
must be calculated at each time interval.

The Hausdorff distance is the maximum distance of a set to the nearest point in another set [33].
Because the computation of the Hausdorff distance can be extended to polygons and line segment sets,
curves and surfaces, curve sets, etc., it is widely used for pattern matching and recognition [34,35].
The Hausdorff distance from point set A to point set B is formally defined as follows:

h(A, B) = max
a∈A
{min

b∈B
{dist(a, b)}} (3)

where a and b are points in sets A and B, respectively, and dist(a, b) is usually the Euclidean distance
between these two points.
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This Hausdorff distance is not symmetric, which means that most of the time h(A, B) is not equal
to h(B, A). Therefore, the Hausdorff distance between A and B can be more generally defined as follows:

H(A, B) = max{h(A, B), h(B, A)} (4)

Two users’ geographic similarity is calculated by the root mean square value of the Hausdorff
distance at each POI category pair that is shared in their corresponding semantic- geographic traces.
Therefore, only semantically related POI category pairs are used to calculate the geographic similarity,
and the semantically unrelated POI category pairs are omitted. As shown in Figure 4, given Trace1 and
Trace2 as one type of a POI category pair’s polylines over the same period (t1~t4) for user1 and user2,
respectively, the Hausdorff distance is calculated as follows:

HausDistAtPoiCate1(Trace1, Trace2) = Max(H(Trace1, Trace2), H(Trace2, Trace1)) (5)

where:
H(Trace1, Trace2) = Max(Dist(xy, abcd), Dist(yz, abcd)),

H(Trace2, Trace1) = Max(Dist(ab, xyz), Dist(bc, xyz), Dist(cd, xyz)).
(6)
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As shown in Figure 4a, the distance between one segment pair from two traces (e.g., Dist(yz, cd))
is the arithmetic mean of the corresponding distances of their start points and end points. Moreover,
as shown in Figure 4a, the distance from one trace’s segment to the other trace (e.g., Dist(xy, abcd)) is
the minimum distance between xy and trace2’s segments (supposing Dist(xy, ab) < Dist(xy, bc), then
Dist(xy, ab) remains). Note that the duration of the segments in trace2 must overlap the duration of
xy’s segments.

As the Hausdorff distance increases, geographic similarity decreases. The final geographic
similarity between two check-in traces is:

Geographic similarity(CTrace1, CTrace2)

= 1− (

√
∑ciCategory(HausDistAtPoiCatei)

2/n
r )

(7)

where n is the number of related POI category pairs, and r is a distance threshold value such that a
Hausdorff distance greater than r results in a geographic similarity equal to the minimum value of 0.
The upper limit of geographic similarity is 1, which occurs when the Hausdorff distance between two
traces is 0.
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4.1.3. Semantic Intensity Similarity Calculation

Two users’ semantic intensity is the semantic similarity within a geographical unit distance.
Semantic intensity is calculated as a mixture of both semantic similarity and geographic similarity:

Semantic intensity(user1, user2) =
Semantic similarity(STrace1, STrace2)

2−Geographic similarity(GTrace1, GTrace2)
(8)

The divisor of Formula (8) consists of the geographic distance plus 1 (according to Formula (7)),
which avoids obtaining an infinite semantic intensity when the geographic similarity equals 0.
Additionally, this modification forces the semantic intensity to vary between 0 and 1. As semantic
similarity and geographic similarity increase, semantic intensity increases as well. Semantic intensity
is assigned the maximum value of 1 when semantic similarity is equal to 1 and geographic similarity is
equal to 1. Because semantic intensity scales with both semantic similarity and geographic similarity,
a suitable similarity threshold is needed to identify trajectories with high semantic intensity similarity.
This issue is addressed in the next subsection.

4.2. Density-Based Clustering

After transforming original trajectory data into feature vectors, generic clustering algorithms are
then used to group them based on the similarity measurements mentioned above. However, as argued
by Salvador and Chan [36], one important problem associated with these clustering algorithms entails
determining the number of clusters. Moreover, a large amount of data corresponding to noise or
outliers may adversely affect the efficiency and accuracy of these algorithms. Therefore, in this paper,
a density-based spatial clustering of applications with noise (DBSCAN) algorithm [37] is used to
overcome these drawbacks and effectively mine valuable trajectory patterns.

In DBSCAN, objects with many nearby neighbors are considered a high-density region. DBSCAN
can then group these objects together to form a cluster, and make outliers objects that lie alone in
low-density regions outliers. DBSCAN requires only two parameters that are insensitive to the order
of the objects in a dataset. One is the neighborhood region’s radius, epsilon (ε). The other is the
minimum number of nearest objects (MinPts, or k) required to form a dense region. The performance
of DBSCAN depends on the distance/similarity measure, because it defines the neighborhood region
for objects and can strongly affect the region of final clusters. To obtain meaningful trajectory patterns
by the similarity measures mentioned above, the two parameters (ε and k) are set based on the three
following factors:

(1) The geographic distance between two trajectories calculated by Formula (5) should be no greater
than 1 km. A large distance is indicative of a non-similar relation, regardless of how semantically
similar the trajectories are. Moreover, the neighborhood region’s radius of geographic similarity
is also set to 1 as explained in Formula (7).

(2) The neighborhood region’s radius of semantic intensity similarity between two trajectories
should be no less than 0.5. According to Formulas (7) and (8), trajectories that have minimum
geographic similarity (a geographic distance equals to 1) are considered neighbors only if they
have a maximum semantic similarity equal to 1. Furthermore, trajectories that have a maximum
geographic similarity equal to 1 are considered neighbors only if they have a minimum semantic
similarity equal to 0.5. Thus, no matter how large the geographic similarity is, a semantic
similarity less than 0.5 is not able to generate high-density regions in a semantic intensity
similarity measurement.

(3) A user is considered a dense object when the number of neighboring users in its neighborhood
region is no less than a given parameter k ∈ [2,9]. A small k value will generate a large number
of clusters that have very small cluster sizes. The cluster number will decrease as k increases.
However a large k value tends to generate one special cluster that is much larger than other
clusters. Therefore, the final value of k has to be determined experimentally.
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5. Experimental Analysis

This section validates the accuracy and efficiency of the proposed similarity measurement.
We conducted experiments comparing four similarity measurements: semantic similarity (Sem),
geographic similarity (Geo), semantic intensity similarity (SG), and GTS similarity (Ying, et al. [25]).
We then analyzed the mining results to demonstrate the advantages and disadvantages of each.

5.1. Data Collection and Preprocessing

The experimental data were extracted from the Chinese microblogging site Sina Weibo. We
collected over 238,000 users’ check-in records in Beijing during the year 2013. The total data comprised
three million records, with about 54,000 POIs. The data were preprocessed based on three rules:

(1) The 54,000 POIs were classified into five simple categories (educational institution (EI), hotel or
restaurant (HR), indoor entertainment (IE), outdoor activity (OA) transportation facility (TF)),
and one compound category (which is social institution or building (SB)). The compound category
includes industrial and commercial buildings, banks, hospitals, and government organizations.
These six categories cover a user’s daily movement activities, comprising working, studying,
eating, etc.

(2) One check-in trace record for a user had to be generated in one day, from 0:00~23:59, and
contained at least two POIs.

(3) Users who had checked in at the same trace more than twice and in at least two different months
were selected as experimental users. Their traces were considered regular movement activities.

After these three criteria were applied, 14,729 check-in traces from 4340 users remained. Sample
records for one user are listed in Table 1. XA, YA, XB, YB are the coordinates of POI A and POI B;
TA and TB are the check-in duration of POI A and POI B.

Table 1. A sample user’s check-in traces.

ID POI A POI B Cate AB Weight XA YA XB YB TA TB Count

1 McDonald’s Ceramic base HR-IE 0.5 977 2565 5358 3871 7–8 9–15 2
1 Ceramic base UBC Coffee IE-HR 0.7 5358 3871 943 2621 8–10 19–22 3

1 Ceramic base Xinzhao
Apartments IE-SB 0.3 5358 3871 908 2443 9–18 19–20 2

5.2. Experiment Design

The aim of the experiment was to compare the accuracy and efficiency of the trajectory pattern
mining method based on four different trajectory similarity measurements.

Semantic similarity and semantic intensity similarity were measured using Formulas (1) and (8).
The calculation of geographic similarity differed slightly from that described by Formula (7). The
Hausdorff distance was calculated for two users’ trajectories, without considering the POI categories.
The GTS similarity between two user’s trajectories was based on the method of Ying et al. [25], and is
expressed as follows:

GTS similarity(U, V) =
∑m

i=1 ∑n
j=1 GTSSimilarity

(
Mi, Mj

)
m× n

(9)

In Formula (9), Mi and Mj are two segments of the trajectories of two users (U and V); m and
n are the size of segmentations in each trajectory. When two segments’ geographic distance is less
than 1 km, their GTS similarity can be obtained as the sum of semantic similarity and temporal
similarity. Their semantic similarity is based on the cosine similarity measurement, and their temporal
similarity is the proportion of the intersection of their stay time intervals to the union of their stay time
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intervals at a certain place. If two segments have a geographic distance greater than 1 km, they have
no GTS similarity.

The setting of the similarity threshold for pattern mining relies on the three factors described
in Section 4.2. The similarity thresholds for geographic and semantic intensity measurements are 1
and 0.5, respectively. The threshold for GTS similarity is also set to 0.5 for comparison with other
measurements. Because the POI categories for each user’s check-in records are highly similar, the
semantic similarity threshold is set to 0.9.

Two factors are used to verify the efficiency of the four measurements. One is the total user number
of the five largest clusters (N5). The greater N5 is, the better measurement it becomes. The other
factor is the ratio of the largest cluster user number in N5. An excessively large ratio is considered an
inefficient measurement. On the other hand, accuracy is determined by analyzing the user set and POI
set in each pattern’s contents.

5.3. Results Analysis

By using four similarity measurements and running the DBSCAN algorithm with the parameters
mentioned above, a large number of clusters are obtained. The clustered user number is considered an
important indicator for describing the cluster results. Usually, the measurement and cluster results
improve with the number of clustered users. However, as a by-product of the DBSCAN algorithm,
many clusters are very small. Ultimately, only the five largest clusters of each similarity measurement
are chosen as the most meaningful patterns to be analyzed. In addition, the largest cluster may cover a
very large portion of the whole clustered user base as the parameter k increases, which will greatly
impair the representation of other clusters. Therefore, the proportion of the largest cluster’s user
number to that of the five largest clusters is also used to determine the efficiency of each similarity
measurement. The two indicators for four similarity measurements’ cluster results are shown in
Figure 5.

Figure 5 shows that as the parameter k increases, the top cluster user ratio for semantic similarity
jumps to a very high level when k is greater than 7. The clustered user number for geographic
similarity reaches a maximum when k equals 6. On the other hand, semantic intensity similarity and
GTS similarity generate much smaller clusters, and their total values change only slightly when k
ranges from 2 to 6. Finally, the clustering parameter k is set to the same value of 6 to make better
comparisons among the four similarity measurements. Table 2 shows the parameter settings and
cluster results for the four similarity measurements.
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5.3.1. Cluster Result Analysis by User Set

Based on the cluster results presented in Table 2, we perform an overlap analysis of the clustered
user sets to demonstrate the differences among the four similarity measurements.

Table 2. DBSCAN parameter settings and mining results for the four similarity measurements.

Measurements
Parameter Setting Total Clusters Top 5 Clusters

Similarity
Threshold

MinPts
(k)

Cluster
Number

Clustered
User

Clustered
User Ratio

Top 1 User
Size

Top 5 User
Size

Top 1 User
Ratio

Semantic 0.9 6 2084 3539 81.5% 156 358 30.4%
Geographic 1 km 6 164 1405 32.4% 113 260 30.3%

Semantic intensity 0.5 6 32 242 5.6% 16 69 23.2%
GTS 0.5 6 8 72 1.7% 27 55 49.1%

Semantic 0.9 6 2084 3539 81.5% 156 358 30.4%

(1) As shown in Table 2 and Figure 6, semantic similarity generated thousands of clusters, most of
which have very small user sizes. Furthermore, its clustered users covered 81.5% users of the
whole data set, which means that most of the users have high semantic similarities with at least
6 other users. Among those users, 33.7% are also geographically similar.

(2) Only approximately 32.4% of users’ activities were conducted within 1 km of other activities. The
ratio of semantically similar users to geographically similar users was 85%, which is only a little
greater than the ratio of semantically similar users to the whole dataset. These two ratios indicate
that there is no correlation between the two types of similar users.

(3) As shown in Figure 6a, the semantic intensity similarity was practically a small subset of the union
of the two similarities described above. Over 82.3% users in that union were both semantically and
geographically similar. They were not, however, similar to each other when the two similarities
were combined. In fact, they were often conducting different types of activities in nearby locations;
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thus, they were not truly similar. On the other hand, approximately 12.7% of semantic intensity
similar users were identified among non-semantic similar and/or non-geographic similar users.
These users were selected because their check-in POI sets were geographically similar for some of
the semantic POI categories. In other words, they were not always conducting similar activities
in nearby areas, but they did some particular type of activities in nearby areas.

(4) As shown in Figure 6b, GTS similarity exhibited the smallest cluster size. Figure 6c shows that
half of the GTS-clustered users overlapped with semantic intensity-clustered users. A detailed
comparison between these two similarities is performed in the next subsection.
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The overlap analysis described above demonstrates that the semantic intensity measurement
performs quite differently from the semantic similarity and geographic similarity measurements. Its
clustering results contain both semantically and geographically similar users, indicating more valuable
patterns. In addition, semantic intensity identified more clustered users than GTS similarity.

5.3.2. Pattern Result Analysis by POI Set

In this section, the POI sets in each cluster are used to analyze the semantic and geographic
features of each pattern obtained by using different similarity measurements.

(1) The semantically similar clusters pertain mainly to three types of POIs: outdoor activity (OA),
social institution and building (SB), and indoor entertainment (IE). The semantic patterns are
as follows:

1© SPattern1 (149 users) = {(OA, 9~18)→ (SB, 16~22), (SB, 9~18)→ (OA, 16~22), (SB, 9~18)
→ (SB, 16~22)}.

2© SPattern2 (156 users) = {(IE, 11~17)→ (OA, 18~22), (OA, 11~17)→ (IE, 17~22)}.

Figure 7 shows the geographic distributions of two semantic patterns based on their POI traces.
Because the semantic similarity measurement does not consider the geographic information in the
traces, the two semantic patterns overlap over a large portion of Beijing, and their geographic
distributions are difficult to describe and distinguish.
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(2) The five largest geographic patterns are illustrated in Figure 8. They are located in different places
in Beijing and have different area sizes. However, no detailed semantic rules can be determined
from these geographic patterns. It is thus unclear what types of activities are conducted by each
pattern’s users. In fact, the overlapping analysis in Figure 6 shows that most of the users are not
performing similar activities in nearby places.
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(3) The semantic intensity similarity measurement generated 32 small semantic-geographic patterns.
The geographic distributions of the top 5 pattern are shown in Figure 9. In SG pattern 1,
for example, people from northern and western areas frequently check in at one place:
Zhongguancun. In fact, Zhongguancun is the most popular information technology center
in Beijing. Many active Weibo users are working or consuming at Zhongguancun; they may share
common interests that can be used for accurate user or business recommendations. In addition,
the geographic distribution and time duration of pattern 1 can provide detailed information that
city planners can use to make better decisions in this area.
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SGPattern1(14 users) = {(SB, 11~14)→ (OA, 16~20)}.
(4) The GTS similarity measure only generated six GTS patterns as can be seen in Figure 10. Except

pattern 1, all the other patterns contain very few users. According to Formula (9), the calculation
of GTS similarity doesn’t consider the value of geographic similarity when users’ trajectories have
a smaller distance than 1 km. They were all treated the same as those who have high geographic
similarities. In the end, users who have low geographic similarity (e.g., geographic distance
equals to 1 km) can still be clustered in GTS patterns. That’s why pattern 1 and pattern 4 in
Figure 10 both have larger areas than corresponding clusters in semantic-geographic patterns.

The cluster results suggest that, compared with the three other similarity measurements, semantic
intensity is more effective in identifying various and valuable trajectory patterns. The pattern results
reveal more accurate information pertaining to geographic distribution and semantic meaning. This
information is important for interpreting patterns, and the patterns obtained can reveal more detailed
movement activities among users.
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6. Discussion and Conclusions

In this paper, we discuss several similarity measurements for trajectory data. We formally define
the new concept of a semantic-geographic pattern and propose a novel similarity measurement
called semantic intensity to calculate semantic and geographic similarity within a unified framework.
We then use a flexible density-based clustering algorithm to mine these semantic-geographic
patterns. Comparative trajectory pattern mining experiments conducted using four different similarity
measurements show that semantic intensity can effectively measure both semantic and geographic
similarity among trajectory data. The experimental results also show that the patterns obtained using
semantic intensity contain more interesting information than the other measurements. This information
can be used to interpret patterns, clarify people’s movement activities more carefully, and supply more
accurate location and user recommendations.

Two factors enable semantic intensity to perform better than the other measurements. One is
the proper combination of two different dimensions: semantic similarity and geographic similarity.
The deviation strategy not only limits semantic intensity to values between 0 and 1, but it also
avoids the task of setting weights for each dimension. Therefore, compared with the pure semantic
similarity and geographic similarity measurements, semantic intensity can measure the two similarities
simultaneously and is suitable for various trajectory data. The other factor is that semantic intensity
only considers the segments of trajectories that have similar semantic meanings and shorter geographic
distances. Because users’ movement activities vary widely in the semantic, geographic and temporal
dimensions, it is difficult to obtain high similarity values between two users’ whole trajectories. Thus,
compared with the calculation of GTS similarity, that of semantic intensity makes it easier to obtain
high similarity values and to identify more common trajectory patterns.

Data quality problems are an inevitable issue that can affect the efficiency of semantic-geographic
pattern mining task for all kinds of similarity measurements. In fact, the experimental data are
limited by two main factors. First, check-in data can be considered a small and biased sample dataset
corresponding to the entire population’s activities. The check-in frequency for one person is quite
low, and the check-in locations only cover a small portion of the places he/she has visited. Several
data pre-processing strategies are used to fetch the representative places for each person. However,
those strategies greatly reduce the number of experimental users and lead to a very small number of
semantic-geographic pattern users. A recent study on mining human activity patterns (not trajectory
pattern) from Twitter data also showed that only 2.72% users had very similar activity patterns
based on space-time and semantics, whereas the majority (87.14%) showed different activity patterns
(i.e., similar spatiotemporal patterns and different semantic patterns, similar semantic patterns and
different spatiotemporal patterns, or different in both) [38]. Therefore, it is difficult to select a suitable
sample dataset for the accuracy verification. Second, experimental users cover only a small portion of
population, and their representativeness is hardly investigated because of privacy limitations. This
limitation makes it difficult to identify the types of people in one trajectory pattern. For example,
we can draw conclusions about characteristics shared by users in the semantic-geographic patterns
described above. However, it is very hard to verify whether the users are actually IT employees.
Thus, the conclusions can only be drawn directly from the dataset. Other trajectory data also have
shortcomings that must be addressed when conducting semantic-geographic pattern mining.

In addition to the similarity measurement and data quality problem, several challenges still
remain with respect to this new pattern mining task. Given the diversity of people’s movement
behavior, it is questionable to set fixed parameters in data clustering processing. A more flexible
parameter-setting strategy and more stable clustering algorithms that can identify more accurate and
valuable patterns are needed.
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