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Abstract: Over the past few years, Earth Observation (EO) has been continuously generating
much spatiotemporal data that serves for societies in resource surveillance, environment protection,
and disaster prediction. The proliferation of EO data poses great challenges in current approaches for
data management and processing. Nowadays, the Array Database technologies show great promise
in managing and processing EO Big Data. This paper suggests storing and processing EO data as
multidimensional arrays based on state-of-the-art array database technologies. A multidimensional
spatiotemporal array model is proposed for EO data with specific strategies for mapping spatial
coordinates to dimensional coordinates in the model transformation. It allows consistent query
semantics in databases and improves the in-database computing by adopting unified array models
in databases for EO data. Our approach is implemented as an extension to SciDB, an open-source
array database. The test shows that it gains much better performance in the computation compared
with traditional databases. A forest fire simulation study case is presented to demonstrate how the
approach facilitates the EO data management and in-database computation.

Keywords: Earth Observation; multidimensional array; array database; SciDB; Big Data;
forest fire simulation

1. Introduction

Earth Observation is a series of activities for collecting, managing, processing, analyzing,
and presenting the physical, chemical, and biological information pertaining to the Earth system
using remote sensing or other measurement techniques. It has extensive applications and broad
prospects in natural resource management and environment monitoring [1]. With the advances in
modern sensor technologies, various platforms, such as satellites, planes, and vehicles, have been
employed as sensor carriers to gather various observation data, generating a wide range of data types
and formats [2]. On the other hand, the improved data resolution in time, space, and spectrum leads
to a tremendous growth in EO data size and volume. The information behind these data is more
valuable for end users. However, it is estimated that some of the data have never been accessed and
processed, causing a waste of resources and incomplete information [3,4]. Hence, how to organize,
store, and manage large volumes of EO data and dig out available information from the data requires
immediate attention [5,6].

Traditional storage for EO data uses various kinds of files, such as Network Common Data
Form (NetCDF) for atmospheric and hydrological sciences, GeoTIFF, and Hierarchical Data Format
(HDF) for remote sensing images. These specially-designed data formats work quite well when
the amount of data is not very large. However, issues start to arise when data volumes increase
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gradually. The most obvious problem is that it is not easy to retrieve and query the information needed.
To solve this problem, there have been some efforts to provide a more productive environment for EO
data storage and processing by leveraging the state-of-the-art multidimensional array databases
and High-Performance Computing (HPC) technologies [6]. An array database is designed and
implemented as a common database service offering flexible and scalable storage and retrieval
on large volumes of multidimensional array data, such as sensor, image, simulation or statistics
data [7,8]. It has attracted extensive attention from academic and industry data scientists [7,9,10].
In the geoscience domain, for example, the National Aeronautics and Space Administration (NASA)
launched a project—EarthDB to manage tons of Moderate Resolution Imaging Spectroradiometer
(MODIS) Level 1B calibrated and georeferenced data by employing an open-source array database
named SciDB [11]. The EarthServer is a European Union-funded project to meet the EO Big Data
challenges [12]. With all the data stored in Rasdaman array database, it provides a flexible and
interoperable processing and analytic service based on Open Geospatial Consortium(OGC) standards.
The Australian GeoScience Data Cube (AGDC) is another project that establishes a comprehensive EO
Big Data storage and processing framework by employing multidimensional array-based storage and
HPC technologies [13]. These are excellent works contributing to the geoscience community.

Based on the works of pioneer contributors, we believe that three aspects should be taken into
consideration over EO Big Data storage: (1) how to store large volumes of data in spite of their diverse
formats and different observation themes; (2) how to query and extract useful information from
massive data archives and contribute to find what users need exactly; (3) how to manage and maintain
the growing database with higher efficiency and lower consumption as the velocity and volume of
data being generated continue. Correspondingly, the following three guiding strategies are listed.
Firstly, common characteristics of EO data should be summarized and concluded to choose a general
and consistent storage and management platform. Secondly, easy-to-use query languages or utility
tools should be developed to accurately locate the data required. Finally, horizontal scaling should be
natively supported, namely, scaling of data storage can be achieved by adding commodity hardware.
Overall, the storage system for EO Big Data must be as flexible and scalable as possible.

In this paper, we propose a unified, effective and flexible approach by employing array database
technologies to manage and process various EO data. Since most of the EO data, such as remote sensing
images, are essentially multidimensional arrays in terms of data structure, it naturally follows to store
and manage EO data in an array database, which is specially designed to manipulate data based on
semantics of arrays [14]. In addition, array databases offer good extensibility, flexibility, and efficient
in-situ data processing capability [15]. Our approach developed a multidimensional spatiotemporal
array model. The model is layered on top of common array model and creates a mapping between data
coordinate systems and dimensions of arrays, so that data queries within a specific Spatial Reference
System (SRS) can be transformed into operations on multidimensional arrays. Basic data processing
can be performed directly as in-database computing against the array data models. More sophisticated
application analysis can be performed with a high level programming language like Python. In this
case, all data operations are performed on array data models, without considering the differences in
data types and formats. The model is implemented as an extension to SciDB. The test shows that it
gains much better performance in data query and computation compared with traditional databases.
A forest fire simulation study case using cellular automation model is presented to demonstrate how
the approach facilitates EO data management and in-database computation.

The remainder of this paper is organized as follows. Section 2 introduces the array database
technology as well as the proposed modeling method. Section 3 presents the implementation and
evaluation. Section 4 shows a case study for forest simulation to go through the approach. Conclusions
and future work are described in Section 5.
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2. Material and Method

2.1. Material

Various data models have been developed to store and manage Big Data efficiently and
effectively [16–18]. Recent years have witnessed the development and prosperity of NoSQL databases.
NoSQL databases employ various data models to organize volumes of data. These data models tend to
be schema-less, and data are ultimately stored as collections of key-value pairs. NoSQL databases have
gained great success in commercial Big Data application, and some attempts have been made to store
remote sensing images, LiDAR point clouds and other scientific observation data [19–21]. However,
it is not effortless to deal with the array-based EO data in NoSQL databases due to the mismatch
of data models and requires transform to a specific data structure in order to load array data into
mainstream NoSQL databases.

Meanwhile, the multidimensional array database, as a new rapidly developing technology, came
into sight. The array data model matches the nature of the EO data, thus enabling flexible queries based
on array dimensions and powerful in-database data processing capabilities. Furthermore, existing
array databases support horizontal scaling with just cheap commodity servers set up as clusters
to handle ever-increasing data volumes [15]. Data partition among server nodes can be conducted
automatically, which is highly desired in the Big Data context.

At present, the most widely-used multidimensional array databases are Rasdaman and
SciDB [3,11,22]. They are competing each other, and our initial step is to choose one as a proof-of-concept
implementation. The method used in the spatiotemporal array model in this paper, however, is not
limited to a specific product. In this paper, SciDB is extended to demonstrate our proposed approach in
addressing three considerations for EO data storage in Section 1. SciDB is a scalable, computational,
open-source multidimensional array database management system, and has been employed in life
science, sensor analytics, financial markets, and other scientific domains [23,24]. It is intended primarily
for the storage and management of very large scale array data [10]. In SciDB, every array has a specific
schema defining array dimensions and attributes. Attributes stand for the data values stored in the
cells of the array, and each cell can contain multiple attributes. SciDB decomposes each array into many
subsets with a single attribute, and then each subset is saved as a logical whole [10]. Attributes in SciDB
are strong-typed, namely, each attribute in an array shares one specific type. Dimension is the minimum
number of coordinates needed to specify a cell in an array. Each dimension is denoted by a name and
domain. Currently, SciDB only supports the domain declaring by integer range.

SciDB adopts a shared-nothing, distributed and massively parallel processing architecture [15],
shown as Figure 1, which makes it possible to store and access as much data as required by horizontal
scaling. A SciDB cluster is composed of a coordinator and a number of database instances running on
different data nodes with each node connected with a network [15]. The coordinator is responsible for
interacting with all the SciDB instances to handle requests from users. The actual data is partitioned
into small chunks and stored in the file systems of distributed server nodes. A PostgreSQL database is
employed as a system catalog holding metadata of system and array data. At the front-end, SciDB
provides a higher-level Array Query Language (AQL) and Array Functional Language (AFL) for
data query and manipulation. Moreover, a HTTP-based client called shim and other Application
Programming Interfaces (APIs), such as Python and R APIs, are also provided to access and query
data from databases.
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Figure 1. System architecture of SciDB.

2.2. Method

A key issue in applying the multidimensional array model for EO data management is to develop
a spatiotemporal array model. What makes EO data different from other scientific data is the spatial
reference information attached with data. In our approach, observation data in the array database are
organized as multidimensional spatiotemporal data cubes. Geospatial dimensions, usually denoting
by latitude and longitude, are indispensable for the multidimensional data cubes. For long-time series
data, time dimension is also needed. Other dimensions can be added according to the actual data
in practice. Array attributes are used to hold the observation values. For example, a single remote
sensing image can be regarded as a data cube with three dimensions (lat, long, band) and each cell in
the array contains a value representing ground surface reflectance. Optionally, it can also be regarded
as a two-dimensional array with multi-attributes, and each attribute contains one band value. Figure 2
presents an overall picture of our proposed approach for EO data management. In addition to the
data model, the geospatial metadata are records instead of arrays. So that geospatial metadata could
still take advantage of traditional Relational Database Management Systems (RDBMSs). Specifically,
EO metadata are persisted in relational tables, while actual observation data are stored in the array
database. Thus the approach adopts a hybrid storage mechanism by combining RDBMS and array
database. Metadata and observation data are linked by unique array identifiers. General speaking,
the hybrid storage mechanism, multidimensional spatiotemporal data cubes, and mapping strategy
between array coordinates and spatial coordinates are key parts in our array database approach.

The mapping strategy must keep the spatiotemporal semantics in the array database model when
loading EO data into databases. An array coordinate system is usually defined by its dimensions.
A dimension has its starting and ending coordinates, which are denoted by integers with interval
identically equal to one. However, EO data are often presented in a specific SRS, and the coordinates
are often not denoted by integers. Hence, a mapping between array coordinates and geospatial
coordinates is proposed to solve the mismatch of coordinate systems.
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Figure 2. The array database approach for EO data management.

Here discusses the mapping strategy for different kinds of EO data. In terms of the continuity
of observed area, EO data can be classified as continuous and discrete. Continuous data usually
cover a large contiguous area representing a continuous natural phenomenon or condition, such
as remote sensing images. Discrete data are usually discrete observation points, such as in-situ
sensor observations. We adopt a generic six-parameters affine transformation model [25], as shown
in Equation (1), to establish the mapping . In this equation, (xgeo, ygeo) is the projected coordinate,
(xpixel , yline) is the raster coordinate staring from (0, 0), and the rest are determined transformation
parameters. With this transformation, user queries in a specific SRS can be mapped into operations in
array coordinate system. It works for the data with either projected coordinate system or geographic
coordinate system. For discrete data, there are two ways to model data as arrays. One way is to
take geospatial coordinates as dimensions, and use the parallel and equally spaced attitude and
longitude grids to organize the observation data with each data item located in a single cell. We can
scale up the attitude and longitude values by multiplying a multiple of ten to make them integers.
The range between scaled minimum and maximum integers can be served as array dimension range.
The enlargement factor depends on the data resolution. In this way, it will form a sparse array with
many cells having no values. Another way is taking geospatial coordinates as attributes of arrays.
In this way, it will form one-dimensional arrays if not taking time dimension into consideration.
And this one dimension counts items of observation. In an array database, these two-form arrays can
be easily transformed to each other. Table 1 summarizes the different situations to model EO data in
order to load them into array databases.{

xgeo = x0 + a11 · xpixel + a12 · yline

ygeo = y0 + a21 · xpixel + a22 · yline
(1)
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Table 1. EO data organization in array database.

Earth Observation Data

Category Continuous Discrete

Data structure

Multidimensional spatiotemporal arrays

Dimensions: (x, y, · · · )
Attributes: (observed values. . . )

Dimensions: (lat, long, · · · )
Attributes: (observed values. . . )

Dimensions: (i, · · · )
Attributes: (lat, long,
observed values. . . )

Mapping
strategy

Six-parameter affine
transformation

Scale up the attitude and
longitude values by
multiplying by ten

/

Spatial
dimension
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2RSTSUVWXYSQX67

QTZPWRPYUXR?

2RSTSUVWXYSQX67

QTRXPPVYXXV?

2RSTSQTPXYRVT67

QTZPWRPYUXR?

2RSTSQTPXYRVT67

QTRXPPVYXXV?

U

XTPR

PTPTZ

1

2PUV'RT[RWYRU\L67

QQ'TV[QZYWR\]?

2PUV'RS[7TYVX\L67

QQ'TW[ZQYPW\]?

QQXSPWPZ

1

QQXSPWPZ

PUVTXRSXZ

'
()
*'
*+
,
-

(.
/
0
'*
+
,
-

1
)
(+
-

&

P Q R >

In contrast to the array data model, we organize EO metadata by themes and sources, and build
series of new relation tables to store the metadata. Figure 3 gives the Entity-Relation (ER) model
represented as a Unified Modeling Language (UML) diagram. The relation spatial_dim holds the
mapping information between array coordinates and geospatial coordinates by using a six-parameter
affine transformation. The relation spatial_ref records the projection information. And the relation
time_dim is the description information on the time dimension with the begin timestamp and interval.
This is a light weight design, which includes essential relations of the data theme and sources, as well
as spatial and time dimensions. Metadata tables like the dataset1_meta and dataset2_meta are added
for each dataset. It is identified by the array_name field, which refers to the arrays in array databases,
so that arrays can be linked up with their spatiotemporal semantics and related metadata.
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Figure 3. ER model for EO metadata.
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After loading data into the molded arrays, traditional window queries, and various pixel-based
calculations can be translated into operations performed on array dimensions and attributes.
As a result, array databases shield the differences among various data sources, by providing a unified
multidimensional data cube perspective for end users. It also presents the geospatial specialty of
EO data using array dimensions so that EO data can be correlated with other data in a unified data
retrieval and analysis framework. End users can now focus on the design of algorithms and analysis
models for scientific experiments and simulations, without caring about various data formats, types,
and data transformations.

3. Implementation and Evaluation

3.1. Implementation

A prototype system is built for EO data management and processing. Figure 4 gives an overview
of the system architecture. The key to the prototype system is the multidimensional spatiotemporal
array data cube. Different types of EO data can be easily integrated into an array database in a uniform
way. At the bottom layer, EO data can be transformed and loaded into SciDB. By setting up a data
cluster with servers, incoming data will be distributed in different nodes. As data volumes grow
increasingly, more data nodes can be dynamically added. EO metadata are organized by data themes
and sources. For a specific theme and data source, there is a specific metadata table with specific
fields. Moreover, there are additional tables for the definitions of arrays, spatiotemporal dimensions,
and SRSs. All of this information is persisted in the PostgreSQL database. Users can handily query the
metadata with standard Structured Query Language (SQL), and retrieve observation data with SciDB
AQL and AFL.
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Figure 4. System architecture for EO data management and processing.
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When it comes to the data processing, SciDB offers Python and R interfaces to operate the data in
the array database. Python and R are programming languages widely used in scientific computing with
native support for multidimensional array data structure. However, the computing capabilities of the
programming languages are limited to the main memory of computers and data volumes that exceed
available memory cannot be processed. To overcome this limitation, SciDB-Py and SciDB-R can be used,
which are well-designed interfaces to access and manipulate the data residing in a SciDB database [26].
The programming function calls will eventually be transformed into the SciDB operations performed
in distributed data nodes. For the analysis with massive data volumes and simple calculations, such as
conventional linear algebra and matrix operations, we can just use AFL to do the computation. This can
be called migration from computation to data, compared to conventional data migration computing.
We refer it as in-database computing. Considering those analyses with less data volumes and complex
processing logics, data from SciDB can still be migrated into customized analytical models following
the conventional way. This is because currently SciDB cannot support some complex in-database
processing. However, if advanced analyses are needed in databases, we could implement them as
user-defined functions (UDF) with C++ APIs.

3.2. Comparison with Related Software Solutions for EO Data Cubes

There are some existing projects on EO data cubes. Among them, the Rasdaman and AGDC
are well-known efforts. There are also some similarities and differences between our approach and
the existing work. This section compares the implementation strategies among Rasdaman, AGDC
and our approach. Rasdaman implements the capabilities for accessing EO data by an application
called Petascope [12]. Petascope fully implements the OGC Web Coverage Service (WCS) and Web
Coverage Processing Service (WCPS) standards and offers a standard interface for on-line data access
and processing [27]. Geospatial metadata of EO data is modeled according to OGC GML Coverages
(GMLCOV) specification and persisted in PostgreSQL database. Spatiotemporal coordinates are parsed
by an component named Semantic Coordinate Reference System (SECORE) [28]. Currently, Petascope
only supports raster data whose axes are aligned with the axes of the Coordinate Reference System
(CRS) defined in SECORE, so spatial coordinates of each raster cell can be calculated by the original
point coordinate and an offset vector which determines the geometric distance between grid points
along its axes [29]. Using Petascope and SECORE, all the WCS or WCPS requests from clients can be
directly translated into rasql (Rasdaman Query Language) and executed by Rasdaman.

AGDC is a another platform for managing EO Big Data following the data cube approach.
It provides a High-Performance-Computing and High-Performance-Data (HPC-HPD) environment for
efficient data storage and processing. This system consists of four layers: data acquisition and inflow,
data cube infrastructure, data and application platform, as well as user interface and application
layer [13]. Source datasets go through series of preprocessing and flow into the spatiotemporal
data cube. The data cube infrastructure offers a suite of utilities to partition data and save them as
array-based NetCDF files. AGDC also provides spatial indices and multidimensional array-based
query interfaces. Data and application platform utilizes the HPC technologies to perform geoscience
analysis and simulation. The top layer provides client-side interactions and visualization. It has been
shown that the AGDC-enabled platform can enhance the efficiency of geoprocessing and analysis [30].

Table 2 gives a comparison between three solutions for EO data cubes. In summary,
the SciDB-based approach is implemented as a database plugin. After loading data into database, users
can retrieve observation data as well as their metadata with SciDB AQL/AFL. Moreover, there are
plenty of built-in functions that can be combined to perform advanced processing. This approach
can be extended to add more geoprocessing functionalities by SciDB UDFs. Rasdaman approach is
achieved by a web application providing a standard data access and processing interface. It ensures
a good interoperability level based on OGC standards. AGDC organizes data as spatiotemporal
data cube and offers rapid processing by enabling HPC technologies. Compared with the first two
approaches, the storage of AGDC relies on traditional file-based storage. In contrast, array database
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approaches could provide more flexible queries with their elaborately designed query languages.
The advantages of AGDC platform is that it provides a comprehensive HPC-HPD environment based
on the unified array-based data structure and HPC technology.

Table 2. A comparisons between solutions for EO data cubes.

SciDB Rasdaman AGDC

Implementation Database plugin Web application From scratch

Key technologies SciDB database Rasdaman database HPC+HPD (NetCDF)

Array database supported Yes Yes No

Metadata storage
PostgreSQL

(themes, data sources,
customized tables)

PostgreSQL
(fixed schema,

GMLCOV model)

PostgreSQL
(fixed schema,

JSONB)

Coordinate mapping Affine transformation GMLCOV model /

Array-based interface
provided

Yes Yes Yes

User interaction
AFL, AQL,

C++/Python/R
API

WCS & WCPS,
rasql,

C++/Java/R/
JavaScript API

Python API

Processing pattern In-database In-database HPC

Advantages Extensible Standard Comprehensive

3.3. Performance Evaluation

This section evaluates the performance of SciDB for EO data management. Testing is designed
from two aspects. First, a performance test is conducted between SciDB and PostgreSQL database.
PostgreSQL is a representative of open-source relational database approach and has been widely used
for managing geospatial data with the PostGIS extension [31]. Second, we compare the performance
between a single node and multi-node cluster for SciDB. Each comparison includes three types of tests:
data import, typical queries, and data processing. Table 3 lists the testing environmental and test data.
Table 4 lists testing items as well as examples.

Table 3. Performance evaluation environment.

Item Single Node Cluster

Hardware

One server node Two server nodes

Every node shares the same hardware configurations
OS: Ubuntu 14.04 x64
CPU: Intel(R) Xeon(R) CPU E5-2692 v2 @ 2.20 GHz, 12 cores
RAM: 31.00 GB

Software
SciDB Community Edition 15.12
PostgreSQL 9.3.16 + PostGIS 2.1.2

Data

Six remote sensing images:
5.6 MB (Size: 975 × 993 × 3) 23 MB (Size: 1950 × 1987 × 3)
89 MB (Size: 3900 × 3975× 3) 356 MB (Size: 7801 × 7951 × 3)

799 MB (Size: 11701 × 11926 × 3) 1419 MB (Size: 15602 × 15902 × 3)
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Table 4. Performance evaluation items.

Item Description Example SciDB Functions

Data import Load raw data into database

Typical queries
Queries based on dimension

Retrieve data according to a
specific geographic extent

between()

Queries based on attribute
Retrieve data where its cell values

lie within a given range
filter()

In-database
processing

Aggregation operation Calculate the sum of an array
aggregate(),

sum()

Arithmetic operation
Add cell values of one array to

other array
+,−, ∗, /

Dimension transformation
Change the band of an image as

other dimension
redimension(),

unfold()

Comprehensive processing
Water extraction apply(), +, /

Mean filtering window(), agv()

In PostgreSQL database, SQL is used to perform test items listed in Table 4. In SciDB database,
its built-in operators, functions, and aggregates are used in combination. Figure 5 is the result of
comparison between SciDB and PostgreSQL databases in a single node. From the result, we can tell
that PostgreSQL shows more efficiency in geospatial raster data loading, while SciDB is significantly
faster than PostgreSQL in data query and processing. In particular, the cost time of query and
arithmetic computation in SciDB is relatively stable and accomplishes almost in a few milliseconds.
This demonstrates that SciDB is highly efficient in array data queries and linear computation. Figure 6
is the result of performance tests between a single node and a cluster of SciDB. The multi-node cluster
shows much more efficient for the time-consuming processing, such as the comprehensive processing
example shown in Figure 6f. However, a single-node SciDB is a little bit faster for the query and
processing sometimes. This is particularly prominent when the process can be finished in a few
milliseconds, since in such simple cases, the communication delay in a SciDB cluster outperforms the
computing time.
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Figure 5. Performance comparison between SciDB and PostgreSQL. (a) Data import; (b) Data query;
(c) Aggregate function; (d) Data processing.

10
3.5

10
4

10
4.5

10
5

10
5.5

10
6

0 300 600 900 1200 1500

Data Size(MB)

T
im

e
s
(m

s
)

Single Node Cluster

Data Import

(a)

0

5

10

15

20

25

0 300 600 900 1200 1500

Data Size(MB)

T
im

e
s
(m

s
)

Single Node Cluster Dimension−based Attribute−based

Data Query

(b)

0

200

400

600

800

1000

1200

1400

1600

0 300 600 900 1200 1500

Data Size(MB)

T
im

e
s
(m

s
)

Single Node Cluster

Aggregate Function

(c)

0

2

4

6

8

10

0 300 600 900 1200 1500

Data Size(MB)

T
im

e
s
(m

s
)

Single Node Cluster Addition Operation NDVI Calculation

Arithmetic Operation

(d)

10
1

10
2

10
3

10
4

10
5

10
6

0 300 600 900 1200 1500

Data Size(MB)

T
im

e
s
(m

s
)

Single Node Cluster unfold() redimension()

Dimension Transformation

(e)

10
3

10
3.5

10
4

10
4.5

10
5

10
5.5

0 300 600 900 1200 1500

Data Size(MB)

T
im

e
s
(m

s
)

Single Node Cluster Water Extraction Mean Filtering

Comprehensive Processing

(f)

Figure 6. Performance comparison between a single node and a cluster of SciDB. (a) Data import;
(b) Data query; (c) Aggregate function; (d) Arithmetic operation; (e) Dimension transformation;
(f) Comprehensive processing.
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4. Case Study

4.1. Forest Fire Simulation Model

To prove the feasibility of our approach, a case study on forest-fire simulation is demonstrated.
The fire model is borrowed from [32], which was designed based on the field research in Greater
Khingan Range, China. There are many factors that contribute to a forest fire. This model selectively
takes temperature, wind, land cover, and topographic slope as key factors. Its fundamental equation is
as follow:

R = R0 · Ks · Kw · K f (2)

where R0 is the initial fire spearing speed; Ks, Kw and K f denote the adjusted coefficients of land cover,
wind speed and topographic slope respectively. R0 can be calculated with the regression equation
R0 = aT + bV − c, where T and V denote surface temperature and wind speed respectively; a and b
are regression coefficients. As for Ks, the modified mapping relations between land cover categories
and Ks values are adopted according to the field research. And this equation evolves into the following
form with further research in [33]:

R = R0 · Ks · Kw · K f = R0 · Ks · e0.1783V · e3.533(tan ϕ)1.2
(3)

where ϕ is the absolute value of slope.
In this paper, we combine this forest-fire model with Cellular Automata (CA) theory to simulate

the spreading of a forest fire in Greater Khingan Range. CA is a complex discrete dynamical system in
time and space [34]. The state of each cell in CA is synchronized and updated under some specific
local rules and constraints. The cell space of our CA system is formed by the two dimensional latitude
and longitude grid and a Moore neighborhood is applied. The next burning state of a cell is influenced
by the current state of itself as well as eight neighbors. The rules performed on each cell are as follows:
if Vt

k,l is the spreading speed from cell (k, l) to its neighbors at time t, then after a period of ∆t, the cell
state transition function can be expressed as follows:

St+1
i,j = St

i,j +
(Vt

i−1,j + Vt
i1,j−1 + Vt

i+1,j + Vt
i,j+1)∆t

a

+
[(Vt

i−1,j−1)
2 + (Vt

i−1,j+1)
2 + (Vt

i+1,j−1)
2 + (Vt

i+1,j+1)
2]∆t

2a2

(4)

If St
i,j < 1, then cell (i, j) is partially burning and cannot spread throughout its

neighbors. If St
i,j > 1, then cell (i, j) is completely burned and begins to spread over its eight neighbor

cells. The cell state ranges from 0 to 1.

4.2. Data Storage Model

According to the influence factors of forest fire, MODIS, Modern-Era Retrospective analysis
for Research and Applications (MERRA) and Shuttle Radar Topography Mission (SRTM) datasets
are collected for the simulation. Table 5 gives the details of these data. As in the aforementioned
approach, metadata are organized into PostgreSQL relation tables, and actual observation data are
stored in SciDB. Since all the datasets are continuous data, affine transformation is used for coordinate
mapping. The array schema defined in SciDB reflects how the data are stored. In general, the schema
comprises the definition of attributes and dimensions. An attribute is denoted by name and data type.
A dimension is defined by its name, a minimum and a maximum value range, chuck length and chunk
overlapping [35]. Taking the MODIS Land Cover products as an example, we take spatial coordinates
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(x, y) and time as three dimensions and five land cover type layers as attributes to build array in SciDB.
Table 6 gives the array schemas of our data.

Table 5. Data items and their influence factors.

Data Source Product Name Fire Growth Factor Data Size

MODIS
Land Cover Dynamics Yearly L3

Global 1 km
Land cover 273.7 MB

MODIS + MERRA
Land Surface Temperature

/Emissivity Daily L3 Global 1 km
MERRA-2 (0.5◦ × 0.5◦)

Surface temperature
MODIS: 13.5 MB
MERRA: 397 MB

MERRA MERRA-2 (0.5◦ × 0.5◦) Wind speed 61.3 MB

SRTM SRTM Non-Void Filled, 90 m Topographic slope 117.4 MB

Table 6. Array schemas of each data type in SciDB.

Array for MODIS Land Cover:

MCD12Q1_A2013001_h25v03_051<Land_Cover_Type_1 : uint8 , Land_Cover_Type_2 : uint8 ,
Land_Cover_Type_3 : uint8 , Land_Cover_Type_4 : uint8 , Land_Cover_Type_5 : uint8 >
[ y = 0 : 2 3 9 9 , 4 0 9 6 , 0 , x = 0 : 2 3 9 9 , 4 0 9 6 , 0 , t = 0 :∗ , 0 , 0 ]

Array for MERRA2:

MERRA2_400_inst1_2d_lfo_Nx_20131201 <PS : f l o a t ,QLML: f l o a t ,SPEEDLML, f l o a t ,
TLML: f l o a t >[y = 0 : 3 6 0 , 2 0 4 8 , 0 , x = 0 : 5 7 5 , 2 0 4 8 , 0 , t = 0 : 2 3 , 0 , 0 ]

Array for SRTM DEM:

srtm_61_02 <val : i n t 1 6 > [ y = 0 : 5 9 9 9 , 2 0 4 8 , 0 , x = 0 : 5 9 9 9 , 2 0 4 8 , 0 ]

4.3. Simulation Walk Through

The CA-based forest fire simulation is implemented by integration of SciDB and Python. Figure 7
is the execution flow of whole procedure. First, algorithm described in [36] is used to derive slope from
SRTM Digital Elevation Model (DEM) data. The calculation is achieved in SciDB database. A built-in
window() operator is used to produce a new array where each output cell is some aggregate calculated
over a window around the corresponding cell in the source array [35]. The aggregate function to
calculate the slope of each cell is implemented by user-defined functions (UDFs). Second, raw data
are retrieved from SciDB within a specific latitude and longitude extent in the form of numpy.ndarray
object in Python. Each array contains the information of one influence factor. Third, every array needs
to be interpolated to obtain the same size covering the whole study area. Finally, the aforementioned
fire model is applied to each cell to dynamically simulate the spreading of fire. The initial fire points
are generated randomly, and then the spreading speed of the burning point is calculated according to
Equation (3), looping through each cell to calculate the fire state according to Equation (4). With time
elapsing, cell states are updating correspondingly.

The forest fire simulation result shown in Figure 8 is the overlapping of fire states and MODIS
land cover data. Initial burning points are selected randomly as in Figure 8a. From Figure 8b to
Figure 8d, it exhibits the process of fire spreading as time goes by. The color ramp representing the
state of burning fire. Crimson indicates it is completely burned with cell value equal to 1, pink indicates
just starting to burn with value equal to 0. We can see that the fire is spreading evenly in surrounding
areas of burning points. This is because, as noted in Table 5 above, the spatial resolution of collected
data differs a lot. The MERRA datasets are coarse-grained, and MODIS land surface temperature data
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have large pieces of “no data” values. Despite the interpolation process, it cannot improve the spatial
resolutions of data. The simulation result can be definitely effected.

Begin

Data interpolation to derive 

arrays with same sizes

Initialize burning points

Calculate fire spreading speed

Calculate cell burning state 

Time out?

End

Calculate initial fire 

spreading speed

Derive adjusted 

coefficient of land covers

Derive adjusted 

coefficient of wind speed

Calculate adjusted 

coefficient of slope

Yes

No

Retrieve data from SciDB

Derive slope from DEM

Figure 7. Forest fire simulation processing flow.
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Figure 8. Forest fire simulation result.
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4.4. Result Analysis

Generally, the case study of the forest fire simulation mainly includes three steps: loading EO
data into database, data preprocessing and model simulation. The case is to show how in-database
computing can be combined with complex analysis and simulation. It took about 380 s to load all
the data listed in Table 5 into SciDB. Next, it took about 72 s to perform the database reprocessing,
e.g., the slope computation, while the same process took 526 s in a s single-machine environment with
ArcGIS software. The distributed in-database computing in SciDB shows much higher efficiency than
the traditional processing pattern. At present, however, not all the sub-processes can be achieved in
SciDB, and sometimes it requires extensive work to accomplish a new customized function. Therefore,
the simulation part is implemented by pure Python. The simulation took around 30 min for a one-hour
real fire scenario with a 10-s interval. The execution time is highly related to time interval and study
area. Based the performance evaluation and the simulation, it can be shown that SciDB is efficient
for large data array linear computation. The performance could be further improved in a distributed
cluster. One significant characteristics of big geospatial data is the variety [18]. The variety is not
limited to different sources of data and various data formats, but also is highlighted by different
processing methods. In this case, tradition simulation computation is combined with in-database
computation. When dealing with traditional feedback based iterations in simulation, the data volume
is small while time-step dependent loop computation is often needed [37]. In this case, traditional
in-memory based scientific computing is more appropriate without the need to interacting databases
at each time step. Instead, the in-database processing, e.g., the slope computation, is performed in
the initialization phase of the simulation. This allows to take the best of both approaches for better
performance in a complex analysis.

We can benefit from using this approach for EO applications. The data used in this case study come
from different data sources, and are in different formats. Traditionally, different software may be used
to process the data, such as coordinate transformation, clipping, and format transformation, to integrate
different data sources into the same model. With the proposed spatiotemporal multidimensional
array database approach, all that are needed is to load data into an array database, and users can
query data from the database and perform conventional processing with built-in and customized
functions. Moreover, by using Python programming, with its good support for multidimensional
array data structure, geospatial users just need to deal with arrays. Through SciDB-Py API, data can
be retrieved by the given geographic extent, then all the data from different observation themes are
converted into Python arrays. In this way, different data can be seamlessly integrated into the same
model. Furthermore, the implementation could be improved by more optimization strategies, such as
decomposing arrays into small parts and adopting multi-thread processing mechanism.

In the approach, the traditional heterogeneity problems, such as different data sources, data
formats, and data projections, are now addressed in a unified array database model. All types of EO
data can be stored and retrieved in consistent array semantics. Basic data processing can be performed
in the database with its build-in operators, aggregates and functions. More complex operations can be
implemented with UDFs. In-situ processing in array databases is particularly efficient for the Big Data.
And the database cluster with the horizontal scaling feature can be scaled to support high performance
data management, as well as computing. It is better to provide more powerful in-database processing
utilities, so that we could explore scientific workflow approaches for database side scripting instead of
user-defined functions. The scientific workflow approach could allow more flexible and customized
processing and improve the processing capabilities of databases.

5. Conclusions and Future Work

This paper presents how to leverage array database technologies for EO data management and
processing. It suggests a hybrid storage mechanism, multidimensional spatiotemporal data cubes,
and mapping strategy for digesting EO data in array databases. A prototype system using SciDB is
presented. The performance tests show that SciDB is quite scalable and it has the potential for EO Big
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Data management. Moreover, the array-based processing by integrating SciDB and Python works well
for scientific computing and simulation. The forest fire case study illustrates the feasibility to manage
EO data in an array database, and to integrate different data sources in one scientific model. The array
database approach can be applied in other domains and benefit in-situ processing in databases.

The mapping from EO data to spatiotemporal arrays still needs some improvement. The array
coordinates are usually detonated by integers, while spatial coordinates by doubles. The transformation
may cause some precision problem. While sometimes we could trade precision for performance, there is
some balance here. In addition, in the future it could be possible to explore the possibility of other
geocoding mechanisms such as GeoHash as the spatial dimension for EO data, in particular discrete
data. SciDB is a promising array database product, and it is being continually developed. Currently
it only supports a limited number of functions. Fortunately, SciDB is open source. Users can create
new functions to meet their needs. It is better to provide some good extensibility mechanisms, so that
complex processing can be easily implemented. So far, the ecosystem around SciDB is not rich, lacking
flexible tools for EO data import and domain-specific analysis. Related tools still need to be improved.
Furthermore, we want to explore the possibility to implement some common geographic processing
model within SciDB and take full advantages of its in-database processing capabilities.
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