
 International Journal of

Geo-Information

Article

Extrusion Approach Based on Non-Overlapping
Footprints (EABNOF) for the Construction of
Geometric Models and Topologies in 3D Cadasters

Yuan Ding 1,2,3, Nan Jiang 1,2,3, Zhaoyuan Yu 1,2,3 ID , Binqing Ma 1,2,3, Ge Shi 1,2,3 and
Changbin Wu 1,2,3,*

1 Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education,
Nanjing 210023, Jiangsu, China; 141301018@stu.njnu.edu.cn (Y.D.); njiang@njnu.edu.cn (N.J.);
yuzhaoyuan@njnu.edu.cn (Z.Y.); 131302082@stu.njnu.edu.cn (B.M.); 161301020@stu.njnu.edu.cn (G.S.)

2 College of Geographic Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, China
3 Jiangsu Center for Collaborative Innovation in Geographic Information Resource Development and

Application, Nanjing 210023, Jiangsu, China
* Correspondence: wuchangbin@njnu.edu.cn

Received: 25 May 2017; Accepted: 2 August 2017; Published: 3 August 2017

Abstract: Extrusion is widely used to construct models in 3D cadasters. However, the basic extrusion
approach only supports relatively simple conditions, and a 3D cadastral data model that supports
extruded 3D models that are associated with their corresponding footprints is not available. In this
paper, we present a new extrusion approach based on non-overlapping footprints (EABNOF) that
supports relatively complex 3D situations. In EABNOF, overlaps between overlapping footprints
of the input data are removed, which also involves splitting extrusion intervals and handling the
associated cadastral objects of footprints. The newly generated non-overlapping footprints are
extruded to generate primitives. To construct geometric models and topologies for cadastral objects,
three judgment criteria are proposed to identify and remove redundancies from these primitives,
and then primitives of the same 3D spatial unit or topological feature are merged. Considering the
feasibility of using EABNOF for current cadastral data, we design a data model that associates 3D
cadastral data with the footprints of 2D cadasters. We examine two types of structures on Pozi Street
to verify EABNOF: a building complex and property objects. The results demonstrate that EABNOF
can construct geometric models and topologies in 3D cadasters. EABNOF is based on the footprints
of 2D cadastral data, and thus is particularly suited to areas with 2D cadastral data to establish 3D
cadasters with low costs.

Keywords: 3D cadaster; extrusion; geometric model; topology

1. Introduction

High-intensity land use necessitates the development of 3D space. In 3D cadasters, 3D parcels and
other 3D cadastral objects constitute the basic spatial units that are used to manage 3D space. Modeling
these objects involves a direct relationship with the implementation of 3D cadasters [1]. Numerous
approaches are available to construct geometric models in 3D cadasters. Modeling from 3D surveying
data (i.e., aerial LIDAR data) provides accurate and realistic 3D models, but surveying and algorithms
for these data are difficult [2]. Moreover, this modeling approach disregards current 2D cadastral data
and the costs are prohibitive in developing countries, such as China, in which most cadastral systems
have been established over the past 10–20 years. Constructing geometric models in 3D cadasters
should involve fully considering current 2D cadastral data. Extrusion is the simplest approach that can
be used to automatically construct 3D models [3,4]. This approach involves using a set of footprints

ISPRS Int. J. Geo-Inf. 2017, 6, 232; doi:10.3390/ijgi6080232 www.mdpi.com/journal/ijgi

http://www.mdpi.com/journal/ijgi
http://www.mdpi.com
https://orcid.org/0000-0003-4225-9435
http://dx.doi.org/10.3390/ijgi6080232
http://www.mdpi.com/journal/ijgi

ISPRS Int. J. Geo-Inf. 2017, 6, 232 2 of 24

that represent projections of buildings and their corresponding height values. In turn, 3D models
can be generated by extruding footprints. The extrusion approach is depicted in Figure 1. Extrusion
is extensively used in many fields because of its simplicity. In CityGML, which is the international
open standard for 3D city models, the well-known blocks model (lod1Solid) in LOD1 is generated by
extrusion [5]. In 3D cadasters, constructing an exact model of a building or apartment is expensive;
therefore, property spaces that consist of vertical and horizontal faces are often used to represent the
3D spatial extent. Footprints can be drawn from 2D cadastral data, so constructing geometric models
via extrusion in 3D cadasters is feasible. Several studies on 3D cadastral modeling have involved the
use of extrusion methods [6–10].

ISPRS Int. J. Geo-Inf. 2017, 6, 232 2 of 24

Figure 1. Extrusion is extensively used in many fields because of its simplicity. In CityGML, which is
the international open standard for 3D city models, the well-known blocks model (lod1Solid) in
LOD1 is generated by extrusion [5]. In 3D cadasters, constructing an exact model of a building or
apartment is expensive; therefore, property spaces that consist of vertical and horizontal faces are
often used to represent the 3D spatial extent. Footprints can be drawn from 2D cadastral data, so
constructing geometric models via extrusion in 3D cadasters is feasible. Several studies on 3D
cadastral modeling have involved the use of extrusion methods [6–10].

However, extrusion also presents limitations when applied in 3D cadasters. One of the greatest
limitations is that if the projections of 3D objects have overlapping components, different footprints
can also overlap. In the CityGML geometry model, the MultiSurface type provides support for
overlapping footprints [5]. However, overlaps are not allowed for the same type of spatial unit in 2D
cadastral maps because they may lead to ambiguities. For example, a parcel is not allowed to overlap
any other parcel. Such a case is depicted in Figure 1, in which three 2D parcels (1P , 2P and 3P) overlap
(Figure 1a). The three 2D parcels are used as footprints to construct models of 3D parcels (Figure 1b).
If information on 3D parcels is not available, then misunderstandings that are related to topology
errors between the 2D parcels (1P and 2P or 1P and 3P) may occur.

(a) (b)

Figure 1. (a) Three overlapping 2D parcels in 3D space; and (b) 3D parcels generated by extruding 2D
parcels in (a).

Topology is important for 3D cadastral data organization and spatial querying [11–13] and
allows land administrators to determine the boundaries and extents of 3D spatial units. Many
researchers have fully considered the topology of 3D cadasters [14–17]. The international standard
ISO 19152 Land Administration Domain Model (LADM) [18] contains a “topology-based” spatial
unit that is used when spatial units share boundary representations. This “topology-based” spatial
unit reflects 3D topology. This unit is encoded in reference to its boundaries and with a common
boundary (boundary point, boundary line or boundary face) between two adjacent spatial units and
is stored only once [19]. Although many 3D topological models exist that consider 3D topology [20–22],
only a few approaches implement 3D topology and extrusion-based 3D models [3,23]. In addition,
these approaches only support simple 3D models.

This paper describes (1) an extrusion approach based on non-overlapping footprints (EABNOF)
for constructing geometric models and topologies in 3D cadasters and (2) a 3D cadastral data model
for applying our EABNOF in practice. EABNOF mainly consists of two components: one is removing
the overlaps between footprints (footprint points, edges and faces), in which extrusion intervals and
cadastral objects are considered; the other is constructing geometric models and topologies, in which
redundancies are removed and the primitives of a single topological feature or 3D spatial unit are
merged together.

The remainder of this paper is organized as follows. Section 2 presents a review of previous
studies that are related to our EABNOF, which mainly include extrusion approaches for constructing
3D models in Geographic Information Systems (GIS) and 3D cadasters. Section 3 describes a 3D
cadastral data model for our EABNOF. In Section 4, we provide a detailed description of our

Figure 1. (a) Three overlapping 2D parcels in 3D space; and (b) 3D parcels generated by extruding 2D
parcels in (a).

However, extrusion also presents limitations when applied in 3D cadasters. One of the greatest
limitations is that if the projections of 3D objects have overlapping components, different footprints can
also overlap. In the CityGML geometry model, the MultiSurface type provides support for overlapping
footprints [5]. However, overlaps are not allowed for the same type of spatial unit in 2D cadastral
maps because they may lead to ambiguities. For example, a parcel is not allowed to overlap any other
parcel. Such a case is depicted in Figure 1, in which three 2D parcels (P1, P2 and P3) overlap (Figure 1a).
The three 2D parcels are used as footprints to construct models of 3D parcels (Figure 1b). If information
on 3D parcels is not available, then misunderstandings that are related to topology errors between the
2D parcels (P1 and P2 or P1 and P3) may occur.

Topology is important for 3D cadastral data organization and spatial querying [11–13] and allows
land administrators to determine the boundaries and extents of 3D spatial units. Many researchers
have fully considered the topology of 3D cadasters [14–17]. The international standard ISO 19152 Land
Administration Domain Model (LADM) [18] contains a “topology-based” spatial unit that is used
when spatial units share boundary representations. This “topology-based” spatial unit reflects 3D
topology. This unit is encoded in reference to its boundaries and with a common boundary (boundary
point, boundary line or boundary face) between two adjacent spatial units and is stored only once [19].
Although many 3D topological models exist that consider 3D topology [20–22], only a few approaches
implement 3D topology and extrusion-based 3D models [3,23]. In addition, these approaches only
support simple 3D models.

This paper describes (1) an extrusion approach based on non-overlapping footprints (EABNOF)
for constructing geometric models and topologies in 3D cadasters and (2) a 3D cadastral data model
for applying our EABNOF in practice. EABNOF mainly consists of two components: one is removing
the overlaps between footprints (footprint points, edges and faces), in which extrusion intervals and
cadastral objects are considered; the other is constructing geometric models and topologies, in which
redundancies are removed and the primitives of a single topological feature or 3D spatial unit are
merged together.

ISPRS Int. J. Geo-Inf. 2017, 6, 232 3 of 24

The remainder of this paper is organized as follows. Section 2 presents a review of previous
studies that are related to our EABNOF, which mainly include extrusion approaches for constructing
3D models in Geographic Information Systems (GIS) and 3D cadasters. Section 3 describes a 3D
cadastral data model for our EABNOF. In Section 4, we provide a detailed description of our EABNOF.
Section 5 describes several implementation details for EABNOF. In Section 6, we illustrate the feasibility
of our EABNOF through two case studies of Pozi Street, which is the most famous landmark with
commercial and residential space in Taizhou, Jiangsu, China.

2. Related Work

Considering the importance of topology in GISs, the ISO 19107 Spatial Schema [24], which is
the most important international standard for describing and manipulating the spatial characteristics
of geographic features, contains topology packages for geometric features. In these packages,
n-dimensional topological primitives are constructed from (n – 1)-dimensional primitives. Several
topological primitives can be aggregated into a topological complex. Each topological primitive has a
geometric realization. These packages can support 3D topology. Additionally, many other frameworks
support 3D topology, such as the formal data structure (FDS) [21], the Tetrahedral Network (TEN) [22],
the Simplified Spatial Model (SSM) [4], the Urban Data Model (UDM) [20] and others.

As previously stated, footprint extrusion is a simple approach to construct 3D models. The
commonly used GIS platform ArcGIS provides an extrusion function through ArcScene [25]. The 3D
spatial engine of Oracle 11g can also extrude 2D footprints to 3D solid geometries [26]. Additionally,
the 3D modeling software 3D Studio Max has an extrusion function to generate 3D models. When using
these software products, the topological relationships between 3D geometries are not represented [3].
Google SketchUp supports the topological relationships between 3D geometries but does not support
3D solids [27,28]. To construct a geometric model for a relatively complex object, such as a building
with different structures on each floor, these software products require the use of several footprints of
different heights. However, these footprints cannot be accurately represented in a 2D plane because
they overlap one another.

In CityGML, a building is represented through the blocks model (lod1Solid) in LOD1. One of
the simplest methods of generating this structure involves extruding the footprint (lod0FootPrint) of
a building in LOD0. The blocks model and footprint of a building are unified in CityGML and thus
can be simultaneously represented. However, building footprints in LOD0 (Figure 2a) often describe
buildings with different height values. In LOD1 (Figure 2b), these buildings should be modeled by
extruding several footprints that are different from those in LOD0. Therefore, topological connections
cannot be created between LOD0 footprints and the LOD1 blocks model in CityGML. Figure 2a,b show
the LOD0 footprint and LOD1 model.

ISPRS Int. J. Geo-Inf. 2017, 6, 232 3 of 24

EABNOF. Section 5 describes several implementation details for EABNOF. In Section 6, we illustrate
the feasibility of our EABNOF through two case studies of Pozi Street, which is the most famous
landmark with commercial and residential space in Taizhou, Jiangsu, China.

2. Related Work

Considering the importance of topology in GISs, the ISO 19107 Spatial Schema [24], which is the
most important international standard for describing and manipulating the spatial characteristics of
geographic features, contains topology packages for geometric features. In these packages, n-
dimensional topological primitives are constructed from (n – 1)-dimensional primitives. Several
topological primitives can be aggregated into a topological complex. Each topological primitive has
a geometric realization. These packages can support 3D topology. Additionally, many other
frameworks support 3D topology, such as the formal data structure (FDS) [21], the Tetrahedral
Network (TEN) [22], the Simplified Spatial Model (SSM) [4], the Urban Data Model (UDM) [20] and others.

As previously stated, footprint extrusion is a simple approach to construct 3D models. The
commonly used GIS platform ArcGIS provides an extrusion function through ArcScene [25]. The 3D
spatial engine of Oracle 11g can also extrude 2D footprints to 3D solid geometries [26]. Additionally,
the 3D modeling software 3D Studio Max has an extrusion function to generate 3D models. When
using these software products, the topological relationships between 3D geometries are not
represented [3]. Google SketchUp supports the topological relationships between 3D geometries but
does not support 3D solids [27,28]. To construct a geometric model for a relatively complex object,
such as a building with different structures on each floor, these software products require the use of
several footprints of different heights. However, these footprints cannot be accurately represented in
a 2D plane because they overlap one another.

In CityGML, a building is represented through the blocks model (lod1Solid) in LOD1. One of the
simplest methods of generating this structure involves extruding the footprint (lod0FootPrint) of a
building in LOD0. The blocks model and footprint of a building are unified in CityGML and thus can
be simultaneously represented. However, building footprints in LOD0 (Figure 2a) often describe
buildings with different height values. In LOD1 (Figure 2b), these buildings should be modeled by
extruding several footprints that are different from those in LOD0. Therefore, topological connections
cannot be created between LOD0 footprints and the LOD1 blocks model in CityGML. Figure 2a,b show
the LOD0 footprint and LOD1 model.

(a) (b)

Figure 2. LOD0 footprint (a) and LOD1 blocks model (b) in CityGML (images: KIT Karlsruhe [5]).

Gröger and Plümer [23] described an approach to obtain 3D models of urban GISs based on 2D
maps. This approach extends 2D and 2.5D models to a 2.8D model by allowing for overhangs and
vertical walls. The 2.8D model is an extension of a digital elevation model (DEM) [29] and allows
each (x, y) location to have more than one height value. To guarantee consistency, the faces of an

Figure 2. LOD0 footprint (a) and LOD1 blocks model (b) in CityGML (images: KIT Karlsruhe [5]).

Gröger and Plümer [23] described an approach to obtain 3D models of urban GISs based on 2D
maps. This approach extends 2D and 2.5D models to a 2.8D model by allowing for overhangs and

ISPRS Int. J. Geo-Inf. 2017, 6, 232 4 of 24

vertical walls. The 2.8D model is an extension of a digital elevation model (DEM) [29] and allows each
(x, y) location to have more than one height value. To guarantee consistency, the faces of an object
cannot overlap. The topology and consistency of the 2.8D model is maintained by using a nested map.
Thus, we can construct most objects in a 3D GIS. However, a vertical wall between two connected
buildings cannot be represented (Figure 3).

ISPRS Int. J. Geo-Inf. 2017, 6, 232 4 of 24

object cannot overlap. The topology and consistency of the 2.8D model is maintained by using a
nested map. Thus, we can construct most objects in a 3D GIS. However, a vertical wall between two
connected buildings cannot be represented (Figure 3).

Figure 3. Vertical common wall between two connected buildings.

Ledoux and Meijers [3] proposed an extrusion approach for 3D city models that considers the
topological consistency between different objects. This approach uses 2D topologically consistent
data as the input and outputs 3D models with consistent topology. This approach can manage a
polygon with holes and islands and therefore can represent the inner components of 3D objects, as
shown in Figure 3. Arroyo, Ledoux and Stoter [30] presented an extrusion algorithm for a higher-
dimensional model based on a generalized map. In this algorithm, a cell complex is used to
decompose a topological space into cells. An nD cell complex is constructed by using (n – 1) cells and
extrusion intervals, and each (n – 1)-cell is allowed to have multiple extrusion intervals. These authors
designed an algorithm to propagate extrusion intervals from higher-dimensional cells to lower-
dimensional cells and split the intersecting extrusion intervals. The topological relationships between
higher-dimensional cells are represented by these lower-dimensional cells. Although the above two
approaches support topological consistency between different 3D objects, they do not consider that
a 3D model can be generated by extruding several overlapping footprints.

Boolean set operations are widely used in 3D modeling. Constructive solid geometry (CSG) [31],
which was proposed by Requicha and Voelcker, constructs a complex object by using a tree of
Boolean set operations. This approach has many practical applications in computer-aided designs
and game engines, such as AutoCAD and the Unreal engine. Binary Space Partitioning (BSP) Trees [32]
constructs a polyhedron by recursively partitioning subspaces, which can be used to speed up the
intersection tests in CSG. However, this method does not support topology. Gursoz, Choi and Prinz [33]
developed an algorithm for non-manifold boundary models that can perform Boolean operations
between objects of different dimensionality and solids. The basic idea of this algorithm is to
systematically handle singular intersections in an ordered manner from vertex to edge and face
elements. Additional modeling approaches that involve Boolean set operations can be found in [34–37].
Few studies have examined Boolean set operations between extruded based models because these
Boolean set operations can be converted to Boolean set operations between footprints.

Many studies split footprints into several components before extrusion to improve the accuracy
of reconstructed 3D models. Kada and McKinley [38] automatically reconstructed 3D building
models from LIDAR data and existing ground plans. These authors use a method called cell
decomposition, which uses line segments of buildings’ outlines to decompose footprints into pieces
and provide each piece a roof shape through parameter estimation based on LIDAR points.
Vallet et al. [39] presented a framework to improve building-footprint databases that consisted of 2D
polygons. These authors split each polygon into several simple polygons through a DEM and merged
the split polygons to minimize their number. These splitting and merging operations were based on
a Mumford and Shah-like energy function to characterize the quality of the segmentation.
Commandeur [40] proposed an approach to model 3D objects that involves extruding decomposed
footprints. This method includes decomposing a single footprint of a building via generalized line
equations. In the above three studies, each footprint is used to construct a single volume, and these

Figure 3. Vertical common wall between two connected buildings.

Ledoux and Meijers [3] proposed an extrusion approach for 3D city models that considers the
topological consistency between different objects. This approach uses 2D topologically consistent data
as the input and outputs 3D models with consistent topology. This approach can manage a polygon
with holes and islands and therefore can represent the inner components of 3D objects, as shown in
Figure 3. Arroyo, Ledoux and Stoter [30] presented an extrusion algorithm for a higher-dimensional
model based on a generalized map. In this algorithm, a cell complex is used to decompose a topological
space into cells. An nD cell complex is constructed by using (n – 1) cells and extrusion intervals, and
each (n – 1)-cell is allowed to have multiple extrusion intervals. These authors designed an algorithm
to propagate extrusion intervals from higher-dimensional cells to lower-dimensional cells and split the
intersecting extrusion intervals. The topological relationships between higher-dimensional cells are
represented by these lower-dimensional cells. Although the above two approaches support topological
consistency between different 3D objects, they do not consider that a 3D model can be generated by
extruding several overlapping footprints.

Boolean set operations are widely used in 3D modeling. Constructive solid geometry (CSG) [31],
which was proposed by Requicha and Voelcker, constructs a complex object by using a tree of Boolean
set operations. This approach has many practical applications in computer-aided designs and game
engines, such as AutoCAD and the Unreal engine. Binary Space Partitioning (BSP) Trees [32] constructs
a polyhedron by recursively partitioning subspaces, which can be used to speed up the intersection
tests in CSG. However, this method does not support topology. Gursoz, Choi and Prinz [33] developed
an algorithm for non-manifold boundary models that can perform Boolean operations between objects
of different dimensionality and solids. The basic idea of this algorithm is to systematically handle
singular intersections in an ordered manner from vertex to edge and face elements. Additional
modeling approaches that involve Boolean set operations can be found in [34–37]. Few studies have
examined Boolean set operations between extruded based models because these Boolean set operations
can be converted to Boolean set operations between footprints.

Many studies split footprints into several components before extrusion to improve the accuracy
of reconstructed 3D models. Kada and McKinley [38] automatically reconstructed 3D building models
from LIDAR data and existing ground plans. These authors use a method called cell decomposition,
which uses line segments of buildings’ outlines to decompose footprints into pieces and provide each
piece a roof shape through parameter estimation based on LIDAR points. Vallet et al. [39] presented a
framework to improve building-footprint databases that consisted of 2D polygons. These authors split
each polygon into several simple polygons through a DEM and merged the split polygons to minimize
their number. These splitting and merging operations were based on a Mumford and Shah-like energy
function to characterize the quality of the segmentation. Commandeur [40] proposed an approach to
model 3D objects that involves extruding decomposed footprints. This method includes decomposing

ISPRS Int. J. Geo-Inf. 2017, 6, 232 5 of 24

a single footprint of a building via generalized line equations. In the above three studies, each footprint
is used to construct a single volume, and these studies do not consider footprints that are extruded
along several extrusion intervals to generate more than one volume. Additionally, models that are
constructed by several overlapping footprints were not considered in these studies. Moreover, these
footprints are approximately split and thus can be used for accurate 3D cadastral management.

Extrusion is a common approach in 3D cadasters to model 3D spatial units. The property space
can be easily modeled for buildings in which each floor has the same structure, as has been noted
in many other papers [10,28,41]. For a relatively complex building with floors that have different
structures, the footprints of different floors can be extruded [7]. However, this approach often results
in overlaps between footprints. Boolean set operations can be used as a complementary approach to
extrusion when modeling irregular 3D cadastral objects [42]; however, model data that are constructed
through this approach cannot be associated with 2D cadastral data.

3. 3D Cadastral Data Model for EABNOF

This section introduces a 3D cadastral model that we designed for EABNOF. This model is
oriented towards the application of EABNOF in a 3D cadastral system. The model consists of three
interconnected components: geometry, entity and topology components. In this model, both 2D and
3D spatial units are supported and 3D topology is supported. Considering the versatility of this model,
we use classes in ISO 19107 to define the geometry of our classes. This model is shown in Figure 4
through a Unified Modeling Language (UML) class diagram.

ISPRS Int. J. Geo-Inf. 2017, 6, 232 5 of 24

studies do not consider footprints that are extruded along several extrusion intervals to generate
more than one volume. Additionally, models that are constructed by several overlapping footprints
were not considered in these studies. Moreover, these footprints are approximately split and thus can
be used for accurate 3D cadastral management.

Extrusion is a common approach in 3D cadasters to model 3D spatial units. The property space
can be easily modeled for buildings in which each floor has the same structure, as has been noted in
many other papers [10,28,41]. For a relatively complex building with floors that have different
structures, the footprints of different floors can be extruded [7]. However, this approach often results
in overlaps between footprints. Boolean set operations can be used as a complementary approach to
extrusion when modeling irregular 3D cadastral objects [42]; however, model data that are
constructed through this approach cannot be associated with 2D cadastral data.

3. 3D Cadastral Data Model for EABNOF

This section introduces a 3D cadastral model that we designed for EABNOF. This model is
oriented towards the application of EABNOF in a 3D cadastral system. The model consists of three
interconnected components: geometry, entity and topology components. In this model, both 2D and
3D spatial units are supported and 3D topology is supported. Considering the versatility of this
model, we use classes in ISO 19107 to define the geometry of our classes. This model is shown in
Figure 4 through a Unified Modeling Language (UML) class diagram.

Figure 4. 3D cadastral data model for EABNOF.

class 3D cadastral data model for EABNOF

FootprintPoint

+ fID: long
+ geometry: GM_Point
+ suType: LA_SpatialUnitType

FootprintEdge

+ fID: long
+ geometry: GM_LineSegment
+ suType: LA_SpatialUnitType

3DPoint

+ point3D_ID: long
+ fID: long
+ height: double

FootprintFace

+ fID: long
+ geometry: GM_Polygon
+ suType: LA_SpatialUnitType

3DEdge

+ line3D_ID: long
+ fID: long
+ isVertical: boolean
+ fromHeight: double
+ toHeight: double [0..1]

3DFace

+ face3D_ID: long
+ fID: long
+ isVertical: boolean
+ fromHeight: double
+ toHeight: double [0..1]

Volume

+ volume_ID: long
+ g2D_ID: long
+ fromHeight: double
+ toHeight: double

3DBoundaryPoint

+ bp3D_ID: long
+ point3D_ID: long
+ geometry: GM_Point

3DBoundaryLine

+ bl3D_ID: long
+ line3D_IDs: long [1..*]
+ geometry: GM_LineSegment

3DBoundaryFace

+ bf3D_ID: long
+ face3D_IDs: long [1..*]
+ geometry: GM_Polygon

3DSpatialUnit

+ su3D_ID: long
+ cadastreID: long
+ volume_IDs: long [1..*]
+ geometry: GM_Solid
+ su_Type: LA_SpatialUnitType

2DSpatialUnit

+ su2D_ID: long
+ cadastreID: long
+ g2D_IDs: long [1..*]
+ su_Type: LA_SpatialUnitType

Primitive

+ primitive3D_ID: long
+ fID: long

Footprint

+ fID: long
+ geometry: GM_Object
+ suType: LA_SpatialUnitType

3DBoundary

+ boundary3D_ID: long
+ primitive3D_IDs: long [1..*]
+ geometry: GM_Object

SpatialUnit

+ su_ID: long
+ cadastre_ID: int
+ su_Type: LA_SpatialUnitType

1..*

1..*

1..*

1..*

1..*1

+element 1..* +set 0..1

0..1

0..*
1..* 1

0,1

0..*

1..* 1

2

2..*

0..1

0..*

5..*

1..2

1 1

11..*

0,1 0..*

+element 1..* +set 0..1

1..*

1..*

1

1

1

0..*

2

2..*

1..* 1

0..1
0..*

3..*

2..*3..*

1..2

Figure 4. 3D cadastral data model for EABNOF.

ISPRS Int. J. Geo-Inf. 2017, 6, 232 6 of 24

3.1. Geometry

The geometry component provides geometric objects that are used to construct 2D/3D spatial
units and 3D topological features. This component contains the classes FootprintPoint, FootprintEdge,
FootprintFace, 3DPoint, 3DEdge, 3DFace and Volume. FootprintPoint, FootprintEdge and FootprintFace
are footprints of different dimensions that are embedded in a 2D plane, and 3DPoint, 3DEdge, 3DFace
and Volume are primitives of different dimensions that are embedded in 3D space. The geometries
are only recorded in the three footprint classes (FootprintPoint, FootprintEdge, FootprintFace), and the
four primitives (3DPoint, 3DEdge, 3DFace and Volume) record the references to footprint classes and
extrusion intervals.

1. Footprint: This class is the base class of all the footprint classes (FootprintPoint, FootprintEdge and
FootprintFace).

2. FootprintPoint: A footprint point is a 0D geometry that is embedded in a 2D plane. This class
has X, Y coordinates, and its geometry type is ISO 19107 GM_Point in 2D.

3. FootprintEdge: A footprint edge is a 1D geometry that is embedded in a 2D plane. This class is a
straight-line segment that is bounded by two footprint points, and its geometry type is ISO 19107
GM_LineSegment in 2D.

4. FootprintFace: A footprint face is a 2D geometry that is embedded in a 2D plane. This class is a
polygon that is bounded by three or more footprint edges. A footprint face has only one outer
boundary and zero or more inner boundaries. Thus, this class can have holes but no interior
points of self-intersection. This class’ geometry type is ISO 19107 GM_Polygon in 2D.

5. Primitive: This class is the base class of all the primitive classes (3D point, 3DEdge, 3DFace
and Volume).

6. 3DPoint: A 3D point is a type of 0D primitive that is embedded in 3D space. This class has X, Y,
and Z coordinates and is obtained by adding a Z value to the footprint point.

7. 3DEdge: A 3D edge is a type of 1D primitive that is embedded in 3D space. This class is a straight
line segment and its boundary is a set of two associated 3D points. Two types of 3D edges exist:
a horizontal 3D edge and vertical 3D edge. A horizontal 3D edge is generated by adding the same
Z value to the two nodes of a footprint edge, and a vertical 3D edge is constructed via extruding
a footprint point along an extrusion interval.

8. 3DFace: A 3D face is a type of 2D primitive that is embedded in 3D space. This class is a polygon
and its boundary is a set of three or more 3D edges. This class has only one outer boundary
and zero or more inner boundaries and thus can include holes. Two types of 3D faces exist:
a horizontal 3D face and vertical 3D face. A horizontal 3D face is generated by adding the same
Z value to the vertices of a footprint face, and a vertical 3D face is constructed by extruding a
footprint edge along an extrusion interval.

9. Volume: A 3D volume is a type of 3D primitive that is embedded in 3D space. This class is a
prism and its boundary is a set of five or more 3D faces. This class has only one outer boundary
(shell) and no inner boundary (shell).

If a 3D edge or 3D face is vertical, its field isVertical should be set to true and the fields fromHeight
and toHeight should be assigned the minimum and maximum values of the corresponding extrusion
interval. If a 3D edge or 3D face is horizontal, its field isVertical should be set to false, the field
fromHeight is assigned a Z value and the field toHeight should be empty. The Z value is obtained from
the boundary value of the extrusion interval.

3.2. Entity

The entity component contains the classes 2DSpatialUnit and 3DSpatialUnit and records and
manages the spatial units of 2D and 3D cadasters. These two classes are constructed from the classes
FootprintFace and Volume, respectively.

ISPRS Int. J. Geo-Inf. 2017, 6, 232 7 of 24

1. SpatialUnit: This class is the base class of the classes 2DSpatialUnit and 3DSpatialUnit.
2. 2DSpatialUnit: A 2D spatial unit can be a 2D parcel, building, property unit, etc. (Figure 5a).

All types of 2D spatial units share the same class 2DSpatialUnit. The geometry is not recorded in
2DSpatialUnit. Its geometry is represented by the combination of footprint faces.

3. 3DSpatialUnit: A 3D spatial unit can be a 3D parcel, 3D property unit, etc. (Figure 5b). All types
of 2D spatial units share the same class 2DSpatialUnit. Its geometry type is ISO 19107 GM_Solid.
Its geometry is constructed from a set of volumes.

A cadastral object (i.e., a parcel) may represented by both 2D and 3D spatial units. Thus,
2DSpatialUnit and 3DSpatialUnit are associated through the field cadastreID. Figure 5 shows a case with
a parcel and a building. The building consists of property units and common components. In Figure 5a,
the parcel, building and property units are represented by 2D spatial units (2D parcel, 2D building and
2D property unit). In Figure 5b, the parcel, building and property units are represented by 3D spatial
units (3D parcel, 3D building and 3D property unit).

ISPRS Int. J. Geo-Inf. 2017, 6, 232 7 of 24

2. 2DSpatialUnit: A 2D spatial unit can be a 2D parcel, building, property unit, etc. (Figure 5a). All
types of 2D spatial units share the same class 2DSpatialUnit. The geometry is not recorded in
2DSpatialUnit. Its geometry is represented by the combination of footprint faces.

3. 3DSpatialUnit: A 3D spatial unit can be a 3D parcel, 3D property unit, etc. (Figure 5b). All types
of 2D spatial units share the same class 2DSpatialUnit. Its geometry type is ISO 19107 GM_Solid.
Its geometry is constructed from a set of volumes.

A cadastral object (i.e., a parcel) may represented by both 2D and 3D spatial units. Thus,
2DSpatialUnit and 3DSpatialUnit are associated through the field cadastreID. Figure 5 shows a case
with a parcel and a building. The building consists of property units and common components. In
Figure 5a, the parcel, building and property units are represented by 2D spatial units (2D parcel, 2D
building and 2D property unit). In Figure 5b, the parcel, building and property units are represented
by 3D spatial units (3D parcel, 3D building and 3D property unit).

(a) (b)

Figure 5. Representations of 2D spatial units (a) and 3D spatial units (b) for the same cadastral objects.

3.3. Topology

The topology component records and manages the topological features of 3D spatial units and
includes the classes 3DBoundaryPoint, 3DBoundaryLine and 3DBoundaryface.

1. 3DBoundary: This class is the base classes of all the 3D boundary classes (3DBoundaryPoint,
3DBoundaryLine and 3DBoundaryFace).

2. 3DBoundaryPoint: A 3D boundary point represents a 0D boundary of a 3D spatial unit or a 0D
common boundary between 3D spatial units. The geometry of 3DBoundaryPoint is constructed
from a 3D point, and its type is ISO 19107 GM_point in 3D.

3. 3DBoundaryLine: A 3D boundary line represents a 1D boundary of a 3D spatial unit or a 1D
common boundary between 3D spatial units. The geometry of 3DBoundaryLine is constructed
from one or more 3D edges, and its type is ISO 19107 GM_LineSegment in 3D.

4. 3DBoundaryFace: A 3D boundary face represents a 2D boundary of a 3D spatial unit or a 2D
common boundary between 3D spatial units. The geometry of 3DBoundaryFace is constructed
from one or more 3D faces, and its type is ISO 19107 GM_Polygon in 3D.

3.4. Limitations of the Data Model

In the real world, many cadastral/property objects are not limited to simple volumes, such as
block models in LOD1 (CityGML); therefore, we often use an approximation to represent such objects.
Whether the approximation correctly represents the topological relationship depends on how we
approximately represent the cadastral/property objects. The approach of approximately representing
different cadastral/property objects is another research subject and will not be covered in this study.
Although we cannot ensure that all the approximations do not break the topological relationships
between nearby or adjacent cadastral/property objects in the 3D cadastral data model, we can avoid

Figure 5. Representations of 2D spatial units (a) and 3D spatial units (b) for the same cadastral objects.

3.3. Topology

The topology component records and manages the topological features of 3D spatial units and
includes the classes 3DBoundaryPoint, 3DBoundaryLine and 3DBoundaryface.

1. 3DBoundary: This class is the base classes of all the 3D boundary classes (3DBoundaryPoint,
3DBoundaryLine and 3DBoundaryFace).

2. 3DBoundaryPoint: A 3D boundary point represents a 0D boundary of a 3D spatial unit or a 0D
common boundary between 3D spatial units. The geometry of 3DBoundaryPoint is constructed
from a 3D point, and its type is ISO 19107 GM_point in 3D.

3. 3DBoundaryLine: A 3D boundary line represents a 1D boundary of a 3D spatial unit or a 1D
common boundary between 3D spatial units. The geometry of 3DBoundaryLine is constructed
from one or more 3D edges, and its type is ISO 19107 GM_LineSegment in 3D.

4. 3DBoundaryFace: A 3D boundary face represents a 2D boundary of a 3D spatial unit or a 2D
common boundary between 3D spatial units. The geometry of 3DBoundaryFace is constructed
from one or more 3D faces, and its type is ISO 19107 GM_Polygon in 3D.

3.4. Limitations of the Data Model

In the real world, many cadastral/property objects are not limited to simple volumes, such as
block models in LOD1 (CityGML); therefore, we often use an approximation to represent such objects.
Whether the approximation correctly represents the topological relationship depends on how we
approximately represent the cadastral/property objects. The approach of approximately representing
different cadastral/property objects is another research subject and will not be covered in this study.

ISPRS Int. J. Geo-Inf. 2017, 6, 232 8 of 24

Although we cannot ensure that all the approximations do not break the topological relationships
between nearby or adjacent cadastral/property objects in the 3D cadastral data model, we can avoid
situations that obviously break the topological relationships. In 3D cadasters, many 3D situations can
be approximately represented without breaking the topological relationships. Although no jurisdiction
legally restricts all cadastral/property objects, some restrictions exist for these objects in practice,
such as height limitations for buildings. With improvements in laws for 3D cadasters, more detailed
restrictions for the spatial extents of cadastral/property objects will likely be implemented.

4. EABNOF

EABNOF consists of two components, which are presented in the following sections: (1) the
generation of non-overlapping footprints (footprint points, edges and faces) by removing overlaps
between footprints of the same dimension and propagating intervals from higher-dimensional
footprints to corresponding lower-dimensional footprints; and (2) the extrusion of all footprints
to generate primitives (3D points, edges, faces and volumes) , the removal of redundant primitives
and the merging of valid primitives to form integrated 3D geometric models and topological features.

4.1. Boolean Set Operations in EABNOF

In our EABNOF, the difference (\) and intersection (∩) Boolean set operations can be performed
between two footprints with the same dimension. Figure 6 shows examples of the difference and
intersection between two footprint points, edges and faces. In these examples, the difference and
intersection operations only compute the interiors of two footprints. Thus, the result of the difference
or intersection between two nD (n = 0, 1, 2) footprints can only be empty or one or more nD footprints.

ISPRS Int. J. Geo-Inf. 2017, 6, 232 8 of 24

situations that obviously break the topological relationships. In 3D cadasters, many 3D situations can
be approximately represented without breaking the topological relationships. Although no
jurisdiction legally restricts all cadastral/property objects, some restrictions exist for these objects in
practice, such as height limitations for buildings. With improvements in laws for 3D cadasters, more
detailed restrictions for the spatial extents of cadastral/property objects will likely be implemented.

4. EABNOF

EABNOF consists of two components, which are presented in the following sections: (1) the
generation of non-overlapping footprints (footprint points, edges and faces) by removing overlaps
between footprints of the same dimension and propagating intervals from higher-dimensional
footprints to corresponding lower-dimensional footprints; and (2) the extrusion of all footprints to
generate primitives (3D points, edges, faces and volumes) , the removal of redundant primitives and
the merging of valid primitives to form integrated 3D geometric models and topological features.

4.1. Boolean Set Operations in EABNOF

In our EABNOF, the difference (\) and intersection () Boolean set operations can be performed
between two footprints with the same dimension. Figure 6 shows examples of the difference and
intersection between two footprint points, edges and faces. In these examples, the difference and
intersection operations only compute the interiors of two footprints. Thus, the result of the difference
or intersection between two nD (n = 0, 1, 2) footprints can only be empty or one or more nD footprints.

For footprints with different dimensions, the numbers of footprints in the result becomes
different. The difference or intersection between two footprint points are one footprint point or empty.
The difference between two footprint edges is one or two footprint edges or empty, and the
intersection between two footprint edges is one footprint edge or empty. The difference or
intersection between two footprint faces could be one or more footprint faces or empty.

Figure 6. Boolean set operations for footprint points, edges and faces.

4.2. Generating Non-Overlapping Footprints

The input of our EABNOF is a set of footprint faces, and each footprint face has its corresponding
extrusion intervals and other attributes. We define several data structures to explicitly explain our
EABNOF as follows:

Structure 1: IntervalBoundary
Value: double; //the value of the interval boundary
CadastreIDs: set<long>; // indicates cadasteral objects

corresponding to this interval boundary

Figure 6. Boolean set operations for footprint points, edges and faces.

For footprints with different dimensions, the numbers of footprints in the result becomes different.
The difference or intersection between two footprint points are one footprint point or empty. The
difference between two footprint edges is one or two footprint edges or empty, and the intersection
between two footprint edges is one footprint edge or empty. The difference or intersection between
two footprint faces could be one or more footprint faces or empty.

4.2. Generating Non-Overlapping Footprints

The input of our EABNOF is a set of footprint faces, and each footprint face has its corresponding
extrusion intervals and other attributes. We define several data structures to explicitly explain our
EABNOF as follows:

Structure 1: IntervalBoundary

Value: double; //the value of the interval boundary
CadastreIDs: set<long>; // indicates cadasteral objects corresponding to this interval boundary

ISPRS Int. J. Geo-Inf. 2017, 6, 232 9 of 24

Structure 2: Interval

MinVal: double; //the maximum value of the extrusion interval
MaxVal: double //the minimum value of the extrusion interval
CadastreIDs: set<long>; // indicates cadaster objects corresponding to this interval

Structure 3: Footprint

Geometry: GM_Object; //the geometry of the footprint
IntervalSet: set< Interval >; // the interval set of this footprint
IntervalBoundarySet: set< IntervalBoundary>; // the interval boundary set of the footprint

The structure Footprint (Structure 1) is not consistent with the class Footprint in the data model
because it is only used for computation. The structure Footprint is a common description for footprint
points, edges and faces. This factor has different types of geometries for different types of footprints.
The main function of the structure Footprint is to associate each interval and boundary value of a
footprint with one or more cadastral objects by using cadaster IDs. Thus, the structures Interval
and IntervalBoundary were designed, and the sets of the two structures can be encapsulated in the
structure Footprint.

The structure Interval (Structure 2) contains a member CadastreIDs that indicates a primitive that
is generated by extruding a footprint along an extrusion interval, which may belong to one or more
cadastral objects. For example, a vertical 3D face that is generated by extruding a footprint edge along
an extrusion interval is the common face of two 3D spatial units for two cadastral objects.

An extrusion interval is bounded by a top and bottom boundary (called interval boundaries),
whose values are the maximum and minimum values of the extrusion interval. The values of the
interval boundaries are used as Z values, which are added to the footprints to generate horizontal
primitives. The structure IntervalBoundary (Structure 3) was designed to encapsulate the value
and attributes of an interval boundary. The member CadastreIDs of IntervalBoundary has the same
meaning as that of Interval.

4.2.1. Splitting the Extrusion Intervals of Two Footprints

When generating non-overlapping footprints, the intersection of two overlapping footprints
forms a new footprint, which should produce the extrusion intervals of both overlapping footprints.
Overlapping intervals may exist when the extrusion intervals of the two footprints are put into a set,
and these intervals can result in overlapping primitives. These overlapping intervals should be split to
obtain non-overlapping intervals.

Arroyo, Ledoux and Stoter [30] propagated and split intervals with an algorithm called
PropagateRanges, which inserts each extrusion interval into another non-overlapping interval set. This
algorithm considers extrusion intervals that correspond to 3D shapes of the same 3D object (i.e., a 3D
building) and thus cannot handle extrusion intervals that correspond to 3D shapes of two or more 3D
objects. In our EABNOF, the extrusion intervals of a footprint may correspond to the primitives of more
than one cadastral object, so the cadastral objects that correspond to each extrusion interval should
be considered when splitting intervals. To satisfy this requirement, we designed an algorithm whose
pseudo-code is shown in SplitIntervals (Algorithm 1). This algorithm makes four main extensions and
modifications to PropagateRanges, which are as follows:

(1) SplitIntervals associates the intervals of a footprint with their corresponding cadastral objects
through CadastreIDs, while PropagateRanges only handles intervals that correspond to 3D
shapes of the same 3D object.

(2) SplitIntervals repeatedly splits an interval (iv) until the intersecting interval set IV”
Inter is empty

and the maximum and minimum values (rmin and rmax) of iv are modified in the splitting

ISPRS Int. J. Geo-Inf. 2017, 6, 232 10 of 24

operation, while PropagateRanges does not modify the maximum or minimum values and the
splitting operation is not repeated, so PropagateRanges cannot handle the condition of an interval
that intersects with several intervals. This problem for PropagateRanges may be a mistake in
the writing.

(3) SplitIntervals considers a condition (Condition 1 in lines 6–10) in which both the maximum and
minimum values (rmin and rmax) of an interval (iv) are in the same interval (iv”); this condition is
also considered in PropagateRanges.

(4) Empty intervals that are used for extrusion are retained in PropagateRanges, while SplitIntervals
removes these empty intervals because our EABNOF records interval boundaries instead of
empty intervals.

Algorithm 1: SplitIntervals

Input: two interval sets IV and IV ′

Output: output interval set IV” in which intervals are non-overlapping
1 IV” ← IV ′

2 foreach interval iv in IV do

3
Find intervals IV”

Inter ⊆ IV” whose interiors intersect with the interior of iv and IV”
Inter

is kept sorted in ascending sort
4 rmin ← iv. MinVal rmax ← iv. MaxVal
5 repeat
6 if both rmin and rmax are in a same interval iv” ∈ IV” then //Condition 1
7 Put interval {iv”. MinVal, rmin, iv”.CadastreIDs} in IV”

8 Put interval {rmin, rmax, iv. CadastreIDs∪iv”. CadastreIDs} in IV”

9 Put interval {rmax, iv”. MaxVal, iv”. CadastreIDs } in IV”

10 Break
11 if rmin is in an interval iv” ∈ IV” then //Condition 2
10 Put interval {iv”. MinVal, rmin, iv”.CadastreIDs} in IV”

11 Put interval {rmin, iv”. MaxVal, iv. CadastreIDs∪iv”. CadastreIDs} in IV”

12 rmin ← iv”. MaxVal
13 Remove iv” from IV”

Inter
14 if rmin is outside all intervals in IV” then //Condition 3
15 r”

min ← the minimum value of the first interval in IV”
Inter interval

16 Put interval {rmin, r”
min, iv. CadastreIDs} in IV”

17 rmin ← r”
min

18 if rmax is in an interval iv” ∈ IV” then //Condition 4
19 Put interval {iv”. MinVal, rmax, iv. CadastreIDs ∪iv”. CadastreIDs} in IV”

20 Put interval {rmax, iv”. MaxVal, iv”. CadastreIDs} in IV”

21 rmax ← iv”. MinVal
22 Remove iv” from IV”

Inter
23 if rmax is outside all intervals in IV” then //Condition 5
24 r”

max← the maximum value of the last interval in IV”
Inter interval

25 Put interval {rmax, r”
max, iv. CadastreIDs} in IV”

26 rmax ← r”
max

27 if IV”
Inter = ∅ then

28 Put interval {rmin, rmax, iv.CadastreIDs} in IV”

29 until IV”
Inter = ∅

30 Remove each empty interval whose MinVal and MaxVal are equal from IV”

Figure 7a–e show Conditions 1–5 for splitting intervals in SplitIntervals. The visited interval (iv),
the interval (iv”) that overlaps the visited interval, and the new split intervals are marked in red, blue
and purple, respectively. The cadastral IDs that correspond to these intervals are shown as C1, C2 or
C1 ∪ C2, and the modifications of the maximum and minimum values are also marked.

ISPRS Int. J. Geo-Inf. 2017, 6, 232 11 of 24

ISPRS Int. J. Geo-Inf. 2017, 6, 232 11 of 24

Figure 7a–e show Conditions 1–5 for splitting intervals in SplitIntervals. The visited interval (iv),
the interval (iv'') that overlaps the visited interval, and the new split intervals are marked in red, blue
and purple, respectively. The cadastral IDs that correspond to these intervals are shown as 1C, 2C
or 1 2C C , and the modifications of the maximum and minimum values are also marked.

(a) (b) (c) (d) (e)

Figure 7. Five conditions of splitting intervals: (a) the maximum and minimum values of an interval
are within another interval; (b) the minimum value of an interval is within another interval; (c) the
minimum value of an interval is outside all the intervals of another interval set; (d) the maximum
value of an interval is within another interval; and (e) the maximum value of an interval is outside all
the intervals of another interval set.

If we assume that the two sets IV and IV' in SplitIntervals have m and n intervals, m + n intervals
has at most 2(m + n) interval boundaries, so the output interval set IV '' has at most 2(m + n) − 1 intervals.
Thus, each interval iv in IV overlaps with at most 2(m + n) − 1 intervals in IV '' , so at most m(2(m +
n) − 1) split operations are performed. To obtain a sorted set InterIV '' and keep it sorted, we can sort set
IV '' first and place new split intervals in the proper positions according to their corresponding

original intervals. The set IV '' can be sorted in O(mlogm) by quicksort. Thus, the computational
complexity of SplitIntervals is O(2m + mn). In practice, we can always choose the interval set with
less intervals as set IV with m intervals, which can ensure that mn is always greater than 2m . Thus,
the computational complexity of SplitIntervals is simplified to O(mn).

4.2.2. Removing Overlaps between Two Footprints

The basic idea of removing overlaps between two footprints is to use the combination of Boolean
set operations that was defined in Section 4.2.1. Figure 8 shows how overlaps among footprint points,
edges and faces are removed by Boolean set differences and intersections. The overlaps between two
overlapping footprint edges or faces A and B can be removed by splitting them into three components
A\B, B\A and A B. Removing overlaps between two overlapping footprint points is much easier
because only A B is required.

Considering the intervals and corresponding cadastral objects, removing overlaps between
footprints could become much more complicated. The procedure of removing overlaps between two
footprints (footprint points, edges and faces) is described in RemoveOverlaps (Algorithm 2), which
involves operations for geometries, extrusion intervals and cadaster IDs. This algorithm uses
FootprintsDifference (Algorithm 3) and FootprintsIntersection (Algorithm 4) to compute the difference
and intersection between two footprints. In these two algorithms, ExtractIntervalBoundaries
(Algorithm 5) is used to compute interval boundary sets of the interval sets. Moreover, SplitIntervals
(Algorithm 1) is used to split the intervals for the overlapping components of two footprint edges
and points in FootprintsIntersection. No overlapping intervals exist for the overlapping components
of two footprints faces because extruding these components along overlapping intervals results in
overlapping volumes, which cannot exist in 3D cadasters. The detailed implementations of the
Boolean set difference (\) and intersection () between geometries are not described because Boolean
set operations between geometries can be easily implemented by many APIs for GISs or
computational geometry, such as the ArcGIS Engine and CGAL.

Figure 7. Five conditions of splitting intervals: (a) the maximum and minimum values of an interval
are within another interval; (b) the minimum value of an interval is within another interval; (c) the
minimum value of an interval is outside all the intervals of another interval set; (d) the maximum value
of an interval is within another interval; and (e) the maximum value of an interval is outside all the
intervals of another interval set.

If we assume that the two sets IV and IV ′ in SplitIntervals have m and n intervals, m + n intervals
has at most 2(m + n) interval boundaries, so the output interval set IV” has at most 2(m + n) − 1
intervals. Thus, each interval iv in IV overlaps with at most 2(m + n) − 1 intervals in IV”, so at most
m(2(m + n) − 1) split operations are performed. To obtain a sorted set IV”

Inter and keep it sorted, we can
sort set IV” first and place new split intervals in the proper positions according to their corresponding
original intervals. The set IV” can be sorted in O(mlogm) by quicksort. Thus, the computational
complexity of SplitIntervals is O(m2 + mn). In practice, we can always choose the interval set with less
intervals as set IV with m intervals, which can ensure that mn is always greater than m2. Thus, the
computational complexity of SplitIntervals is simplified to O(mn).

4.2.2. Removing Overlaps between Two Footprints

The basic idea of removing overlaps between two footprints is to use the combination of Boolean
set operations that was defined in Section 4.2.1. Figure 8 shows how overlaps among footprint points,
edges and faces are removed by Boolean set differences and intersections. The overlaps between two
overlapping footprint edges or faces A and B can be removed by splitting them into three components
A\B, B\A and A∩B. Removing overlaps between two overlapping footprint points is much easier
because only A∩B is required.

Considering the intervals and corresponding cadastral objects, removing overlaps between
footprints could become much more complicated. The procedure of removing overlaps between
two footprints (footprint points, edges and faces) is described in RemoveOverlaps (Algorithm 2),
which involves operations for geometries, extrusion intervals and cadaster IDs. This algorithm uses
FootprintsDifference (Algorithm 3) and FootprintsIntersection (Algorithm 4) to compute the difference
and intersection between two footprints. In these two algorithms, ExtractIntervalBoundaries (Algorithm
5) is used to compute interval boundary sets of the interval sets. Moreover, SplitIntervals (Algorithm
1) is used to split the intervals for the overlapping components of two footprint edges and points in
FootprintsIntersection. No overlapping intervals exist for the overlapping components of two footprints
faces because extruding these components along overlapping intervals results in overlapping volumes,
which cannot exist in 3D cadasters. The detailed implementations of the Boolean set difference (\)
and intersection (∩) between geometries are not described because Boolean set operations between
geometries can be easily implemented by many APIs for GISs or computational geometry, such as the
ArcGIS Engine and CGAL.

ISPRS Int. J. Geo-Inf. 2017, 6, 232 12 of 24

Algorithm 2: RemoveOverlaps

Input: two overlapping footprints f and f ′ of the same dimension
Output: set F of output non-overlapping footprints

1 if footprints f and f ′ are footprint faces or edges then
2 Put the footprints of FootprintsDifference(f, f ′) in F
3 Put the footprints of FootprintsDifference(f ′ , f) in F
4 Put the footprints of FootprintsIntersection (f, f ′) in F

Algorithm 3: FootprintsDifference

Input: base footprint f
comparison footprint f ′

Output: set Fdi f f of output non-overlapping footprints including parts of f but not f ′

1 Compute the geometry set Gdi f f ← (f. Geometry) (f ′ . Geometry)
2 IntervalBoundarySet IB←ExtractIntervalBoundaries(f. IntervalSet)
3 foreach geometry g in Gdiff do
4 Create a new footprint f ”

5 f ”. Geometry←g
6 f ”. IntervalSet←f. IntervalSet
7 f ”. IntervalBoundarySet←IB
8 Put f ” in Fdiff

Algorithm 4: FootprintsIntersection

Input: two footprints f and f ′

Output: set Finter of output non-overlapping footprints including parts of both f and f ′

1 Compute the geometry set Ginter ← (f. Geometry)∩(f ′ . Geometry)
2 Put the intervals of IV and IV ′ in a new IntervalSet IV”

3 IntervalBoundarySet IB← ExtractIntervalBoundaries (IV”)
4 if footprints f and f ′ are footprint points or edges then
5 IntervalSet IV← SplitIntervals(IB)
6 else
7 IntervalSet IV←(f. IntervalSet)∪(f ′ . IntervalSet)
8 foreach geometry g in Ginter do
9 Create a new footprint f ”

10 f ”.Geometry←g
11 f ”. IntervalSet←IV
12 f ”. IntervalBoundarySet←IB
13 Put f ” in Finter

Algorithm 5: ExtractIntervalBoundaries

Input: Interval set IV in which intervals may overlap each other
Output: Interval boundary set IB in which each interval boundary has a different value

1 foreach iv in IV do
2 Create two new interval boundaries ib and ib′

3 ib. Value←iv. Range. maximum ib′ . Value←iv. Range. minimum
4 ib. CadastreIDs←iv. CadastreIDs
5 Put ib and ib′ in IB
6 Sort the interval boundary set IB
7 foreach pair of IntervalBoundaries ib and ib′ whose values are equal do
8 Create a new interval boundary ib”

9 ib”.Value←ib. Value
10 ib”. CadastreIDs←(ib. TopCadastreIDs) ∪(ib′ . TopCadastreIDs)
11 Remove ib and ib′ from IB
12 Put ib” in IB

In ExtractIntervalBoundaries (Algorithm 5), all the m + n intervals (m and n are the number of
intervals for each footprint) of the two input footprints have 2(m + n) interval boundaries. The interval

ISPRS Int. J. Geo-Inf. 2017, 6, 232 13 of 24

boundary set IB (line 6) can be sorted in O((m + n)log(m + n)) by quicksort, and searching interval
boundaries with the same values (line 7) in the sorting set only requires visiting each interval boundary
once, so the time complexity of ExtractIntervalBoundaries is O((m + n)log(m + n)).

ISPRS Int. J. Geo-Inf. 2017, 6, 232 13 of 24

6 Sort the interval boundary set IB
7 foreach pair of IntervalBoundaries ib and ib ' whose values are equal do
8 Create a new interval boundary ib''
9 ib'' .Value ← ib. Value
10 ib'' . CadastreIDs ← (ib. TopCadastreIDs) (ib' . TopCadastreIDs)
11 Remove ib and ib' from IB
12 Put ib'' in IB

In ExtractIntervalBoundaries (Algorithm 5), all the m + n intervals (m and n are the number of
intervals for each footprint) of the two input footprints have 2(m + n) interval boundaries. The interval
boundary set IB (line 6) can be sorted in O((m + n)log(m + n)) by quicksort, and searching interval
boundaries with the same values (line 7) in the sorting set only requires visiting each interval
boundary once, so the time complexity of ExtractIntervalBoundaries is O((m + n)log(m + n)).

(a) (b) (c)

Figure 8. Removal of overlaps between footprint points (a), footprint edges (b) and footprint faces (c)
by the combination of Boolean set operations.

In FootprintsDifference (Algorithm 3) and FootprintsIntersection (Algorithm 4), Boolean set
operations between the geometries of two footprint faces are more time-consuming than those
between the geometries of two footprint edges or points. The methods
TopologicalOperator.Difference and ITopologicalOperator.Intersect in ArcEngine are used to
implement the difference (\) and intersection () between two geometries of two footprint faces.
The implementation algorithms of the two methods are not published, but we can use the Weiler–
Atherton clipping algorithm [43] as a reference, which was published in 1977 and is one of the most
famous polygon-clipping algorithms. The time complexity of the Weiler–Atherton clipping algorithm
is O(pq), where p and q are the numbers of vertices of the two input polygons. If we assume that
FootprintsDifference and FootprintsIntersection generate k and l new footprints, their time complexities
are O(pq + k + (m + n)log(m + n)) and O(pq + l + (m + n)log(m + n) + mn), respectively, where O((m +
n)log(m + n)) and O(mn) are the time complexities of ExtractIntervalBoundaries (Algorithm 5) and
SplitIntervals (Algorithm 1).

Summing the time complexities of the three steps (lines 2, 3 and 4) of RemoveOverlaps (Algorithm 2)
produces the time complexity O(pq + t + (m + n)log(m + n) + mn), where p and q are the numbers of
vertices of the two geometries of the two input footprints, t is the total number of newly generated
geometries, and m and n are the numbers of intervals of the two input footprints. When the number
of input footprints is more than two, RemoveOverlaps should be executed for each overlapping footprint,
and the total execution time depends on the number of newly generated footprints in each execution.

Figure 8. Removal of overlaps between footprint points (a), footprint edges (b) and footprint faces (c)
by the combination of Boolean set operations.

In FootprintsDifference (Algorithm 3) and FootprintsIntersection (Algorithm 4), Boolean set
operations between the geometries of two footprint faces are more time-consuming than those between
the geometries of two footprint edges or points. The methods TopologicalOperator.Difference and
ITopologicalOperator.Intersect in ArcEngine are used to implement the difference (\) and intersection
(∩) between two geometries of two footprint faces. The implementation algorithms of the two methods
are not published, but we can use the Weiler–Atherton clipping algorithm [43] as a reference, which was
published in 1977 and is one of the most famous polygon-clipping algorithms. The time complexity
of the Weiler–Atherton clipping algorithm is O(pq), where p and q are the numbers of vertices of
the two input polygons. If we assume that FootprintsDifference and FootprintsIntersection generate k
and l new footprints, their time complexities are O(pq + k + (m + n)log(m + n)) and O(pq + l + (m +
n)log(m + n) + mn), respectively, where O((m + n)log(m + n)) and O(mn) are the time complexities of
ExtractIntervalBoundaries (Algorithm 5) and SplitIntervals (Algorithm 1).

Summing the time complexities of the three steps (lines 2, 3 and 4) of RemoveOverlaps (Algorithm 2)
produces the time complexity O(pq + t + (m + n)log(m + n) + mn), where p and q are the numbers of
vertices of the two geometries of the two input footprints, t is the total number of newly generated
geometries, and m and n are the numbers of intervals of the two input footprints. When the number of
input footprints is more than two, RemoveOverlaps should be executed for each overlapping footprint,
and the total execution time depends on the number of newly generated footprints in each execution.

4.2.3. Propagating Extrusion Intervals

The input footprint faces and their extrusion intervals (and other attributes) can only be used to
construct 3D faces and volumes. To generate 3D edges and points, the extrusion intervals of footprint
faces (Figure 9a) should be propagated to footprint edges (Figure 9b) and then to footprint points
(Figure 9c). The propagation algorithm PropagateRanges by Arroyo, Ledoux and Stoter [30] both
propagates intervals and splits extrusion intervals, while our propagation operation only propagates
extrusion intervals because extrusion intervals are split by SplitIntervals (Algorithm 1) in our EABNOF.

ISPRS Int. J. Geo-Inf. 2017, 6, 232 14 of 24

ISPRS Int. J. Geo-Inf. 2017, 6, 232 14 of 24

4.2.3. Propagating Extrusion Intervals

The input footprint faces and their extrusion intervals (and other attributes) can only be used to
construct 3D faces and volumes. To generate 3D edges and points, the extrusion intervals of footprint
faces (Figure 9a) should be propagated to footprint edges (Figure 9b) and then to footprint points
(Figure 9c). The propagation algorithm PropagateRanges by Arroyo, Ledoux and Stoter [30] both
propagates intervals and splits extrusion intervals, while our propagation operation only propagates
extrusion intervals because extrusion intervals are split by SplitIntervals (Algorithm 1) in our EABNOF.

(a) (b) (c)

Figure 9. Propagation of extrusion intervals from footprint faces (a) to footprint edges (b) and then to
footprint points (c).

Three rules are defined in our propagation operation:
(Rule 1) Extrusion intervals are propagated only from nD (n = 1, 2) footprints to (n – 1)D

footprints, which are (n – 1)D boundaries of the nD footprints.
(Rule 2) Extrusion intervals of higher-dimensional footprints can be propagated to their

corresponding lower-dimensional footprints only when overlaps between the higher-dimensional
footprints are removed.

(Rule 3) For several adjacent footprint edges (i.e., 1e and 2e in Figure 9) whose boundaries
intersect at a point, each footprint edge should propagate their intervals to a different footprint point
at the intersection (5v and 4v).

Rule 3 does not generate only one footprint point at the intersection because each footprint edge
may propagate different intervals to its corresponding footprint point, and these different intervals
should be split.

4.2.4. Process for Generating All Non-Overlapping Footprints

Overlaps should be removed and intervals should be propagated to obtain all non-overlapping
footprints (footprint faces, footprint edges and footprint points). Figure 10 provides an example of
generating all non-overlapping footprints. This example has three input footprint faces (1f , 2f and 3f),
in which two footprint faces (1f and 2f) overlap the interiors of each other and two footprint faces
(2f and 3f) touch each other. The process of generating all non-overlapping footprints consists of
five steps:

Step 1: Remove overlaps between each overlapping footprint face by using RemoveOverlaps
(Algorithm 1). In the example, four non-overlapping footprint faces (3f , 4f , 5f and 6f) are
generated by removing the overlaps between 1f and 2f .

Step 2: Extract footprint edges from the footprint faces and propagate interval sets of the footprint
faces to their corresponding footprint edges. In the example, eighteen footprint edges (1e − 18e) are
generated, in which eight footprint edges (3e , 5e , 7e , 8e , 10e , 11e , 13e and 15e) overlap one other
footprint edge.

Step 3: Remove overlaps between each overlapping footprint edge by using RemoveOverlaps.
In the example, six non-overlapping footprint edges (19e , 20e , 21e , 22e , 23e and 24e) are generated
by removing overlaps.

Figure 9. Propagation of extrusion intervals from footprint faces (a) to footprint edges (b) and then to
footprint points (c).

Three rules are defined in our propagation operation:
(Rule 1) Extrusion intervals are propagated only from nD (n = 1, 2) footprints to (n – 1)D footprints,

which are (n – 1)D boundaries of the nD footprints.
(Rule 2) Extrusion intervals of higher-dimensional footprints can be propagated to their

corresponding lower-dimensional footprints only when overlaps between the higher-dimensional
footprints are removed.

(Rule 3) For several adjacent footprint edges (i.e., e1 and e2 in Figure 9) whose boundaries intersect
at a point, each footprint edge should propagate their intervals to a different footprint point at the
intersection (v5 and v4).

Rule 3 does not generate only one footprint point at the intersection because each footprint edge
may propagate different intervals to its corresponding footprint point, and these different intervals
should be split.

4.2.4. Process for Generating All Non-Overlapping Footprints

Overlaps should be removed and intervals should be propagated to obtain all non-overlapping
footprints (footprint faces, footprint edges and footprint points). Figure 10 provides an example of
generating all non-overlapping footprints. This example has three input footprint faces (f1, f2 and f3),
in which two footprint faces (f1 and f2) overlap the interiors of each other and two footprint faces
(f2 and f3) touch each other. The process of generating all non-overlapping footprints consists of
five steps:

Step 1: Remove overlaps between each overlapping footprint face by using RemoveOverlaps
(Algorithm 1). In the example, four non-overlapping footprint faces (f3, f4, f5 and f6) are generated by
removing the overlaps between f1 and f2.

Step 2: Extract footprint edges from the footprint faces and propagate interval sets of the footprint
faces to their corresponding footprint edges. In the example, eighteen footprint edges (e1−e18)
are generated, in which eight footprint edges (e3, e5, e7, e8, e10, e11, e13 and e15) overlap one other
footprint edge.

Step 3: Remove overlaps between each overlapping footprint edge by using RemoveOverlaps.
In the example, six non-overlapping footprint edges (e19, e20, e21, e22, e23 and e24) are generated by
removing overlaps.

Step 4: Extract footprint points from the footprint edges and propagate interval sets of the
footprint edges to their corresponding footprint points. In the example, thirty-two footprint points
(v1-v32) are generated, each of which overlaps one or more other footprint points.

Step 5: Remove overlaps between each overlapping footprint point by using RemoveOverlaps.
In the example, thirteen non-overlapping footprint edges (v33-v45) are generated by removing overlaps.

After these steps, the non-overlapping footprint faces, edges and points that are generated in
Steps 1, 3 and 5 are output.

ISPRS Int. J. Geo-Inf. 2017, 6, 232 15 of 24

ISPRS Int. J. Geo-Inf. 2017, 6, 232 15 of 24

Step 4: Extract footprint points from the footprint edges and propagate interval sets of the
footprint edges to their corresponding footprint points. In the example, thirty-two footprint points
(1v - 32v) are generated, each of which overlaps one or more other footprint points.

Step 5: Remove overlaps between each overlapping footprint point by using RemoveOverlaps.
In the example, thirteen non-overlapping footprint edges (33v - 45v) are generated by removing overlaps.

After these steps, the non-overlapping footprint faces, edges and points that are generated in
Steps 1, 3 and 5 are output.

Figure 10. Process of generating all non-overlapping footprints.

4.3. Constructing Geometric Models and Topology without Redundancies

With these non-overlapping footprints, we can easily generate primitives (3D points, edges,
faces and volumes) by extruding along their corresponding extrusion intervals and adding interval
boundaries as Z values. Figure 11a shows a footprint face (0f) and its corresponding footprint edges

(1e , 2e , 3e and 4e) and points (1v , 2v , 3v and 4v). In Figure 11b, vertical primitives (i.e., 1
3
rv ,

2
3
rv , 3

3
rv , 1

3
re , 2

3
re , 3

3
re , 1

0
rf , 2

0
rf and 3

0
rf) are generated by extruding footprints (3v , 3e and 0f)

along intervals 1r = (a, b), 2r = (b, c) and 3r = (d, e), and horizontal primitives (i.e., 3
av , 3

bv , 3
cv ,

3
dv , 3

ev , 2
ae , 2

be , 2
ce , 2

de , 2
ee , 0

af , 0
bf , 0

cf , 0
df and 0

ef) are generated by adding the interval
boundaries a, b, c, d and e to the footprints (3v , 3e and 0f) as Z values. In these primitives, volumes

(1
0
rf , 2

0
rf and 3

0
rf) are used to construct geometric models for 3D spatial units, and other

primitives (3D points, edges and faces) are used to construct topological features (3D boundaries).
However, not all these 3D points, edges and faces can be used to construct topological features for
spatial units because redundancies (invalid values) exist.

Figure 10. Process of generating all non-overlapping footprints.

4.3. Constructing Geometric Models and Topology without Redundancies

With these non-overlapping footprints, we can easily generate primitives (3D points, edges,
faces and volumes) by extruding along their corresponding extrusion intervals and adding interval
boundaries as Z values. Figure 11a shows a footprint face (f0) and its corresponding footprint edges
(e1, e2, e3 and e4) and points (v1, v2, v3 and v4). In Figure 11b, vertical primitives (i.e., vr1

3 , vr2
3 , vr3

3 , er1
3 ,

er2
3 , er3

3 , f r1
0 , f r2

0 and f r3
0) are generated by extruding footprints (v3, e3 and f0) along intervals r1 = (a, b),

r2 = (b, c) and r3 = (d, e), and horizontal primitives (i.e., va
3, vb

3, vc
3, vd

3, ve
3, ea

2, eb
2, ec

2, ed
2, ee

2, f a
0 , f b

0 , f c
0 , f d

0
and f e

0) are generated by adding the interval boundaries a, b, c, d and e to the footprints (v3, e3 and f0)
as Z values. In these primitives, volumes (f r1

0 , f r2
0 and f r3

0) are used to construct geometric models for
3D spatial units, and other primitives (3D points, edges and faces) are used to construct topological
features (3D boundaries). However, not all these 3D points, edges and faces can be used to construct
topological features for spatial units because redundancies (invalid values) exist.ISPRS Int. J. Geo-Inf. 2017, 6, 232 16 of 24

(a) (b)

Figure 11. (a) Footprint face and its corresponding footprint edges and points; and (b) primitives (3D
points, edges and faces) that were generated by extruding these footprints.

4.3.1. Identifying Redundant Primitives

Generally, a redundant primitive is a lower-dimensional primitive within a higher-dimensional
topological feature (or 3D spatial unit), such as a 3D point within a 3D boundary line. An example in
Figure 12 explains such redundancies. Figure 12a shows two non-overlapping footprint faces (1f and 2f),
nine non-overlapping footprint edges (ab, be, ec, cd, da, ef, fg, gh and hc) and eight non-overlapping
footprint points (a, b, c, d, e, f, g and h), in which the footprints 1f , ab, be, cd, da, a, b and d have the
interval (0, 6) and interval boundaries 0 and 6; the footprints 2f , ef, fg, gh, hc, f, g and h have the
interval (0, 4) and interval boundaries 0 and 4; and the footprints ec, e and c have the intervals (0, 4)
and (4, 6) and interval boundaries 0, 4 and 6. All these intervals and interval boundaries are associated
with the same cadastral object.

(a) (b)

Figure 12. Non-overlapping footprints (a) and primitives (b) that were generated by extruding
footprints in (a), which contain redundancies.

Figure 12b shows the primitives that were generated by the footprints in Figure 12a, in which
the 3D point 6e , 3D edge 4e 6e and 3D face 0 4 4 0c c e e (marked in green) are redundancies. These
redundancies occurred because 6e is within the 3D boundary line 6b 6c , 4e 6e is within

4 6 6 0 0 4c c b b e e and 0 4 4 0c c e e is within the 3D spatial unit that consists of 0 0 0 0 6 6 6 6a b c d a b c d and

Figure 11. (a) Footprint face and its corresponding footprint edges and points; and (b) primitives
(3D points, edges and faces) that were generated by extruding these footprints.

ISPRS Int. J. Geo-Inf. 2017, 6, 232 16 of 24

4.3.1. Identifying Redundant Primitives

Generally, a redundant primitive is a lower-dimensional primitive within a higher-dimensional
topological feature (or 3D spatial unit), such as a 3D point within a 3D boundary line. An example in
Figure 12 explains such redundancies. Figure 12a shows two non-overlapping footprint faces (f1 and
f2), nine non-overlapping footprint edges (ab, be, ec, cd, da, ef, fg, gh and hc) and eight non-overlapping
footprint points (a, b, c, d, e, f, g and h), in which the footprints f1, ab, be, cd, da, a, b and d have the
interval (0, 6) and interval boundaries 0 and 6; the footprints f2, ef, fg, gh, hc, f, g and h have the interval
(0, 4) and interval boundaries 0 and 4; and the footprints ec, e and c have the intervals (0, 4) and (4, 6)
and interval boundaries 0, 4 and 6. All these intervals and interval boundaries are associated with the
same cadastral object.

ISPRS Int. J. Geo-Inf. 2017, 6, 232 16 of 24

(a) (b)

Figure 11. (a) Footprint face and its corresponding footprint edges and points; and (b) primitives (3D
points, edges and faces) that were generated by extruding these footprints.

4.3.1. Identifying Redundant Primitives

Generally, a redundant primitive is a lower-dimensional primitive within a higher-dimensional
topological feature (or 3D spatial unit), such as a 3D point within a 3D boundary line. An example in
Figure 12 explains such redundancies. Figure 12a shows two non-overlapping footprint faces (1f and 2f),
nine non-overlapping footprint edges (ab, be, ec, cd, da, ef, fg, gh and hc) and eight non-overlapping
footprint points (a, b, c, d, e, f, g and h), in which the footprints 1f , ab, be, cd, da, a, b and d have the
interval (0, 6) and interval boundaries 0 and 6; the footprints 2f , ef, fg, gh, hc, f, g and h have the
interval (0, 4) and interval boundaries 0 and 4; and the footprints ec, e and c have the intervals (0, 4)
and (4, 6) and interval boundaries 0, 4 and 6. All these intervals and interval boundaries are associated
with the same cadastral object.

(a) (b)

Figure 12. Non-overlapping footprints (a) and primitives (b) that were generated by extruding
footprints in (a), which contain redundancies.

Figure 12b shows the primitives that were generated by the footprints in Figure 12a, in which
the 3D point 6e , 3D edge 4e 6e and 3D face 0 4 4 0c c e e (marked in green) are redundancies. These
redundancies occurred because 6e is within the 3D boundary line 6b 6c , 4e 6e is within

4 6 6 0 0 4c c b b e e and 0 4 4 0c c e e is within the 3D spatial unit that consists of 0 0 0 0 6 6 6 6a b c d a b c d and

Figure 12. Non-overlapping footprints (a) and primitives (b) that were generated by extruding
footprints in (a), which contain redundancies.

Figure 12b shows the primitives that were generated by the footprints in Figure 12a, in which
the 3D point e6, 3D edge e4 e6 and 3D face c0c4e4e0 (marked in green) are redundancies. These
redundancies occurred because e6 is within the 3D boundary line b6 c6, e4 e6 is within c4c6b6b0e0e4 and
c0c4e4e0 is within the 3D spatial unit that consists of a0b0c0d0a6b6c6d6 and e0 f 0g0h0e4 f 4g4h4. These
redundancies should be removed from primitives. We provide three judgment criteria to accurately
identify redundancies.

(Criterion 1) A 3D point δ0 is the common point of only two valid 3D edges. If the two 3D edges
are collinear and associated with the same cadastral object(s), then δ0 is a redundancy.

(Criterion 2) A 3D edge δ1 is the common edge of only two valid 3D faces. If the two 3D faces are
coplanar and associated with the same cadastral object(s), then δ1 is a redundancy.

(Criterion 3) A 3D face δ2 is the common face of two valid volumes. If the two volumes are
associated with the same cadastral object(s), then δ2 is a redundancy.

For Criteria 1 and 2, “only two” and “valid” designations are used as two key points for
identifying redundancies.

An example can help clarify the “only two” designation. Figure 13a shows a non-manifold spatial
unit A that consists of volumes (V1 and V2). The 3D edge e1 is the common edge of four 3D faces: f1, f2,
f3 and f4, in which f1 and f4 are coplanar and f2 and f3 are coplanar. All four 3D faces are associated
with the cadastral object A. According to Criterion 3, the four 3D faces are not redundancies. Thus, e1

touches coplanar valid 3D faces that are associated with the same cadastral object; however, this edge
is not a redundancy because the number of valid 3D faces does not fit the “only two” description.

ISPRS Int. J. Geo-Inf. 2017, 6, 232 17 of 24

ISPRS Int. J. Geo-Inf. 2017, 6, 232 17 of 24

0 0 0 0 4 4 4 4e f g h e f g h . These redundancies should be removed from primitives. We provide three
judgment criteria to accurately identify redundancies.

(Criterion 1) A 3D point 0δ is the common point of only two valid 3D edges. If the two 3D
edges are collinear and associated with the same cadastral object(s), then 0δ is a redundancy.

(Criterion 2) A 3D edge 1δ is the common edge of only two valid 3D faces. If the two 3D faces
are coplanar and associated with the same cadastral object(s), then 1δ is a redundancy.

(Criterion 3) A 3D face 2δ is the common face of two valid volumes. If the two volumes are
associated with the same cadastral object(s), then 2δ is a redundancy.

For Criteria 1 and 2, “only two” and “valid” designations are used as two key points for
identifying redundancies.

An example can help clarify the “only two” designation. Figure 13a shows a non-manifold
spatial unit A that consists of volumes (1V and 2V). The 3D edge 1e is the common edge of four
3D faces: 1f , 2f , 3f and 4f , in which 1f and 4f are coplanar and 2f and 3f are coplanar.
All four 3D faces are associated with the cadastral object A. According to Criterion 3, the four 3D faces
are not redundancies. Thus, 1e touches coplanar valid 3D faces that are associated with the same
cadastral object; however, this edge is not a redundancy because the number of valid 3D faces does
not fit the “only two” description.

Another example shows the importance of the “which are not redundancies” designation. Figure
13b shows a spatial unit B that consists of two volumes (3V and 4V). The 3D edge 2e is the
common edge of the three 3D faces 5f , 6f and 7f , which does not fit the “only two” designation.
However, is a redundancy because 7f is a redundancy as the common face of two valid
volumes 3V and 4V and is associated to the same cadastral object of B, and 2e touches only two
valid 3D faces 5f and 6f , which are coplanar and associated with the same cadastral object B.

When applying these three criteria, we should adhere to the following order: Criterion 3, Criterion
2 and Criterion 1. Before applying Criterion 2, we must identify any redundant (invalid) 3D faces,
which should be performed according to Criterion 3. Before applying Criterion 1, we must identify
redundant (invalid) 3D edges, which should be performed based on Criterion 2.

(a) (b)

Figure 13. Two examples of identifying redundancies based on the proposed conditions: (a) a non-
manifold spatial unit; and (b) a spatial unit consisting of two adjacent volumes.

4.3.2. Construction of Geometric Models and Topological Features

In our EABNOF, geometric models and topological features of 3D spatial units are constructed
from primitives. A single geometric model (or topological feature) may be constructed from one or
more primitives. The corresponding primitives of a geometric model (or topological feature) that is
constructed from more than one primitive must be merged into a single object.

Two nD (n = 1, 2, 3) primitives must always have an (n – 1D common boundary (common point,
edge or face) to be merged, which is redundant because the common boundary is within a 3D
boundary that is generated by merging the primitives. We can construct geometric models and
topological features by merging primitives and removing redundancies based on this property,
which are described in the following three steps:

Step 1: Identify all the redundancies from the set P of primitives by using Criteria 1–3 and put
them into a redundancy set RD. Remove the redundancies of set RD from P.

2e

Figure 13. Two examples of identifying redundancies based on the proposed conditions: (a) a
non-manifold spatial unit; and (b) a spatial unit consisting of two adjacent volumes.

Another example shows the importance of the “which are not redundancies” designation.
Figure 13b shows a spatial unit B that consists of two volumes (V3 and V4). The 3D edge e2 is
the common edge of the three 3D faces f5, f6 and f7, which does not fit the “only two” designation.
However, e2 is a redundancy because f7 is a redundancy as the common face of two valid volumes V3

and V4 and is associated to the same cadastral object of B, and e2 touches only two valid 3D faces f5

and f6, which are coplanar and associated with the same cadastral object B.
When applying these three criteria, we should adhere to the following order: Criterion 3, Criterion

2 and Criterion 1. Before applying Criterion 2, we must identify any redundant (invalid) 3D faces, which
should be performed according to Criterion 3. Before applying Criterion 1, we must identify redundant
(invalid) 3D edges, which should be performed based on Criterion 2.

4.3.2. Construction of Geometric Models and Topological Features

In our EABNOF, geometric models and topological features of 3D spatial units are constructed
from primitives. A single geometric model (or topological feature) may be constructed from one or
more primitives. The corresponding primitives of a geometric model (or topological feature) that is
constructed from more than one primitive must be merged into a single object.

Two nD (n = 1, 2, 3) primitives must always have an (n – 1D common boundary (common
point, edge or face) to be merged, which is redundant because the common boundary is within a
3D boundary that is generated by merging the primitives. We can construct geometric models and
topological features by merging primitives and removing redundancies based on this property, which
are described in the following three steps:

Step 1: Identify all the redundancies from the set P of primitives by using Criteria 1–3 and put
them into a redundancy set RD. Remove the redundancies of set RD from P.

Step 2: For each redundancy rd in the set RD, merge its corresponding two primitives (p1 and
p2) and place the merged result in P. Remove the two primitives p1 and p2 from set P. Remove the
redundancy rd from set RD.

Step 3: Repeat Step 2 until set RD is empty.
Figure 14 shows the geometric model and topological features that were constructed from the

primitives in Figure 12b, in which the 3D edges b6 e6 and e6 c6, 3D faces c4c6e6e4 and e0e6b6b0, and
volumes a0b0c0d0a6b6c6d6 and e0 f 0g0h0e4 f 4g4h4 are merged and redundancies (e6, e4 e6 and c0c4e4e0)
are removed.

ISPRS Int. J. Geo-Inf. 2017, 6, 232 18 of 24

ISPRS Int. J. Geo-Inf. 2017, 6, 232 18 of 24

Step 2: For each redundancy rd in the set RD, merge its corresponding two primitives (1p and 2p)
and place the merged result in P. Remove the two primitives 1p and 2p from set P. Remove the
redundancy rd from set RD.

Step 3: Repeat Step 2 until set RD is empty.
Figure 14 shows the geometric model and topological features that were constructed from the

primitives in Figure 12b, in which the 3D edges 6b 6e and 6e 6c , 3D faces 4 6 6 4c c e e and 0 6 6 0e e b b ,
and volumes 0 0 0 0 6 6 6 6a b c d a b c d and 0 0 0 0 4 4 4 4e f g h e f g h are merged and redundancies (6e , 4e 6e

and 0 4 4 0c c e e) are removed.

(a) (b)

Figure 14. Geometric model (a) and topological features (b) that were constructed by merging
primitives and removing redundancies in Figure 12b.

5. Implementation

This section introduces some important implementation details for our approach. We
implemented our EABNOF and 3D cadastral model by using ArcGIS (Version 10.2), which is
available through Microsoft Visual Studio 2008 and the ESRI Personal GeoDatabase. To handle the
initial input data, we wrote a processing tool in Python (Version 2.7) based on ArcPy (Version 10.2),
which provides access to geoprocessing tools.

5.1. Constructing Polygons for Footprint Faces

Our initial input data were floor plans of buildings, and most of the data were in the DWG format
and created in AutoCAD. In these data, footprint faces were only represented by lines or polylines
(Figure 15a), so we wrote a DWG conversion tool in Python based on ArcPy to construct polygons
from these lines or polylines. The output (Figure 15b) of the tool was in shapefile format, and the tool
could be added to ArcToolBox.

(a) (b)

Figure 15. (a) Footprint faces represented by lines or polylines in the original data; and (b) polygons
that were converted from lines or polylines by the conversion tool.

Figure 14. Geometric model (a) and topological features (b) that were constructed by merging
primitives and removing redundancies in Figure 12b.

5. Implementation

This section introduces some important implementation details for our approach. We
implemented our EABNOF and 3D cadastral model by using ArcGIS (Version 10.2), which is available
through Microsoft Visual Studio 2008 and the ESRI Personal GeoDatabase. To handle the initial input
data, we wrote a processing tool in Python (Version 2.7) based on ArcPy (Version 10.2), which provides
access to geoprocessing tools.

5.1. Constructing Polygons for Footprint Faces

Our initial input data were floor plans of buildings, and most of the data were in the DWG format
and created in AutoCAD. In these data, footprint faces were only represented by lines or polylines
(Figure 15a), so we wrote a DWG conversion tool in Python based on ArcPy to construct polygons
from these lines or polylines. The output (Figure 15b) of the tool was in shapefile format, and the tool
could be added to ArcToolBox.

ISPRS Int. J. Geo-Inf. 2017, 6, 232 18 of 24

Step 2: For each redundancy rd in the set RD, merge its corresponding two primitives (1p and 2p)
and place the merged result in P. Remove the two primitives 1p and 2p from set P. Remove the
redundancy rd from set RD.

Step 3: Repeat Step 2 until set RD is empty.
Figure 14 shows the geometric model and topological features that were constructed from the

primitives in Figure 12b, in which the 3D edges 6b 6e and 6e 6c , 3D faces 4 6 6 4c c e e and 0 6 6 0e e b b ,
and volumes 0 0 0 0 6 6 6 6a b c d a b c d and 0 0 0 0 4 4 4 4e f g h e f g h are merged and redundancies (6e , 4e 6e

and 0 4 4 0c c e e) are removed.

(a) (b)

Figure 14. Geometric model (a) and topological features (b) that were constructed by merging
primitives and removing redundancies in Figure 12b.

5. Implementation

This section introduces some important implementation details for our approach. We
implemented our EABNOF and 3D cadastral model by using ArcGIS (Version 10.2), which is
available through Microsoft Visual Studio 2008 and the ESRI Personal GeoDatabase. To handle the
initial input data, we wrote a processing tool in Python (Version 2.7) based on ArcPy (Version 10.2),
which provides access to geoprocessing tools.

5.1. Constructing Polygons for Footprint Faces

Our initial input data were floor plans of buildings, and most of the data were in the DWG format
and created in AutoCAD. In these data, footprint faces were only represented by lines or polylines
(Figure 15a), so we wrote a DWG conversion tool in Python based on ArcPy to construct polygons
from these lines or polylines. The output (Figure 15b) of the tool was in shapefile format, and the tool
could be added to ArcToolBox.

(a) (b)

Figure 15. (a) Footprint faces represented by lines or polylines in the original data; and (b) polygons
that were converted from lines or polylines by the conversion tool.
Figure 15. (a) Footprint faces represented by lines or polylines in the original data; and (b) polygons
that were converted from lines or polylines by the conversion tool.

5.2. Adjusting the Positions of Footprint Faces

In most cases, each floor plan of a building was drawn in a different position that did not overlap
other floor plans, so the footprint faces of different floors for a building were not in the same position
(Figure 16a). We used the spatial adjustment tool in ArcMap to adjust the footprint faces of different
floors to the same position. The footprint faces of a floor could be adjust to the position of the footprint
faces of another floor by creating four displacement links between the footprint faces of the two floors.
Figure 16b shows the adjusted footprint faces in Figure 16a.

ISPRS Int. J. Geo-Inf. 2017, 6, 232 19 of 24

ISPRS Int. J. Geo-Inf. 2017, 6, 232 19 of 24

5.2. Adjusting the Positions of Footprint Faces

In most cases, each floor plan of a building was drawn in a different position that did not overlap
other floor plans, so the footprint faces of different floors for a building were not in the same position
(Figure 16a). We used the spatial adjustment tool in ArcMap to adjust the footprint faces of different
floors to the same position. The footprint faces of a floor could be adjust to the position of the footprint
faces of another floor by creating four displacement links between the footprint faces of the two floors.
Figure 16b shows the adjusted footprint faces in Figure 16a.

(a) (b)

Figure 16. (a) Footprint faces of different floors in different positions; and (b) footprint faces of
different floors adjusted to the same position.

6. Case Study

This section presents two 3D cadastral case studies of Pozi Street (Taizhou, Jiangsu, China) based on our
EABNOF.

6.1. Current Cadaster of Pozi Street

Pozi Street is the most famous landmark in Taizhou, Jiangsu, China, and is a commercial
pedestrian street with commercial and residential space. Figure 17a,b show an overall image and an
overhead view of Pozi Street, respectively, with the building area in Figure 17b denoted with a red
border. The first floor contains many brand-name stores, such as TESIRO, SAMSUNG, and an Apple
Store. The second and third floors include many gourmet restaurants and other stores, and
apartments are located above the third floor. Additionally, the underground level beneath the first
floor includes over 400 small stores that sell a variety of goods.

(a) (b)

Figure 17. Overall image (a) and overhead view (b) of Pozi Street.

Many mixed land uses (residential and commercial areas) have been applied along Pozi Street
to fully exploit the land space. An example of a mixed-use building is shown in Figure 18a. In this
case, department stores and apartments of different heights are located within the same building.

In the current 2D cadaster, the property space of a mixed-use building was stored and managed
as a 2D polygon. Figure 18b shows the mixed-use building (Figure 18a) number 2707 on a 2D
cadastral map, and the red arrow denotes the observation position of the building. In the 2D cadastral

Figure 16. (a) Footprint faces of different floors in different positions; and (b) footprint faces of different
floors adjusted to the same position.

6. Case Study

This section presents two 3D cadastral case studies of Pozi Street (Taizhou, Jiangsu, China) based
on our EABNOF.

6.1. Current Cadaster of Pozi Street

Pozi Street is the most famous landmark in Taizhou, Jiangsu, China, and is a commercial
pedestrian street with commercial and residential space. Figure 17a,b show an overall image and an
overhead view of Pozi Street, respectively, with the building area in Figure 17b denoted with a red
border. The first floor contains many brand-name stores, such as TESIRO, SAMSUNG, and an Apple
Store. The second and third floors include many gourmet restaurants and other stores, and apartments
are located above the third floor. Additionally, the underground level beneath the first floor includes
over 400 small stores that sell a variety of goods.

ISPRS Int. J. Geo-Inf. 2017, 6, 232 19 of 24

5.2. Adjusting the Positions of Footprint Faces

In most cases, each floor plan of a building was drawn in a different position that did not overlap
other floor plans, so the footprint faces of different floors for a building were not in the same position
(Figure 16a). We used the spatial adjustment tool in ArcMap to adjust the footprint faces of different
floors to the same position. The footprint faces of a floor could be adjust to the position of the footprint
faces of another floor by creating four displacement links between the footprint faces of the two floors.
Figure 16b shows the adjusted footprint faces in Figure 16a.

(a) (b)

Figure 16. (a) Footprint faces of different floors in different positions; and (b) footprint faces of
different floors adjusted to the same position.

6. Case Study

This section presents two 3D cadastral case studies of Pozi Street (Taizhou, Jiangsu, China) based on our
EABNOF.

6.1. Current Cadaster of Pozi Street

Pozi Street is the most famous landmark in Taizhou, Jiangsu, China, and is a commercial
pedestrian street with commercial and residential space. Figure 17a,b show an overall image and an
overhead view of Pozi Street, respectively, with the building area in Figure 17b denoted with a red
border. The first floor contains many brand-name stores, such as TESIRO, SAMSUNG, and an Apple
Store. The second and third floors include many gourmet restaurants and other stores, and
apartments are located above the third floor. Additionally, the underground level beneath the first
floor includes over 400 small stores that sell a variety of goods.

(a) (b)

Figure 17. Overall image (a) and overhead view (b) of Pozi Street.

Many mixed land uses (residential and commercial areas) have been applied along Pozi Street
to fully exploit the land space. An example of a mixed-use building is shown in Figure 18a. In this
case, department stores and apartments of different heights are located within the same building.

In the current 2D cadaster, the property space of a mixed-use building was stored and managed
as a 2D polygon. Figure 18b shows the mixed-use building (Figure 18a) number 2707 on a 2D
cadastral map, and the red arrow denotes the observation position of the building. In the 2D cadastral

Figure 17. Overall image (a) and overhead view (b) of Pozi Street.

Many mixed land uses (residential and commercial areas) have been applied along Pozi Street to
fully exploit the land space. An example of a mixed-use building is shown in Figure 18a. In this case,
department stores and apartments of different heights are located within the same building.

ISPRS Int. J. Geo-Inf. 2017, 6, 232 20 of 24

ISPRS Int. J. Geo-Inf. 2017, 6, 232 20 of 24

map, both department stores and apartment buildings are represented by 2D polygons, resulting in
the ambiguous definition of a mixed-use building. Moreover, the property rights of different owners
could not be clearly represented. Therefore, a 3D cadaster is required for Pozi Street.

(a) (b)

Figure 18. A mixed-use building (a) on Pozi Street represented on a 2D cadastral map (b).

6.2. Case 1: Building Complex

Figure 19a shows 22 footprint faces of a building complex on Pozi Street. The rooftop, residential
(Floor 2) and commercial (Floor 1) areas are located on different floors. These footprint faces could
be used to build models for the 3D property units (spatial units) of the building complex. However,
the three footprint faces overlapped in the 2D plane. We assigned different colors to the footprint
faces of different layers in Figure 19b to clearly show these overlaps. These overlaps created
ambiguities in the 2D cadastral map.

(b)

(a) (c)

Figure 19. Building complex on Pozi Street: (a) rooftop, residential (Floor 2) and commercial footprint
faces (Floor 1); (b) overlaps between footprint faces; and (c) non-overlapping footprint faces, edges
and points that were generated by EABNOF.

We used EABNOF to remove overlaps and generate non-overlapping footprint faces, edges and
points (Figure 19c) with intervals. We obtained 33 footprint faces, 137 footprint edges and 105
footprint points. This combination of footprint faces could represent 2D spatial units of the building
complex. We extruded footprints, removed redundancies and merged primitives to obtain 3D
geometric models and topological features for the 3D spatial units of the building complex, which
are shown in Figure 20a,b.

Figure 18. A mixed-use building (a) on Pozi Street represented on a 2D cadastral map (b).

In the current 2D cadaster, the property space of a mixed-use building was stored and managed
as a 2D polygon. Figure 18b shows the mixed-use building (Figure 18a) number 2707 on a 2D cadastral
map, and the red arrow denotes the observation position of the building. In the 2D cadastral map,
both department stores and apartment buildings are represented by 2D polygons, resulting in the
ambiguous definition of a mixed-use building. Moreover, the property rights of different owners could
not be clearly represented. Therefore, a 3D cadaster is required for Pozi Street.

6.2. Case 1: Building Complex

Figure 19a shows 22 footprint faces of a building complex on Pozi Street. The rooftop, residential
(Floor 2) and commercial (Floor 1) areas are located on different floors. These footprint faces could be
used to build models for the 3D property units (spatial units) of the building complex. However, the
three footprint faces overlapped in the 2D plane. We assigned different colors to the footprint faces of
different layers in Figure 19b to clearly show these overlaps. These overlaps created ambiguities in the
2D cadastral map.

ISPRS Int. J. Geo-Inf. 2017, 6, 232 20 of 24

map, both department stores and apartment buildings are represented by 2D polygons, resulting in
the ambiguous definition of a mixed-use building. Moreover, the property rights of different owners
could not be clearly represented. Therefore, a 3D cadaster is required for Pozi Street.

(a) (b)

Figure 18. A mixed-use building (a) on Pozi Street represented on a 2D cadastral map (b).

6.2. Case 1: Building Complex

Figure 19a shows 22 footprint faces of a building complex on Pozi Street. The rooftop, residential
(Floor 2) and commercial (Floor 1) areas are located on different floors. These footprint faces could
be used to build models for the 3D property units (spatial units) of the building complex. However,
the three footprint faces overlapped in the 2D plane. We assigned different colors to the footprint
faces of different layers in Figure 19b to clearly show these overlaps. These overlaps created
ambiguities in the 2D cadastral map.

(b)

(a) (c)

Figure 19. Building complex on Pozi Street: (a) rooftop, residential (Floor 2) and commercial footprint
faces (Floor 1); (b) overlaps between footprint faces; and (c) non-overlapping footprint faces, edges
and points that were generated by EABNOF.

We used EABNOF to remove overlaps and generate non-overlapping footprint faces, edges and
points (Figure 19c) with intervals. We obtained 33 footprint faces, 137 footprint edges and 105
footprint points. This combination of footprint faces could represent 2D spatial units of the building
complex. We extruded footprints, removed redundancies and merged primitives to obtain 3D
geometric models and topological features for the 3D spatial units of the building complex, which
are shown in Figure 20a,b.

Figure 19. Building complex on Pozi Street: (a) rooftop, residential (Floor 2) and commercial footprint
faces (Floor 1); (b) overlaps between footprint faces; and (c) non-overlapping footprint faces, edges and
points that were generated by EABNOF.

ISPRS Int. J. Geo-Inf. 2017, 6, 232 21 of 24

We used EABNOF to remove overlaps and generate non-overlapping footprint faces, edges and
points (Figure 19c) with intervals. We obtained 33 footprint faces, 137 footprint edges and 105 footprint
points. This combination of footprint faces could represent 2D spatial units of the building complex. We
extruded footprints, removed redundancies and merged primitives to obtain 3D geometric models and
topological features for the 3D spatial units of the building complex, which are shown in Figure 20a,b.ISPRS Int. J. Geo-Inf. 2017, 6, 232 21 of 24

(a) (b)

Figure 20. 3D geometric model (a) and topological features (b) of the property units of the building complex.

6.3. Case 2: All the Property Objects of Pozi Street

Figure 21a shows the contours of all the property objects (buildings) on Pozi Street. We used our
DWG conversion tool to construct polygons and obtained the polygons of footprint faces for all the
property objects on different floors (Figure 21b). Many overlaps occurred between these footprint faces.

(a) (b)

Figure 21. All the property objects of Pozi Street: (a) contours of all the property objects and (b)
footprints shown as different floors.

We constructed 3D geometric models (Figure 22a) and topological features (Figure 22b) for the
3D property objects by applying EABNOF to this case. EABNOF generated 75 footprint faces, 675
footprint edges and 459 footprint points.

(a) (b)

Figure 22. 3D geometric models (a) and topologies (b) of all the property objects on Pozi Street.

Figure 20. 3D geometric model (a) and topological features (b) of the property units of the
building complex.

6.3. Case 2: All the Property Objects of Pozi Street

Figure 21a shows the contours of all the property objects (buildings) on Pozi Street. We used our
DWG conversion tool to construct polygons and obtained the polygons of footprint faces for all the
property objects on different floors (Figure 21b). Many overlaps occurred between these footprint faces.

ISPRS Int. J. Geo-Inf. 2017, 6, 232 21 of 24

(a) (b)

Figure 20. 3D geometric model (a) and topological features (b) of the property units of the building complex.

6.3. Case 2: All the Property Objects of Pozi Street

Figure 21a shows the contours of all the property objects (buildings) on Pozi Street. We used our
DWG conversion tool to construct polygons and obtained the polygons of footprint faces for all the
property objects on different floors (Figure 21b). Many overlaps occurred between these footprint faces.

(a) (b)

Figure 21. All the property objects of Pozi Street: (a) contours of all the property objects and (b)
footprints shown as different floors.

We constructed 3D geometric models (Figure 22a) and topological features (Figure 22b) for the
3D property objects by applying EABNOF to this case. EABNOF generated 75 footprint faces, 675
footprint edges and 459 footprint points.

(a) (b)

Figure 22. 3D geometric models (a) and topologies (b) of all the property objects on Pozi Street.

Figure 21. All the property objects of Pozi Street: (a) contours of all the property objects and (b)
footprints shown as different floors.

We constructed 3D geometric models (Figure 22a) and topological features (Figure 22b) for the 3D
property objects by applying EABNOF to this case. EABNOF generated 75 footprint faces, 675 footprint
edges and 459 footprint points.

ISPRS Int. J. Geo-Inf. 2017, 6, 232 22 of 24

ISPRS Int. J. Geo-Inf. 2017, 6, 232 21 of 24

(a) (b)

Figure 20. 3D geometric model (a) and topological features (b) of the property units of the building complex.

6.3. Case 2: All the Property Objects of Pozi Street

Figure 21a shows the contours of all the property objects (buildings) on Pozi Street. We used our
DWG conversion tool to construct polygons and obtained the polygons of footprint faces for all the
property objects on different floors (Figure 21b). Many overlaps occurred between these footprint faces.

(a) (b)

Figure 21. All the property objects of Pozi Street: (a) contours of all the property objects and (b)
footprints shown as different floors.

We constructed 3D geometric models (Figure 22a) and topological features (Figure 22b) for the
3D property objects by applying EABNOF to this case. EABNOF generated 75 footprint faces, 675
footprint edges and 459 footprint points.

(a) (b)

Figure 22. 3D geometric models (a) and topologies (b) of all the property objects on Pozi Street.

Figure 22. 3D geometric models (a) and topologies (b) of all the property objects on Pozi Street.

7. Conclusions

Recently, 3D model-building methods have received considerable attention because of the urgent
need for 3D cadasters. The widely used extrusion approach is simple and practical but is associated
with many obvious drawbacks. This paper presented a new extrusion approach (EABNOF) that is
suitable for constructing geometric models and topologies in 3D cadasters. This approach constructs
geometric models and topologies of 3D cadasters from the footprints of 2D cadastral data and supports
significantly more 3D conditions than previous methods. Overlaps between input footprints can be
removed through this approach, which also involves splitting the extrusion intervals of footprints
and associating extrusion intervals to their corresponding cadastral objects. We used three judgment
criteria to ensure no redundancies in primitives that are constructed via extruding non-overlapping
footprints. EABNOF should provide some new ideas for handling footprints that are used for extrusion
and building 3D topologies based on 2D data.

In the 3D cadastral data model that was designed for EABNOF, 3D cadastral data are associated
with the footprints of a 2D cadaster, and the primitives of the 3D cadaster represent their geometries
through footprints and height values. Therefore, 3D cadastral geometric models and topologies can be
maintained by footprints in 2D. Thanks to these advantages, 3D cadastral data models can be used as
a transitional scheme in countries that have accumulated a considerable amount of 2D cadastral data.

In future work, we plan to apply EABNOF to 4D cadaster conditions (3D cadaster + time), which
will require us to modify the main operations of EABNOF. The time dimension can also be represented
as an interval, so we can perform operations on time intervals that are similar to those that are applied
for height values. Moreover, we plan to use EABNOF to construct models of LOD0 and LOD1 and
identify the topological connections between them. We also plan to study approaches to approximate
cadastral/property objects and the influences of the approximations on topological relationships.

Acknowledgments: This work was supported by the National Natural Science Foundation of China under Grant
Nos. 41471318 and 41501431.

Author Contributions: All six authors contributed to the work in this paper. Yuan Ding designed the main
operations of the EABNOF (Section 4); Nan Jiang and Changbin Wu designed the 3D cadastral data model
and reviewed the literature (Sections 2 and 3); Binqing Ma implemented the EABNOF (Section 5); Zhaoyuan
Yu improved the EABNOF and applied it to 3D cadasters (Section 4.3 and 6); and Ge Shi contributed to the
introduction and conclusions (Sections 1 and 6). All the authors worked collaboratively in writing this paper.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Aien, A.; Rajabifard, A.; Kalantari, M.; Williamson, I. Aspects of 3D Cadastre: A Case Study in Victoria.
In Proceedings of the FIG Working Week 2011, Marrakech, Morocco, 18–22 May 2011.

ISPRS Int. J. Geo-Inf. 2017, 6, 232 23 of 24

2. Stoter, J.; Salzmann, M. Towards a 3D cadastre: Where do cadastral needs and technical possibilities meet?
Comput. Environ. Urban Syst. 2003, 27, 395–410. [CrossRef]

3. Ledoux, H.; Meijers, M. Topologically consistent 3D city models obtained by extrusion. Int. J. Geogr. Inf. Sci.
2011, 25, 557–574. [CrossRef]

4. Zlatanova, S. 3D GIS for Urban Development. Ph.D. Thesis, ITC, Delft, The Netherlands, 2000.
5. Gröger, G.; Kolbe, T.; Nagel, C.; Häfele, K. OGC City Geography Markup Language (CityGML) Encoding

Standard, Version 2.0. Available online: http://www.opengeospatial.org/standards/citygml (accessed on
25 May 2017).

6. Chiang, H. Data Modelling and Application of 3D Cadastral in Taiwan. In Proceedings of the 3rd
International Workshop on 3D Cadastres: Developments and Practices, Shenzhen, China, 25–26 October
2012; pp. 137–157.

7. García, J.M.O.; Soriano, L.I.V.; Martín-Varés, A.V. 3D Modeling and Representation of the Spanish Cadastral
Cartography. In Proceedings of the 2nd International Workshop on 3D Cadastres, Delft, The Netherlands,
16–18 November 2011; pp. 209–222.

8. Stoter, J.E.; Ploeger, H.D. Property in 3D—Registration of multiple use of space: Current practice in Holland
and the need for a 3D cadastre. Comput. Environ. Urban Syst. 2003, 27, 553–570. [CrossRef]

9. Ying, S.; Guo, R.; Li, L.; He, B. Application of 3D GIS to 3D cadastre in urban environment. In Proceedings
of the 3rd International Workshop on 3D Cadastres: Developments and Practices, Shenzhen, China, 25–26
October 2012; pp. 253–272.

10. Ying, S.; Li, L.; Guo, R. Building 3D Cadastral System Based on 2D Survey Plans with SketchUp. Geo-Spat.
Inf. Sci. 2011, 14, 129–136. [CrossRef]

11. Benhamu, M.; Doytsher, Y. Toward a spatial 3D cadastre in Israel. Comput. Environ. Urban Syst. 2003, 27,
359–374. [CrossRef]

12. Guo, R.; Li, L.; Ying, S.; Luo, P.; He, B.; Jiang, R. Developing a 3D cadastre for the administration of urban
land use: A case study of Shenzhen, China. Comput. Environ. Urban Syst. 2013, 40, 46–55. [CrossRef]

13. Stoter, J.E. 3D Cadastre. Ph.D. Thesis, ITC, Delft, The Netherlands, 2004.
14. Thompson, R.J.; Van Oosterom, P. Validity of Mixed 2D and 3D Cadastral Parcels in the Land Administration

Domain Model. In Proceedings of the 3rd International Workshop on 3D Cadastres: Developments and
Practices, Shenzhen, China, 25–26 October 2012.

15. Yu, C.; Li, L.; Ying, S.; He, B.; Zhao, Z.; Wan, Y. Designing a Title Certificate for the Chinese 3D Cadastre. In
Proceedings of the 3rd International Workshop on 3D Cadastres: Developments and Practices, Shenzhen,
China, 25–26 October 2012; pp. 1–21.

16. Peres, N.; Benhamu, M. 3D Cadastre GIS—Geometry, Topology and Other Technical Considerations. In
Proceedings of the FIG Working Week 2009, Eilat, Israel, 3–8 May 2009.

17. Billen, R.; Zlatanova, S. 3D spatial relationships model: A useful concept for 3D cadastre? Comput. Environ.
Urban Syst. 2003, 27, 411–425. [CrossRef]

18. Van Oosterom, P.; Lemmen, C.; Uitermark, H. ISO 19152: 2012, land administration domain model published
by ISO. In Proceedings of the FIG Working Week 2013, Abuja, Nigeria, 6–10 May 2013.

19. Lemmen, C.; Van Oosterom, P.; Thompson, R.; Hespanha, J.P.; Uitermark, H. The Modelling of Spatial Units
(Parcels) in the Land Administration Domain Model (LADM). In Proceedings of the XXIV FIG International
Congress 2010, Sydney, Australia, 11–16 April 2010.

20. Coors, V. 3D-GIS in networking environments. Comput. Environ. Urban Syst. 2003, 27, 345–357. [CrossRef]
21. Molenaar, M. A formal data structure for three-dimensional vector maps. In Proceedings of the EGIS’ 90,

Amsterdam, The Netherlands, 10–13 April 1990; pp. 770–781.
22. Pilouk, M. Integrated modelling for 3D GIS. Ph.D. Thesis, ITC, Delft, The Netherlands, 1996.
23. Gröger, G.; Plümer, L. How to Get 3-D for the Price of 2-D—Topology and Consistency of 3-D Urban GIS.

Geoinformatica 2005, 9, 139–158. [CrossRef]
24. Herring, J.R. The OpenGIS abstract specification, Topic 1: Feature geometry (ISO 19107 Spatial schema),

Version 5. In OGC Document; Open Geospatial Consortium (OGC): Wayland, MA, USA, 2001.
25. Craig McCabe, E.M.C.T. Creating and Texturing Multipatch Features. Available online: http://www.esri.

com/news/arcuser/0111/3dcity.html (accessed on 13 July 2017).
26. Oracle Database Online Documentation 11g Release 2. Available online: http://docs.oracle.com/cd/E11882_

01/index.htm (accessed on 10 June 2017).

http://dx.doi.org/10.1016/S0198-9715(02)00039-X
http://dx.doi.org/10.1080/13658811003623277
http://www.opengeospatial.org/standards/citygml
http://dx.doi.org/10.1016/S0198-9715(03)00014-0
http://dx.doi.org/10.1007/s11806-011-0483-2
http://dx.doi.org/10.1016/S0198-9715(02)00036-4
http://dx.doi.org/10.1016/j.compenvurbsys.2012.07.006
http://dx.doi.org/10.1016/S0198-9715(02)00040-6
http://dx.doi.org/10.1016/S0198-9715(02)00035-2
http://dx.doi.org/10.1007/s10707-005-6431-2
http://www.esri.com/news/arcuser/0111/3dcity.html
http://www.esri.com/news/arcuser/0111/3dcity.html
http://docs.oracle.com/cd/E11882_01/index.htm
http://docs.oracle.com/cd/E11882_01/index.htm

ISPRS Int. J. Geo-Inf. 2017, 6, 232 24 of 24

27. Kazar, B.M.; Kothuri, R.; Van Oosterom, P.; Ravada, S. On Valid and Invalid Three-Dimensional Geometries.
In Advances in 3D Geoinformation Systems; van Oosterom, P., Zlatanova, S., Penninga, F., Fendel, E.M., Eds.;
Springer: Berlin/Heidelberg, Germany, 2008; pp. 19–46.

28. Ying, S.; Guo, R.; Li, L.; Van Oosterom, P.; Ledoux, H.; Stoter, J. Design and Development of a 3D Cadastral
System Prototype based on the LADM and 3D Topology. In Proceedings of the 2nd International Workshop
on 3D Cadastres, Delft, The Netherlands, 16–18 November 2011.

29. Okabe, A.; Boots, B.; Sugihara, K.; Chiu, S.N. Spatial Tessellations: Concepts and Applications of Voronoi Diagrams;
John Wiley & Sons: Hoboken, NJ, USA, 2009.

30. Arroyo Ohori, K.; Ledoux, H.; Stoter, J. A dimension-independent extrusion algorithm using generalised
maps. Int. J. Geogr. Inf. Sci. 2015, 29, 1166–1186. [CrossRef]

31. Requicha, A.A.; Voelcker, H.B. Constructive Solid Geometry; Technical Memorandum 25, Production
Automation Project; University of Rochester: Rochester, NY, USA, 1977.

32. Thibault, W.C.; Naylor, B.F. Set Operations on Polyhedra Using Binary Space Partitioning Trees. In
Proceedings of the ACM SIGGRAPH Computer Graphics, Anaheim, CA, USA, 27–31 July 1987; pp. 153–162.

33. Gursoz, E.L.; Choi, Y.; Prinz, F.B. Boolean set operations on non-manifold boundary representation objects.
Comput.-Aided Des. 1991, 23, 33–39. [CrossRef]

34. Requicha, A.A.; Voelcker, H.B. Boolean Operations in Solid Modeling: Boundary Evaluation and Merging
Algorithms. Proc. IEEE 1985, 73, 30–44. [CrossRef]

35. Masuda, H. Topological operators and Boolean operations for complex-based nonmanifold geometric models.
Comput.-Aided Des. 1993, 25, 119–129. [CrossRef]

36. Hachenberger, P.; Kettner, L.; Mehlhorn, K. Boolean operations on 3D selective Nef complexes: Data structure,
algorithms, optimized implementation and experiments. Comput. Geom. 2007, 38, 64–99. [CrossRef]

37. Naylor, B.; Amanatides, J.; Thibault, W. Merging BSP trees yields polyhedral set operations. ACM Siggr.
Comput. Graph. 1990, 24, 115–124. [CrossRef]

38. Kada, M.; McKinley, L. 3D building reconstruction from LiDAR based on a cell decomposition approach.
In Proceedings of the International Archives of Photogrammetry, Remote Sensing and Spatial Information
Sciences, Paris, France, 3–4 September 2009; pp. 47–52.

39. Vallet, B.; Pierrot-Deseilligny, M.; Boldo, D.; Brédif, M. Building footprint database improvement for 3D
reconstruction: A split and merge approach and its evaluation. ISPRS J. Photogramm. Remote Sens. 2011, 66,
732–742. [CrossRef]

40. Commandeur, T. Footprint Decomposition Combined with Point Cloud Segmentation for Producing Valid
3D Models. Master’s Thesis, ITC, Delft, The Netherlands, 2012.

41. Pouliot, J.; Roy, T.; Fouquet-Asselin, G.; Desgroseilliers, J. 3D Cadastre in the province of Quebec: A First
experiment for the construction of a volumetric representation. In Advances in 3D Geo-Information Sciences;
Kolbe, T., König, G., Nagel, C., Eds.; Springer: Berlin, Germany, 2011; pp. 149–162.

42. Guo, R.; Luo, F.; Zhao, Z.; He, B.; Li, L.; Luo, P.; Ying, S. The Applications and Practices of 3D Cadastre in
Shenzhen. In Proceedings of the 4th International Workshop on 3D Cadastres, Dubai, UAE, 9–11 November
2014; pp. 299–312.

43. Weiler, K.; Atherton, P. Hidden surface removal using polygon area sorting. In Proceedings of the ACM
SIGGRAPH Computer Graphics, San Jose, CA, USA, 20–22 July 1977; pp. 214–222.

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1080/13658816.2015.1010535
http://dx.doi.org/10.1016/0010-4485(91)90097-G
http://dx.doi.org/10.1109/PROC.1985.13108
http://dx.doi.org/10.1016/0010-4485(93)90097-8
http://dx.doi.org/10.1016/j.comgeo.2006.11.009
http://dx.doi.org/10.1145/97880.97892
http://dx.doi.org/10.1016/j.isprsjprs.2011.06.005
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	3D Cadastral Data Model for EABNOF
	Geometry
	Entity
	Topology
	Limitations of the Data Model

	EABNOF
	Boolean Set Operations in EABNOF
	Generating Non-Overlapping Footprints
	Splitting the Extrusion Intervals of Two Footprints
	Removing Overlaps between Two Footprints
	Propagating Extrusion Intervals
	Process for Generating All Non-Overlapping Footprints

	Constructing Geometric Models and Topology without Redundancies
	Identifying Redundant Primitives
	Construction of Geometric Models and Topological Features

	Implementation
	Constructing Polygons for Footprint Faces
	Adjusting the Positions of Footprint Faces

	Case Study
	Current Cadaster of Pozi Street
	Case 1: Building Complex
	Case 2: All the Property Objects of Pozi Street

	Conclusions

