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Abstract: As an intermediate step between raw remote sensing data and digital maps, remote
sensing data classification has been a challenging and long-standing problem in the remote sensing
research community. In this work, an automated and effective supervised classification framework
is presented for classifying high-resolution remote sensing data. Specifically, the presented method
proceeds in three main stages: feature extraction, classification, and classified result refinement.
In the feature extraction stage, both multispectral images and 3D geometry data are used, which
utilizes the complementary information from multisource data. In the classification stage, to tackle
the problems associated with too many training samples and take full advantage of the information
in the large-scale dataset, a random forest (RF) ensemble learning strategy is proposed by combining
several RF classifiers together. Finally, an improved fully connected conditional random field (FCCRF)
graph model is employed to derive the contextual information to refine the classification results.
Experiments on the ISPRS Semantic Labeling Contest dataset show that the presented 3-stage method
achieves 86.9% overall accuracy, which is a new state-of-the-art non-CNN (convolutional neural
networks)-based classification method.

Keywords: semantic labeling; random forest; conditional random field; differential morphological
profile; ensemble learning

1. Introduction

As one of the most challenging and important problems in the remote sensing community,
high-resolution remote sensing data classification is very useful for many applications such as
geographical database construction, digital map updating, 3D building reconstruction, land cover
mapping and change detection. The objective of this kind of classification task is to assign an object
class to each spatial position recorded by the given data. Although many different algorithms have
been proposed in the past, many of the problems related to the classification task have not been
solved [1]. Based on different criteria, the existing classification methods can be categorized into
several groups. A brief review of these existing methods is provided in the following.

According to the types of data sources employed, the existing methods can be categorized into
image-based classification, 3D point cloud-based classification and data fusion-based classification.
Image-based classification only makes use of the available multispectral or hyperspectral image as
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the sole data source in the classification, as done in previous studies [2,3]. Three dimensional points
acquired by light detection and ranging (LIDAR) and dense image matching techniques [4,5] are other
effective data sources for classification. For example, Vosselman [6] used high-density point clouds
of urban scenes to identify buildings, vegetation, vehicles, the ground, and water. Zhang et al. [7]
used the geometry, radiometry, topology and echo characteristics of airborne LIDAR point cloud to
perform an object-based classification. To exploit the complementary characteristics of multisource
data, data fusion based methods are also popular and have been proven to be more reliable than the
single-source data methods used by many researchers [8]. For example, both images and 3D geometry
data have been used in several previous studies [9–12].

In terms of the basic element employed in the classification process, the existing methods can be
categorized as object-based and pixel/point-based. Object-based methods typically use a cascade of
bottom-up data segmentation and regional classification, which makes the system commit to potential
errors from the front-end segmentation system [13]. For instance, Gerke [14] first segmented an image
into small super-pixels and then extracted the features of each super-pixel to input to an AdaBoost
classifier. Zhang et al. [7] first grouped points into segments using a surface growing algorithm then
classified the segments using a support vector machine (SVM) classifier. Pixel/point-based methods
leave out the segmentation process and directly classify each pixel or point. However, due to the
lack of contextual information, the classified results usually seem noisy. As a remedial measure, a
conditional random field (CRF) is usually used to smooth the classification result. For example, both
Marmanis et al. [15] and Paisitkriangkrai et al. [1] used deep convolutional neural networks (CNN) to
classify each pixel, then used a CRF to refine the results, whereas Niemeyer et al. [16] first classified
each 3D point using a random forest (RF) classifier then smoothed them using a CRF.

Based on the classifiers used, the existing methods can be divided into two types: unsupervised
and supervised. For the unsupervised methods, expert knowledge of each class is usually summarized
and used to classify the data into different categories. For instance, a rule-based hierarchical
classification scheme that utilizes spectral, geometry and topology knowledge of different classes
was used by both Rau et al. [9] and Speldekamp et al. [17] to classify different data. For the
supervised methods, samples with labeled ground truth data are first used to train a statistical
classifier (e.g., AdaBoost, SVM and RF), then the samples without labels are classified by this learned
classifier. Previously, samples from small areas have been used to train the classifier, and the features
of these samples have all been designed manually [7,16,18]. More recently, with the progress of
sensor technology, an increasing amount of high quality remote sensing data are available for research.
At the same time, progress in graphic processing unit (GPU) and parallel computing technology has
significantly increased the computing capability, such that learning a more complicated classifier
with a larger amount of training data has becomes accessible to more researchers. Specifically, one
of the most successful practices in this direction was the launch of deep CNN (convolutional neural
networks) [19–22] in the computer vision community, which has become the dominant method
for visual recognition and semantic classification [13,23–26]. Furthermore, one of the most distinct
characteristics of CNN is its ability to automatically learn the most suitable features, which has made
the manual feature extraction process that is used in the traditional supervised-based classification
methods unnecessary. Although there exists great differences between the data used in the computer
vision community and the data used in the remote sensing community, some researchers [1,27]
have found that the CNN models trained by the computer vision community generalize the remote
sensing data and some of the features learned by the models were more discriminative than the
hand-crafted features.

To promote the scientific progress of remote sensing data classification, the international society
for photogrammetry and remote sensing (ISPRS) launched a semantic labeling benchmark [28] in
2014. Using the datasets provided by the benchmark, different classification methods can be evaluated
and compared conveniently. We have observed an interesting phenomenon from these evaluated
classification methods. On the one hand, the performances of the CNN-based methods are generally
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better than the non-CNN-based methods. On the other hand, the non-CNN-based methods generally
use fewer training samples than the CNN-based methods. As a result, we want to explore whether the
notable gap between the non-CNN and CNN-based methods can be reduced by training a traditional
supervised classifier with a larger training dataset.

It is widely known that for CNN-based methods, more benefits are gained when more training
data are available. However, too many training samples may lead to disaster for some traditional
supervised classifiers. For example, SVMs trained by a large-scale dataset often suffer from large
memory storage requirements and extensive time consumption, since an SVM solves a complex dual
quadratic optimization problem [29]. In addition, the existence of too many support vectors makes
the solving process extremely slow [30]. Although the RF and AdaBoost classifiers can theoretically
handle a large-scale dataset, the large memory storage and computational load still hamper their
applications to big training datasets. To tackle this problem and take full advantage of the information
in the large-scale dataset, an RF-based ensemble learning strategy is proposed by combining several
RF classifiers together in the present study. Ensemble learning or a multiple classifier system (MCS)
is well established in remote sensing and has shown great potential to improve the accuracy and
reliability of remote sensing data classification over the last two decades [31–33]. For example, Waske
et al. [34] fused two SVM classifiers to classify both optical imagery and synthetic aperture radar data,
and each data source was treated separately and classified by an independent SVM. Experiments have
shown that their fusion method outperforms many approaches and significantly improves the results
of a single SVM that was trained on the whole multisource dataset. Ceamanos et al. [35] designed
a classifier ensemble to classify hyperspectral data. Spectral bands of the hyperspectral image were
first divided into several subgroups according to their similarities. Then, each group was used to
train an individual SVM classifier. Finally, an additional SVM classifier was used to combine these
classifiers together. The results also demonstrated the effectiveness of their model fusion scheme.
Recently, several fusion methods have investigated the dependence among detectors or classifiers.
For example, Vergara et al. [36] derived the optimum fusion rule of N non-independent detectors in
terms of the individual probabilities of detection and false alarms and defined the dependence factors.
This could be a future line of research in the remote sensing community. In the present study, remote
sensing data (both multispectral images and 3D geometry data) are first divided into tiles. Then, some
of them are selected and labeled by a human operator. After that, each selected and labeled tile is
used to train an individual RF model. Finally, a Bayesian weighted average method [31] is employed
to combine these individual RF models into a global classifier. In addition, to take full advantage of
the contextual information in the data, an effective fully connected conditional random field (FCCRF)
model is constructed and optimized to refine the classified results.

In general, the present study describes a pixel-based, supervised and data fusion-based method.
The main contributions of the current study are three-fold. First, a new RF ensemble learning strategy
is introduced to explore the information in the large-scale training dataset. Second, through utilizing
the contextual information, an improved FCCRF graph model is designed to refine the classification
result. Third, an efficient pipeline is designed and parallelized to classify the multisource remote
sensing data. By testing the method on the ISPRS Semantic Labeling Contest, we achieved the highest
overall accuracy among the non-CNN-based methods, which provides a state-of-the-art method and
reduces the gap between the non-CNN and CNN-based methods.

The rest of this paper is organized as follows. In Section 2, details of the presented high-resolution
remote sensing data classification method are elaborated. Then, experimental evaluation and analysis
are reported in Section 3, and followed by some concluding remarks and future work in Section 4.

2. Methodology

The present study is composed of three main parts. First, both the high-resolution multispectral
image and the 3D geometry data are used for feature extraction, and a total of 24 different features are
extracted from each pixel. Second, using these pixels (samples), an RF ensemble model (constructed
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by combining several individual RF models; denoted by RFE) is trained and used to classify the
scene. Finally, the noisy classification results are input into a learned FCCRF model, and a long-range
dependencies inference is used to refine the classification results. Figure 1 shows the pipeline of the
proposed method.ISPRS Int. J. Geo-Inf. 2017, 6, 245  4 of 26 
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2.1. Feature Extraction

Four types of features are employed in this work, spectral features from the multispectral image,
texture features from the multispectral image, height-related features from the 3D geometry data and
differential morphological profile features from the 3D geometry data.

2.1.1. Spectral Features

The spectral features used in this paper refer to two types, the features in different color spaces
and the vegetation index. They are defined as follows.

(1) Features in different color spaces. Because each color space has its advantages, the HSV [37]
and CIE Lab [38] color spaces commonly used in computer graphics and computer vision are
employed in addition to the original RGB color space to provide additional information. The HSV
color space decomposes colors into their hue, saturation and value components and is a more
natural way to describe colors. The CIE Lab color space is designed to approximate human vision.
The CIE Lab aspires to achieve perceptual uniformity and is handy to measure the distance of a
given color to another color. In Section 3, we will see that both the HSV and CIE Lab are the more
effective color spaces to classify remote sensing data compared to the original RGB color space.

(2) Vegetation index. To discriminate vegetation from other classes effectively, one of the most
popular vegetation indices in remote sensing, the Normalized Difference Vegetation Index (NDVI)
defined as NDVI = IR−R

IR+R , is considered. NDVI is based on the fact that green vegetation has low
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reflectance in the red (R) spectrum due to chlorophyll and much higher reflectance in the infrared
(IR) spectrum because of its cell structure.

2.1.2. Image Texture Features

Image texture can quantify the intuitive qualities in terms of rough, smooth, silky, or bumpy as
a function of the spatial variation in the pixel intensities. The effectiveness of using image texture
features for remote sensing data classification has been justified by several studies [39–41]. Similar
to [42], the following image texture features are calculated in this work:

(1) Local range frange represents the range value (the maximum value minus the minimum value) of
the neighborhood centered at the pixel. In areas with a smooth texture, the range value will be
small; in areas with a rough texture, the range value will be larger.

(2) Local standard deviation fstd corresponds to the standard deviation of the neighborhood centered
at the pixel. It can describe the degree of variability of a certain region.

(3) Local entropy fentr = −
n
∑

i=1
pi log(pi), where pi(i = 1, 2, ..., n) represents the statistics of the local

histogram distribution, measures the entropy value of the neighborhood centered at the pixel.
It indicates the randomness of a certain region.

When computing the three image texture features, as done in [43], the multispectral color images
are first converted to gray images, and then a 3-by-3 neighborhood centered at each pixel is used for
the fstd and frange calculations, and a 9-by-9 neighborhood is used for the fentr computation.

2.1.3. Height Related Features

The height related features can be divided into two types: height features and height-based
texture features. They are detailed as follows.

(1) Height features. The corresponding digital surface model (DSM) value and the normalized digital
surface model (NDSM) value for each pixel are directly used as the height features. The NDSM is
defined as the difference between the DSM and the derived DEM, which describes an object’s
height above the ground and can be used to distinguish the high object classes from the low
object classes. Note that the height features are also used in [1,14,17].

(2) Height-based texture features. The height-based texture features or the elevation texture features
used in this study are similar to the image texture features calculated in Section 2.1.2. The features
include the local geometry range feature f g

range, the local geometry standard deviation feature
f g
std and the local geometry entropy feature f g

entr. In this study, we calculate these features from
the DSM.

2.1.4. Differential Morphological Profile Features

Morphological profile (MP) or differential morphological profile (DMP) is an effective feature
extraction method that is usually used for image classification in remote sensing [3,44]. It is used to
extract the shape and size of objects based on morphological operations (e.g., opening and closing) by
reconstruction. As illustrated in Figure 2, for a certain image I, let γ∗k and η∗k be the morphological
opening and closing operators with structuring element SEk, then ∏ γ(x) and ∏ η(x) are the opening
and closing profiles at pixel x of image I, which can be obtained by Equations (1) and (2), respectively.

∏ γ(x) = {∏ γk : ∏ γk = γ∗k (x), ∀k ∈ [0, n]}, (1)

∏ η(x) = {∏ ηk : ∏ ηk = η∗k (x), ∀k ∈ [0, n]}. (2)
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Figure 2. Illustration of the basic principle of the DMP.

The DMP is defined as a vector where the measure of the slope of the opening-closing profile is
stored for every step of an increasing SE series SEk = f (k) (k = 0, 1, 2, ...n). The differential of the
opening profile ∆γ(x) and the closing profile ∆η(x) are defined as,

∆γ(x) = {∆γk : ∆γk = ∏ γk −∏ γk−1, ∀k ∈ [1, n]}, (3)

∆η(x) = {∆ηk : ∆ηk = ∏ ηk −∏ ηk−1, ∀k ∈ [1, n]}. (4)

Generally, the differential of the morphological profile ∆(x) or the DMP can be written as
the vector,

∆(x) =

{
∆c :

〈
∆c = ∆ηk=n−c−1, ∀c ∈ [1, n]

∆c = ∆γk=c−n, ∀c ∈ [n + 1, 2n]

}
, (5)

where n is the total number of iterations, c = 1, . . . , 2n, and |n− c| is the size of the morphological
transform [45,46].

Here, we use the morphological opening operators with increasing square structuring element
sizes by SEk = 2k + 1(k = 1, 2...7) to continually process the DSM. The changes brought to the DSM by
the different sized opening operators are then stacked, and the residuals between the adjacent levels
are computed to form the 6 final DMP features, dmp-n (n = 2, 3, . . . 7).

Finally, we list all 24 features and their abbreviations in Table 1. The contribution rate of each
feature to the classification will be explored and compared in Section 3.
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Table 1. Different types of features and their abbreviations used in this work.

Features from Multispectral Image Features from 3D Geometry Data

Type Abbreviation Type Abbreviation

RGB color space
R Digital surface model DSM

IR Normalized DSM NDSM

G

DMP of different
structuring element size

dmp-2

CIE Lab color space
Lab-l dmp-3

Lab-a dmp-4

Lab-b dmp-5

HSV color space
HSV-h dmp-6

HSV-s dmp-7

HSV-v
Elevation texture

range-g

Vegetation index NDVI std-g

Texture
range entr-g

std

entr

2.2. Classification Based on Random Forest Ensemble

Random Forest (RF) is one of the most popular machine learning methods thanks to its relatively
good accuracy, robustness and ease of use. It is an ensemble learning method for classification,
that operates by constructing a multitude of decision trees during training and integrating the class
probabilities of the individual trees at the testing stage [47,48]. The training algorithm for RF applies
the bootstrap aggregating (bagging) techniques to the tree learners. For a training set X = x1, x2, ..., xn

with labels C = c1, c2, ..., cn, RF bagging repeatedly (B times) selects a random sample with replacement
of the training set and fits the trees to these samples, as shown in Algorithm 1.

Algorithm 1. Pseudo code for the RF training algorithm.

Input: Training set X ∈ {xi|i = 1, 2, ...n} with labels C ∈ {ci|i = 1, 2, ...n}, parameters B
1: Tree set {T} ← ∅
2: For t = 1 to B do
3: {Xt, Ct} construction by randomly sampling 2

3 n times from {X, C} with replacement
4: Train a decision tree Tt on {Xt, Ct}
5: {T} ← {T} ∪ Tt

6: End For
7: Return Tree set {T}

After training, a tree set {T} can be obtained to predict the classes of the unseen samples by
taking the majority vote from all individual classification trees. As shown in Figure 3, the unseen
sample V is input into 3 individual decision trees. The class probabilities pt(c|v) of each tree are first
computed, then the final classification result is obtained by averaging all 3 probability distributions
using Equation (6) [49].

p(c|v) = 1
B

B

∑
t=1

pt(c|v) (6)

In addition to the predicted class probabilities, RF can also be used to rank the importance of
features using the Gini index or the out-of-bag (oob) error [50]. During the model training process, the
oob error for each sample is recorded and averaged over the entire forest. To measure the importance
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of the j− th feature, after training, the values of the j− th feature are permuted among the training
data and the oob error is again computed on this perturbed data set. The importance score for the j− th
feature is computed by averaging the difference in the oob errors before and after the permutation
over all trees. The features that produce large values for this score are ranked as more important than
the features that produce small values.

Some researchers claim that the feature importance measures may provide misleading results
when the variables are of different types, or the number of levels differs in different categorical
variables [51,52]. However, the effectiveness and robustness of this measure have been recognized by
more researchers [50,51,53], especially the researchers in the remote sensing community [54,55].ISPRS Int. J. Geo-Inf. 2017, 6, 245  8 of 26 
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To take full advantage of the information in the large-scale dataset, we trained several RF
models independently and fused them to form an RF ensemble to predict the final label of each
pixel. In Figure 4, the flowchart for training this ensemble model is provided, and we detail each step
as follows.
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In the sample selection and partition stage, a tile-based strategy is used to partition the samples
into a training set, a validation set, and a testing set. Specifically, the large urban area covered by the
samples (pixels) is first cut into several small tiles, as shown in Figure 5. Then, we partition samples by
dividing the tiles into different groups. After this partition, each type of sample consists of several
tiles, and they are input into the different stages for training or testing purposes. In detail, the training
samples are used to train the individual RF models; the validation samples are used to both fuse the
trained RF models and learn the hyper parameters of the FCCRF model; the effects of each strategy
employed in the proposed method is validated using the testing samples. To avoid a serious imbalance
of the classes in the training samples, we try to maintain the class balance of the training data in each
tile by adjusting the tile size at the tile cutting stage. Furthermore, at the sample selection stage, only
those samples that are not located in the object border areas within each tile are selected as valid, since
the samples located in the border areas are likely to be mixed and incorrect pixels.
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During the classifier training stage, each tile from the training set is used to train an individual RF
model using Algorithm 1, and several RF classification models are obtained. The feature importance
indicator of each RF model is also computed in this step.

Finally, at the model fusing stage, the validation set is used to fuse the trained RF models.
Specifically, the validation set is classified by each RF model, and the corresponding classification
accuracy is computed. By weighting the prediction result of each model in accordance with its
classification accuracy, the class probabilities p(c|v) of the RFE model is obtained, as defined in
Equation (7)

p(c|v) =
N

∑
i=1

wi pi(c|v)/
N

∑
i=1

wi , (7)

where N is the number of RF models, wi is the weight of the i − th RF, and pi(c|v) is the class
probabilities generated by the i− th RF. At the same time, the feature importance indicator of RFE,
ϕ( f j) is obtained by fusing the feature importance indicator of each RF model using Equation (8)

ϕ( f j) =
N

∑
i=1

wi ϕi( f j)/
N

∑
i=1

wi , (8)

where N and wi are the same as the parameters defined in Equation (7), and ϕi( f j) is the feature
importance score of the j− th feature generated by the i− th RF model.

2.3. Fully Connected CRF for Refinement

The RFE model can produce the probability of each class conveniently and classify the remote
sensing data efficiently. However, this pixel-based classification strategy labels the image pixels
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independently, which does not take into account the interrelations among them. Therefore, in this
section, we further improve the classification performance by employing an effective CRF graph model
that can exploit the contextual information from the classified area.

Although using the classical contrast-sensitive potentials [56] in conjunction with the local-range
CRF can potentially improve the results, we found that some thin-structures (tree, low vegetation
or cars in the scene) may also be smoothed out in practice, which is harmful to the classification.
To overcome these limitations of a short-range CRF, we adopt a long-range FCCRF model in this work;
see Section 2.3 for details. In Figure 6, the results of two testing areas refined using short-range CRF
and long-range FCCRF methods are compared.ISPRS Int. J. Geo-Inf. 2017, 6, 245  10 of 26 
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The FCCRF model was first proposed by Krahenbuhl [57] to solve the multiclass image
segmentation and labeling problems. As shown in Figure 7, different from the commonly used
short-range CRF models [56,58], this complete graph model sees each pixel as a node, and every two
nodes are connected by an edge. Then, the corresponding energy function is defined as

E(X) = ∑
i∈V

ϕu(xi) + ∑
(i,j)∈E

ϕp(xi, xj), (9)

where V is the node set, E is the edge set and X is the label configuration for the graph. The unary
potential ϕu(xi) is defined as ϕu(xi) = − log P(xi), where P(xi) is the label assignment probability of
pixel i generated by a certain classifier. The pairwise potential ϕp(xi, xj) is defined as

ϕp(xi, xj) = µ(xi, xj)
K

∑
m=1

w(m)k(m)(fi, fj), (10)

where µ(xi, xj) is a label compatibility function, which can be given by the simple Potts model,
µ(xi, xj) = [xi 6= xj], or by learning as done in a previous study [57]. Each k(m) is a Gaussian kernel
weighted by w(m), fi and fj are the feature vectors of pixel i and j in a feature space, and they are usually
built over the information from pixel positions pi and the spectral bands Ii. Then, the commonly used
combined kernels can be expressed as

w(1) exp(−
‖ pi − pj ‖2

2σ2
α

−
‖ Ii − Ij ‖2

2σ2
β

) + w(2) exp(−
‖ pi − pj ‖2

2σ2
γ

). (11)
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The first kernel encourages the nearby pixels with similar features to take the same label and the
second kernel smooths the result by removing small isolated regions. The hyper parameters σα, σβ

and σγ control the degree of the kernels’ scales. Finally, to minimize this energy function, a mean-field
approximate inference algorithm is usually used to refine the label configurations.
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Figure 7. Comparison of the short-range CRF and the fully connected CRF models. (a) In the
short-range CRF, only the 4 nearest neighbors are connected to a certain node; (b) in the fully connected
CRF, every two nodes are connected by an edge (from [59]).

The flowchart of the FCCRF-based refinement implemented in the current study is shown in
Figure 8, where we can see that the class probabilities generated by the RFE are used to construct the
unary potential ϕu(xi). We keep the basic form of the pairwise potential ϕp(xi, xj) unchanged. See
Equation (10), where the label compatibility function µ(xi, xj) is set to 1 if xi 6= xj, and 0 otherwise
(i.e., Potts Model). Different from previous studies, after a feature importance analysis, the feature
importance indicators generated by the trained RFE model are used to construct the feature spaces fi
and fj, then Equation (11) is written as:

w(1) exp(−
‖ pi − pj ‖2

2σ2
α

−
‖ Si − Sj ‖2

2σ2
β

) + w(2) exp(−
‖ pi − pj ‖2

2σ2
γ

), (12)

where Si and Sj are the 3 most important features selected by RFE model and all other parameters
are the same as the parameters defined in Equation (11). To minimize this energy function, we
use a mean-field approximate inference algorithm [60] to refine the configuration of the labels.
This approximation is iteratively optimized through a series of message passing steps, each of which
updates a single variable by aggregating information from all other variables; its efficiency for the
FCCRF inference has been demonstrated by Krahenbuhl [57].
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Like the model fusion stage in Section 2.2, the validation set is also used in this stage to learn
the best values of the hyper parameters w(1), w(2), σα, σβ and σγ in Equation (12). As described in
Chen [13], a two level coarse-to-fine grid search scheme is used to search for the best values.

3. Experimental Evaluation

The proposed method in this paper is implemented in C++. Moreover, the OpenCV library [61]
is used to supply the RF classifier, and the DenseCRF library [62] is used to optimize the FCCRF
graph model. All experiments are performed on an Intel(R) Xeon(R) 8 core CPU @ 3.7 GHz processor
with 32 GB RAM. To promote computation efficiency, the main steps of the proposed method are
parallelized. Specifically, in the RFE model training stage, we parallelize the presented algorithm by
training each single RF classifier with an individual thread. In the classification stage of the RFE model,
we parallelize the presented algorithm at the sample level. In addition, the hyper parameters learning
stage of the FCCRF model is also parallelized.

3.1. The Testing Data Set

The ISPRS Semantic Labeling Contest dataset from Vaihingen [28] is used to test the proposed
method. The Vaihingen study site is approximately 25 km northwest of Stuttgart, Germany. As a
typical European city, there are three main types of locations: “inner city”, “high rise”, and “residential
areas”. The center of this city is the “inner city”, and it is characterized by dense development
consisting of historic buildings with rather complex shapes and trees. Around the “inner city”, the
“high rise” areas are characterized by a few high-rising residential buildings that are surrounded by
trees. The “residential areas” are purely residential areas with small detached houses.

The original data in this dataset were captured by the German Association of Photogrammetry
and Remote Sensing (DGPF) in the summer of 2008 using a Digital Mapping Camera System (DMC).
In 2012, the Trimble INPHO 5.3 software was used to generate the 3D point cloud and the DSM using
dense image matching. The true orthophoto (TOP) mosaic, with 3 bands of near-infrared, red and
green delivered by the camera, is generated by Trimble INPHO OrthoVista, as shown in Figure 9.
Both the TOP and the DSM have 9 cm ground sampling distances (GSD). That is, the TOP and the
DSM are defined on the same grid, so it is not necessary to consider the geocoding information in
the processing. In 2014, the ISPRS benchmark for Semantic Labeling Contest was launched. For
convenience, the large TOP and DSM are divided into 33 small tiles with different sizes according
to the scene content; in total, there are over 168 million pixels (see Figure 9). At the same time, to
evaluate the classification results of the different methods and provide enough training samples for the
supervised machine learning algorithm, manually labeled ground truth data for each tile are added to
the dataset (see Figure 10).
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Figure 9. The true orthophoto of the test area, which is divided into 33 tiles.
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(b) “no boundary” ground truth, the black areas in this reference will be ignored during evaluation.

Only part of the labeled ground truth data (16 of 33) is publicly available, and the remaining
ground truth data are unavailable and remain with the benchmark test organizers for evaluating
the submitted results. There are six common land cover categories, impervious surfaces, building,
grass, tree, car, and clutter/background. In addition to the “full reference” ground truth, the “no
boundary” ground truth is also provided to reduce the impact of uncertain border definitions where
the boundaries of objects are eroded by a circular disc with a 3-pixel radius. Those eroded areas are
then ignored during evaluation (see Figure 10).

3.2. Experiment Setup and Details

In the feature extraction stage, the true orthophoto is the source of the spectral features. Using this
image, the HSV and CIE Lab color space features are first computed according to their definition,
followed by the NDVI and the three image texture features defined in Section 2.1. For the geometry
features, the DSM provided by the benchmark is directly used to generate other features. Like many
other researchers [1,14,63], the results provided by Gerke [14] are used for the NDSM feature. Finally,
all 24 features are normalized to [0, 255] for the subsequent classification.

To train the RFE classifier, the 16 tiles with labeled ground truth data are divided into the training,
validation and testing sets. Specifically, the validation set consists of 3 tiles (areas: 26, 28, 30) and the
testing set consists of 3 tiles (areas: 32, 34, 37). The remaining 10 tiles represent the training set, and
each tile is used for training an individual RF classifier. In detail, there are approximately six million
training samples on average for training each RF classifier. The number of trees and the number
of prediction variables need to be provided for each RF. We find that the classification results are
not sensitive to these parameters, consistent with the reports in previous studies [55,64]. At last, the
number of trees and the number of prediction variables are set to 100 and 4 respectively for all the
10 RF classifiers. Finally, the RFE classifier is obtained by fusing the 10 classifiers with the aid of the
validation set, see Section 2.2.
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In terms of the FCCRF-based refinement, as described by Krahenbuhl [57], we found that the
kernel parameters w(2) and σγ do not significantly affect the classification accuracy but yield a small
visual improvement. Therefore, these parameters are all set to 3 by default in the experiment. With
respect to the hyper parameters w(1), σα and σβ, we obtain them from a two-level grid search scheme.
At the first level, we search for values of w(1) in the range of (3, 10), with steps of 2; σα and σβ

are searched in the range of (5, 50) and (5, 100), respectively, with steps of 5. At the second level,
we decrease all search steps to 1 around the best values of the first round. In the final mean-field
approximate inference stage, we fix the number of mean field iterations to 10 for all experiments.

3.3. Experiment Validation

3.3.1. Feature Importance Analysis

The feature importance indicator is employed to validate the selected features, as shown in
Figure 11. The feature importance indicator is the average value of the 10 RF classifiers. From this, we
can see that the geometry feature NDSM derived from the 3D geometry data and the spectral feature
NDVI derived from the multispectral image are the two most important features in the experiment.
This result shows that both types of data sources are important and indispensable for accurate semantic
classification. When comparing their importance by taking all features together, we found that the
contribution rates derived from the multispectral image and the 3D geometry data were 69% and
31%, respectively. For the top-12 features, 7 are derived from the multi-spectral image and 5 are
derived from the 3D geometry data. This finding reveals that the multispectral image plays a more
important role than the 3D geometry data. Considering that there are three bands used to generate the
multispectral image-based features but only one band used to compute the geometry-based features,
we believe it is reasonable that more information is contained in the multispectral data. Certainly, the
quality and number of features selected in this work also affect the comparison.

When comparing the contribution rates of the three different color space features, we see that
both the CIE Lab (15.1%) and the HSV (13.8%) color spaces are larger than the RGB color space
(11.0%). Furthermore, nearly all types (color space, vegetation index, texture, height, DMP) of features
computed appeared in the top-12 feature set, and their orders seem reasonable, which proves the
effectiveness of the feature extraction strategy used in this study.
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3.3.2. Effect of Random Forest Ensemble

One of the main contributions of this work is the model fusion strategy. To show the effectiveness
of the strategy on classification, we provide the overall accuracies of 10 single RF classifiers and the
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RFE classifier tested on three different areas in Table 2. From these results we can see that for each
area, the classification accuracies from 10 single RF classifiers change in a large range ([50.56%, 87.77%]
for area 32, [59.92%, 88.05%] for area 34 and [56.92%, 86.62%] for area 37). However, the training
accuracies ([89.56%, 94.73%]) of the 10 classifiers are rather close. This reveals that the over-fitting
occurred in some individual RF classifiers. When we combine these individual RFs together, the
highest classification accuracies in all the three areas are obtained. That is, using RF model fusion,
we alleviate the over-fitting problem in single RFs and improve the discrimination ability of the final
classifier. This demonstrates that training a more complicated model with a larger scale dataset is
beneficial for classification, which is consistent with the conclusions drawn by Waske et al. [34] and
Ceamanos et al. [35].

Table 2. Overall accuracies of 10 single RF classifiers (their training accuracies are shown in the second
row) and the RF ensemble (RFE) tested on the testing set (area: 32, 34 and 37). The highest accuracy
values for each area are shown in bold.

Training Accuracy
RF-1 RF-2 RF-3 RF-4 RF-5 RF-6 RF-7 RF-8 RF-9 RF-10 RFE

92.8 92.1 94.7 93.4 92.4 89.6 89.7 93.6 92.2 90.6 –

Area-32 83.8 87.8 84.0 84.6 85.9 50.6 84.9 76.8 68.5 71.5 88.0
Area-34 82.1 88.1 80.7 86.0 87.0 68.9 82.5 82.5 59.9 65.7 88.1
Area-37 85.6 86.6 82.1 85.3 84.0 71.1 84.5 83.2 56.9 67.6 86.8
Average 83.8 87.5 82.3 85.3 85.6 63.5 84.0 80.9 61.8 68.2 87.6

The overall accuracies of different RF ensembles after combining different number of RF classifiers
are given in Table 3. The accuracies in Table 3 are used to explore the robustness of the model fusion
strategy with respect to different training set sizes. Specifically, RFE-10 represents the RF ensemble that
combined 10 RF classifiers, and each RF classifier is labeled as RF-1, RF-2, . . . and RF-10, respectively.
After that, we remove the two RF classifiers that had the highest and lowest accuracies, and then
combined the rest of the RF classifiers together to form a new RF ensemble, namely RFE-8. Then, by
removing the highest and lowest ones again among the 8 RF classifiers, RFE-6 is obtained. A similar
procedure is used to obtain RFE-4 and RFE-2. Table 3 shows that the accuracies achieved by the RFE
classifiers are generally higher than those achieved by component classifiers. That is, the proposed
model fusion strategy is robust with respect to different training set sizes.

Table 3. Overall accuracies of the RF ensemble (RFE) with different numbers of RF classifiers.

Testing Accuracy
RF-1 RF-2 RF-3 RF-4 RF-5 RF-6 RF-7 RF-8 RF-9 RF-10

Accuracy
83.8 87.5 82.3 85.3 85.6 63.5 84.0 80.9 61.8 68.2

RFE-10
√ √ √ √ √ √ √ √ √ √

87.6
RFE-8

√ √ √ √ √ √ √ √
87.1

RFE-6
√ √ √ √ √ √

86.9
RFE-4

√ √ √ √
86.8

RFE-2
√ √

86.1

3.3.3. Effect of Fully Connected CRF

Although the classification performance of an RF can be promoted dramatically by model fusion,
there are still some obvious artifacts in the classified maps, since the context information is not
considered in the classification process, as shown in Figure 12a. To smooth this noisy classification
map, CRF and its variants are commonly used techniques [1,13,16,57,65]. As described in Section 2.3,
an improved FCCRF is used in this study and the effect is shown in Figure 12b. By comparing it with
Figure 12a, we found that the labels of some small misclassified regions are reassigned correctly, and
the visual effect is improved significantly. In Figure 12c, the classification result refined by the classical
short-range CRF is also shown. As in Figure 12b, its visual improvement is also evident. However, the
superiority of the FCCRF can be observed in those areas inside the red ellipses.
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Qualitatively speaking, our results also fall into the general paradigm that the CRF can generally
improve the visual quality. However, from the quantitative perspective, there are different conclusions.
For example, in a previous study [14], the authors stated that the CRF reduced the overall classification
accuracy in their case. We think this is partially related to the classification strategies employed.
For example, a CRF defined on the super-pixel level usually has a negative effect on the accuracy [14].
On the other hand, the values assigned to the hyper parameters in the graph model have a great
influence on the final accuracy. In this study, we found a maximum accuracy increment of 0.88%
with the hyper parameters w(1) = 3, σα = 20 and σβ = 31. However, only 0.57% of the increase is
achieved by the classical short-range CRF. To investigate the influences of the hyper parameters on
our improved pixel-level FCCRF model thoroughly, we show the relationship between the parameter
values and the classification accuracy in Figure 13. Figure 13 suggests that when σα ∈ [15, 25] and
σβ ∈ [20, 40] a satisfactory result can be obtained. Otherwise, the accuracies declined sharply.
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Figure 12. The classification results before and after the CRF refinement. (a) Classification map
generated by the RFE; (b) The refined classification map produced by our long-range FCCRF; (c) The
refined classification map produced by the classical short-range CRF.
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Figure 13. Influence of the hyper parameter values (w(1), σα and σβ ) on the final classification accuracy.
The experiment is implemented on the 3 tiles (named Val-1, Val-2 and Val-3) of the validation set.
(a) Influence of σα; (b) influence of σβ.
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In addition to the improved FCCRF, we also investigated the hyper parameters of the original
FCCRF model [57], which obtained a maximum accuracy increment of 0.82% with the hyper parameters
w(1) = 3, σα = 6 and σβ = 79, as shown in Figure 14. From this figure we can see that the parameter σα

has a significant influence on the accuracy in this case, and if it is set too large, a negative effect will
occur. Comparing Figure 14 with Figure 13, we can see that the accuracy increment achieved by the
improved FCCRF is superior to the original one if the hyper parameters are set reasonably.
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Figure 14. Influence of the original FCCRF hyper parameters values (w(1), σα and σβ ) on the final
classification accuracy. The experiment is implemented on the 3 tiles (named Val-1, Val-2 and Val-3) of
the validation set. (a) Influence of σα; (b) influence of σβ.

3.4. Performance Analysis

To evaluate the proposed method deeply and objectively, we also ran our algorithm on all 17 areas
with undisclosed ground truth data in addition to the 16 tiles with publicly available ground truth
data. The classification results were submitted to the ISPRS Semantic Labeling Contest for evaluation,
and three of the evaluation results are shown in Figure 15. From these results, we can see that most
buildings, trees and grass areas are labeled correctly, although some small objects and pixels near the
object boundaries are misclassified.

ISPRS Int. J. Geo-Inf. 2017, 6, 245  18 of 26 

 

 
(a) (b)

Figure 14. Influence of the original FCCRF hyper parameters values ( (1)w , ασ  and βσ ) on the final 

classification accuracy. The experiment is implemented on the 3 tiles (named Val-1, Val-2 and Val-3) 
of the validation set. (a) Influence of ασ ; (b) influence of βσ . 

3.4. Performance Analysis 

To evaluate the proposed method deeply and objectively, we also ran our algorithm on all 17 
areas with undisclosed ground truth data in addition to the 16 tiles with publicly available ground 
truth data. The classification results were submitted to the ISPRS Semantic Labeling Contest for 
evaluation, and three of the evaluation results are shown in Figure 15. From these results, we can see 
that most buildings, trees and grass areas are labeled correctly, although some small objects and 
pixels near the object boundaries are misclassified. 

0 50 10025

Meters ±
8°57'32"E

8°57'32"E

8°57'28"E

8°57'28"E

48
°5

5'
55

"N

48
°5

5'
55

"N

 

0 50 10025

Meters ±
8°57'32"E

8°57'32"E

8°57'28"E

8°57'28"E

48
°5

5'
55

"N

48
°5

5'
55

"N

 
0 50 10025

Meters ±
8°57'32"E

8°57'32"E

8°57'28"E

8°57'28"E

48
°5

5'
55

"N

48
°5

5'
55

"N

 
(a) (b) (c) 

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

1 3 5 7 9 15 25 35 45

In
cr

em
en

t i
n 

Ac
cu

ra
cy

 (%
)

σα (w(1) =3 , σβ =79) 

Val-1 Val-2
Val-3 Average

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

5 20 35 50 65 76 79 82 85 10
0

In
cr

em
en

t i
n 

Ac
cu

ra
cy

 (%
)

σβ (w(1) =3, σα =6) 

Val-1 Val-2
Val-3 Average

Figure 15. Cont.
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Figure 15. Classification results of 3 areas evaluated on the ISPRS unseen testing set. Right (a,d,g) The 
original TOP (for better comparison); middle (b,e,h) the classified results obtained by the proposed 
method; right (c,f,i) the red/green error map (red pixels indicate wrongly classified pixels). 
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in Table 4. Mayer et al. [66] stated that in many cases if the classification correctness is approximately 
85% and the completeness is approximately 70%, it can be used in practice. By this criterion, our 
classification results can be considered relevant and useful for practical applications, except for the 
‘car’ class. As also reported by other related studies [14,17,67], compared to the other classes, the ‘car’ 
class is the most difficult category to classify, and its accuracy is usually around or even lower than 
50% for most hand-crafted-features-based methods. After careful analysis, we think the following 
reasons may account for the low classification accuracies. First, because the ‘car’ usually has a low 
area size, a small height difference from the road and different NDVIs, it is widely recognized that 
the design of ‘car’ sensitive hand-crafted features is challenging. Second, as the ‘car’ samples only 

Figure 15. Classification results of 3 areas evaluated on the ISPRS unseen testing set. Right (a,d,g) The
original TOP (for better comparison); middle (b,e,h) the classified results obtained by the proposed
method; right (c,f,i) the red/green error map (red pixels indicate wrongly classified pixels).

To assess the results quantitatively, the accumulated confusion matrix and some derived measures
(precision, recall and F1 score) for the whole unseen testing set are calculated and shown in Table 4.
Mayer et al. [66] stated that in many cases if the classification correctness is approximately 85% and
the completeness is approximately 70%, it can be used in practice. By this criterion, our classification
results can be considered relevant and useful for practical applications, except for the ‘car’ class.
As also reported by other related studies [14,17,67], compared to the other classes, the ‘car’ class is
the most difficult category to classify, and its accuracy is usually around or even lower than 50% for
most hand-crafted-features-based methods. After careful analysis, we think the following reasons may
account for the low classification accuracies. First, because the ‘car’ usually has a low area size, a small
height difference from the road and different NDVIs, it is widely recognized that the design of ‘car’
sensitive hand-crafted features is challenging. Second, as the ‘car’ samples only account for 1% of all
samples, a class imbalance problem exists. Third, all kinds of vehicles, including large trucks and small
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cars, are considered as ‘car’ despite the large inter-category difference in the dataset. In a word, the
‘car’ class needs to be further studied specifically as done in [68], and the CNN-based methods are
expected to be more suitable for detecting different types of cars. Table 4 also shows that no samples
are classified into the ‘clutter’ category in the testing set, and the recall rate of the ‘clutter’ category is
0%. This fact indicates that our model cannot learn the common characteristics of this category due to
the overlarge inter-category difference and the too few samples of this category.

Table 4. Accumulated confusion matrix and some derived measures (precision, recall and F1 score) of
the ISPRS Semantic Labeling Contest benchmark on the unseen testing set.

Predicted
Reference

Imp_Surf Building Grass Tree Car Clutter

Imp_surf 91.9 2.9 3.6 1.0 0.8 0.0
Building 7.2 90.8 0.6 1.1 0.3 0.0
Grass 7.1 1.8 76.6 14.3 0.2 0.0
Tree 1.0 0.4 8.2 90.4 0.0 0.0
Car 37.1 7.4 0.8 0.4 54.3 0.0
Clutter 56.6 27.7 2.5 0.2 13.0 0.0

Precision/Correctness 84.9 93.9 84.2 85.1 54.4 -nan
Recall/Completeness 91.9 90.8 76.6 90.4 54.3 0.0
F1 88.3 92.3 80.2 87.6 54.3 -nan

Overall accuracy 86.9

Finally, we compared the current method with the other related methods submitted to the ISPRS
Semantic Labeling Benchmark. In total, there were 42 different classification results from 17 different
research groups submitted to the benchmark, 31 of which are deep CNN-based results. We did not
change the names of the methods submitted to the Benchmark and the method presented in this study
is denoted as “NLPR”. For the sake of clarity and readability, the best result achieved by each research
group was collected for comparison in Table 5.

As seen from Table 5, our “NLPR” performs the best among all of the non-CNN-based methods,
and the overall accuracy of our method is 86.9%. As far as the five specific classes are concerned,
our method ranks first in the “imp surf” and “tree” classes; and second in the “building”, “grass”
and “car” classes. The strongest competitors are IVFL (86.5%, an object-based method) and RIT [67]
(86.3%, a structured path-based method). Both methods classify the data using a random forest model.
In Table 6, we compare our results with the results of these two methods in three areas. We can see
that the classified results from our method are cleaner than the results from the other two methods.
Moreover, the boundaries segmented by our method are more accurate than those of the other two
methods, which makes our method superior in real applications such as digital map generation and
object contour detection.
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Table 5. Comparison with the best results achieved by each research group in the ISPRS Semantic
Labeling Contest. Our method is denoted as “NLPR”.

Method Imp Surf Building Grass Tree Car Overall CNN-Based Strategy

SVL_3 [14] 86.6 91 77 85 55.6 84.8

No

Adaboost + CRF
UT_Mev [17] 84.3 88.7 74.5 82.0 9.9 81.8 RULE-based

HUST 86.9 92.0 78.3 86.9 29.0 85.9 RF + CRF
IVFL 88.2 92.4 79.8 86.7 50.7 86.5 RF + Super-pixel

NLPR 88.3 92.3 80.2 87.6 54.3 86.9 RFE + FCCRF
RIT [67] 88.1 93 80.5 87.2 41.9 86.3 RF + Patch

ADL_3 [1] 89.5 93.2 82.3 88.2 63.3 88.0

Yes

CNN + RF + CRF
ONE_7 [70] 91 94.5 84.4 89.9 77.8 89.8 FCN + SegNet
DST_2 [23] 90.5 93.7 83.4 89.2 72.6 89.1 FCN
UZ_1 [71] 89.2 92.5 81.6 86.9 57.3 87.3 CNN + deconvolution

DLR_10 [69] 92.3 95.2 84.1 90 79.3 90.3 CNN + edge
UOA [24] 89.8 92.1 80.4 88.2 82 87.6 CNN

INR 91.1 94.7 83.4 89.3 71.2 89.5 CNN
RIT_2 [67] 90 92.6 81.4 88.4 61.1 88 FCN

ETH_C 87.2 92 77.5 87.1 54.5 85.9 CNN
Ano2 90.4 93 81.4 88.6 74.5 88.4 CNN
UCal 86.8 90.8 73 84.6 42.2 84.1 FCN

CASIA2 93.2 96.0 84.7 89.9 86.7 91.1 FCN + Resnet

Table 6. Comparing our results with the “IVFL” and “RIT”.

ID TOP “IVFL” “RIT” “Ours”

1

ISPRS Int. J. Geo-Inf. 2017, 6, 245  21 of 26 

 

Table 5. Comparison with the best results achieved by each research group in the ISPRS Semantic 
Labeling Contest. Our method is denoted as “NLPR”. 

Method Imp Surf Building Grass Tree Car Overall CNN-Based Strategy 
SVL_3 [14] 86.6 91 77 85 55.6 84.8 

No 

Adaboost + CRF 
UT_Mev [17] 84.3 88.7 74.5 82.0 9.9 81.8 RULE-based 

HUST 86.9 92.0 78.3 86.9 29.0 85.9 RF + CRF 
IVFL 88.2 92.4 79.8 86.7 50.7 86.5 RF + Super-pixel 

NLPR 88.3 92.3 80.2 87.6 54.3 86.9 RFE + FCCRF 
RIT [67] 88.1 93 80.5 87.2 41.9 86.3 RF + Patch 

ADL_3 [1] 89.5 93.2 82.3 88.2 63.3 88.0 

Yes 

CNN + RF + CRF 
ONE_7 [70] 91 94.5 84.4 89.9 77.8 89.8 FCN + SegNet 
DST_2 [23] 90.5 93.7 83.4 89.2 72.6 89.1 FCN 
UZ_1 [71] 89.2 92.5 81.6 86.9 57.3 87.3 CNN + deconvolution 

DLR_10 [69] 92.3 95.2 84.1 90 79.3 90.3 CNN + edge 
UOA [24] 89.8 92.1 80.4 88.2 82 87.6 CNN 

INR 91.1 94.7 83.4 89.3 71.2 89.5 CNN 
RIT_2 [67] 90 92.6 81.4 88.4 61.1 88 FCN 

ETH_C 87.2 92 77.5 87.1 54.5 85.9 CNN 
Ano2 90.4 93 81.4 88.6 74.5 88.4 CNN 
UCal 86.8 90.8 73 84.6 42.2 84.1 FCN 

CASIA2 93.2 96.0 84.7 89.9 86.7 91.1 FCN + Resnet 

Table 6. Comparing our results with the “IVFL” and “RIT”. 

ID TOP “IVFL” “RIT” “Ours” 

1 

    

2 

    

ISPRS Int. J. Geo-Inf. 2017, 6, 245  21 of 26 

 

Table 5. Comparison with the best results achieved by each research group in the ISPRS Semantic 
Labeling Contest. Our method is denoted as “NLPR”. 

Method Imp Surf Building Grass Tree Car Overall CNN-Based Strategy 
SVL_3 [14] 86.6 91 77 85 55.6 84.8 

No 

Adaboost + CRF 
UT_Mev [17] 84.3 88.7 74.5 82.0 9.9 81.8 RULE-based 

HUST 86.9 92.0 78.3 86.9 29.0 85.9 RF + CRF 
IVFL 88.2 92.4 79.8 86.7 50.7 86.5 RF + Super-pixel 

NLPR 88.3 92.3 80.2 87.6 54.3 86.9 RFE + FCCRF 
RIT [67] 88.1 93 80.5 87.2 41.9 86.3 RF + Patch 

ADL_3 [1] 89.5 93.2 82.3 88.2 63.3 88.0 

Yes 

CNN + RF + CRF 
ONE_7 [70] 91 94.5 84.4 89.9 77.8 89.8 FCN + SegNet 
DST_2 [23] 90.5 93.7 83.4 89.2 72.6 89.1 FCN 
UZ_1 [71] 89.2 92.5 81.6 86.9 57.3 87.3 CNN + deconvolution 

DLR_10 [69] 92.3 95.2 84.1 90 79.3 90.3 CNN + edge 
UOA [24] 89.8 92.1 80.4 88.2 82 87.6 CNN 

INR 91.1 94.7 83.4 89.3 71.2 89.5 CNN 
RIT_2 [67] 90 92.6 81.4 88.4 61.1 88 FCN 

ETH_C 87.2 92 77.5 87.1 54.5 85.9 CNN 
Ano2 90.4 93 81.4 88.6 74.5 88.4 CNN 
UCal 86.8 90.8 73 84.6 42.2 84.1 FCN 

CASIA2 93.2 96.0 84.7 89.9 86.7 91.1 FCN + Resnet 

Table 6. Comparing our results with the “IVFL” and “RIT”. 

ID TOP “IVFL” “RIT” “Ours” 

1 

    

2 

    

ISPRS Int. J. Geo-Inf. 2017, 6, 245  21 of 26 

 

Table 5. Comparison with the best results achieved by each research group in the ISPRS Semantic 
Labeling Contest. Our method is denoted as “NLPR”. 

Method Imp Surf Building Grass Tree Car Overall CNN-Based Strategy 
SVL_3 [14] 86.6 91 77 85 55.6 84.8 

No 

Adaboost + CRF 
UT_Mev [17] 84.3 88.7 74.5 82.0 9.9 81.8 RULE-based 

HUST 86.9 92.0 78.3 86.9 29.0 85.9 RF + CRF 
IVFL 88.2 92.4 79.8 86.7 50.7 86.5 RF + Super-pixel 

NLPR 88.3 92.3 80.2 87.6 54.3 86.9 RFE + FCCRF 
RIT [67] 88.1 93 80.5 87.2 41.9 86.3 RF + Patch 

ADL_3 [1] 89.5 93.2 82.3 88.2 63.3 88.0 

Yes 

CNN + RF + CRF 
ONE_7 [70] 91 94.5 84.4 89.9 77.8 89.8 FCN + SegNet 
DST_2 [23] 90.5 93.7 83.4 89.2 72.6 89.1 FCN 
UZ_1 [71] 89.2 92.5 81.6 86.9 57.3 87.3 CNN + deconvolution 

DLR_10 [69] 92.3 95.2 84.1 90 79.3 90.3 CNN + edge 
UOA [24] 89.8 92.1 80.4 88.2 82 87.6 CNN 

INR 91.1 94.7 83.4 89.3 71.2 89.5 CNN 
RIT_2 [67] 90 92.6 81.4 88.4 61.1 88 FCN 

ETH_C 87.2 92 77.5 87.1 54.5 85.9 CNN 
Ano2 90.4 93 81.4 88.6 74.5 88.4 CNN 
UCal 86.8 90.8 73 84.6 42.2 84.1 FCN 

CASIA2 93.2 96.0 84.7 89.9 86.7 91.1 FCN + Resnet 

Table 6. Comparing our results with the “IVFL” and “RIT”. 

ID TOP “IVFL” “RIT” “Ours” 

1 

    

2 

    

ISPRS Int. J. Geo-Inf. 2017, 6, 245  21 of 26 

 

Table 5. Comparison with the best results achieved by each research group in the ISPRS Semantic 
Labeling Contest. Our method is denoted as “NLPR”. 

Method Imp Surf Building Grass Tree Car Overall CNN-Based Strategy 
SVL_3 [14] 86.6 91 77 85 55.6 84.8 

No 

Adaboost + CRF 
UT_Mev [17] 84.3 88.7 74.5 82.0 9.9 81.8 RULE-based 

HUST 86.9 92.0 78.3 86.9 29.0 85.9 RF + CRF 
IVFL 88.2 92.4 79.8 86.7 50.7 86.5 RF + Super-pixel 

NLPR 88.3 92.3 80.2 87.6 54.3 86.9 RFE + FCCRF 
RIT [67] 88.1 93 80.5 87.2 41.9 86.3 RF + Patch 

ADL_3 [1] 89.5 93.2 82.3 88.2 63.3 88.0 

Yes 

CNN + RF + CRF 
ONE_7 [70] 91 94.5 84.4 89.9 77.8 89.8 FCN + SegNet 
DST_2 [23] 90.5 93.7 83.4 89.2 72.6 89.1 FCN 
UZ_1 [71] 89.2 92.5 81.6 86.9 57.3 87.3 CNN + deconvolution 

DLR_10 [69] 92.3 95.2 84.1 90 79.3 90.3 CNN + edge 
UOA [24] 89.8 92.1 80.4 88.2 82 87.6 CNN 

INR 91.1 94.7 83.4 89.3 71.2 89.5 CNN 
RIT_2 [67] 90 92.6 81.4 88.4 61.1 88 FCN 

ETH_C 87.2 92 77.5 87.1 54.5 85.9 CNN 
Ano2 90.4 93 81.4 88.6 74.5 88.4 CNN 
UCal 86.8 90.8 73 84.6 42.2 84.1 FCN 

CASIA2 93.2 96.0 84.7 89.9 86.7 91.1 FCN + Resnet 

Table 6. Comparing our results with the “IVFL” and “RIT”. 

ID TOP “IVFL” “RIT” “Ours” 

1 

    

2 

    

2

ISPRS Int. J. Geo-Inf. 2017, 6, 245  21 of 26 

 

Table 5. Comparison with the best results achieved by each research group in the ISPRS Semantic 
Labeling Contest. Our method is denoted as “NLPR”. 

Method Imp Surf Building Grass Tree Car Overall CNN-Based Strategy 
SVL_3 [14] 86.6 91 77 85 55.6 84.8 

No 

Adaboost + CRF 
UT_Mev [17] 84.3 88.7 74.5 82.0 9.9 81.8 RULE-based 

HUST 86.9 92.0 78.3 86.9 29.0 85.9 RF + CRF 
IVFL 88.2 92.4 79.8 86.7 50.7 86.5 RF + Super-pixel 

NLPR 88.3 92.3 80.2 87.6 54.3 86.9 RFE + FCCRF 
RIT [67] 88.1 93 80.5 87.2 41.9 86.3 RF + Patch 

ADL_3 [1] 89.5 93.2 82.3 88.2 63.3 88.0 

Yes 

CNN + RF + CRF 
ONE_7 [70] 91 94.5 84.4 89.9 77.8 89.8 FCN + SegNet 
DST_2 [23] 90.5 93.7 83.4 89.2 72.6 89.1 FCN 
UZ_1 [71] 89.2 92.5 81.6 86.9 57.3 87.3 CNN + deconvolution 

DLR_10 [69] 92.3 95.2 84.1 90 79.3 90.3 CNN + edge 
UOA [24] 89.8 92.1 80.4 88.2 82 87.6 CNN 

INR 91.1 94.7 83.4 89.3 71.2 89.5 CNN 
RIT_2 [67] 90 92.6 81.4 88.4 61.1 88 FCN 

ETH_C 87.2 92 77.5 87.1 54.5 85.9 CNN 
Ano2 90.4 93 81.4 88.6 74.5 88.4 CNN 
UCal 86.8 90.8 73 84.6 42.2 84.1 FCN 

CASIA2 93.2 96.0 84.7 89.9 86.7 91.1 FCN + Resnet 

Table 6. Comparing our results with the “IVFL” and “RIT”. 

ID TOP “IVFL” “RIT” “Ours” 

1 

    

2 

    

ISPRS Int. J. Geo-Inf. 2017, 6, 245  21 of 26 

 

Table 5. Comparison with the best results achieved by each research group in the ISPRS Semantic 
Labeling Contest. Our method is denoted as “NLPR”. 

Method Imp Surf Building Grass Tree Car Overall CNN-Based Strategy 
SVL_3 [14] 86.6 91 77 85 55.6 84.8 

No 

Adaboost + CRF 
UT_Mev [17] 84.3 88.7 74.5 82.0 9.9 81.8 RULE-based 

HUST 86.9 92.0 78.3 86.9 29.0 85.9 RF + CRF 
IVFL 88.2 92.4 79.8 86.7 50.7 86.5 RF + Super-pixel 

NLPR 88.3 92.3 80.2 87.6 54.3 86.9 RFE + FCCRF 
RIT [67] 88.1 93 80.5 87.2 41.9 86.3 RF + Patch 

ADL_3 [1] 89.5 93.2 82.3 88.2 63.3 88.0 

Yes 

CNN + RF + CRF 
ONE_7 [70] 91 94.5 84.4 89.9 77.8 89.8 FCN + SegNet 
DST_2 [23] 90.5 93.7 83.4 89.2 72.6 89.1 FCN 
UZ_1 [71] 89.2 92.5 81.6 86.9 57.3 87.3 CNN + deconvolution 

DLR_10 [69] 92.3 95.2 84.1 90 79.3 90.3 CNN + edge 
UOA [24] 89.8 92.1 80.4 88.2 82 87.6 CNN 

INR 91.1 94.7 83.4 89.3 71.2 89.5 CNN 
RIT_2 [67] 90 92.6 81.4 88.4 61.1 88 FCN 

ETH_C 87.2 92 77.5 87.1 54.5 85.9 CNN 
Ano2 90.4 93 81.4 88.6 74.5 88.4 CNN 
UCal 86.8 90.8 73 84.6 42.2 84.1 FCN 

CASIA2 93.2 96.0 84.7 89.9 86.7 91.1 FCN + Resnet 

Table 6. Comparing our results with the “IVFL” and “RIT”. 

ID TOP “IVFL” “RIT” “Ours” 

1 

    

2 

    

ISPRS Int. J. Geo-Inf. 2017, 6, 245  21 of 26 

 

Table 5. Comparison with the best results achieved by each research group in the ISPRS Semantic 
Labeling Contest. Our method is denoted as “NLPR”. 

Method Imp Surf Building Grass Tree Car Overall CNN-Based Strategy 
SVL_3 [14] 86.6 91 77 85 55.6 84.8 

No 

Adaboost + CRF 
UT_Mev [17] 84.3 88.7 74.5 82.0 9.9 81.8 RULE-based 

HUST 86.9 92.0 78.3 86.9 29.0 85.9 RF + CRF 
IVFL 88.2 92.4 79.8 86.7 50.7 86.5 RF + Super-pixel 

NLPR 88.3 92.3 80.2 87.6 54.3 86.9 RFE + FCCRF 
RIT [67] 88.1 93 80.5 87.2 41.9 86.3 RF + Patch 

ADL_3 [1] 89.5 93.2 82.3 88.2 63.3 88.0 

Yes 

CNN + RF + CRF 
ONE_7 [70] 91 94.5 84.4 89.9 77.8 89.8 FCN + SegNet 
DST_2 [23] 90.5 93.7 83.4 89.2 72.6 89.1 FCN 
UZ_1 [71] 89.2 92.5 81.6 86.9 57.3 87.3 CNN + deconvolution 

DLR_10 [69] 92.3 95.2 84.1 90 79.3 90.3 CNN + edge 
UOA [24] 89.8 92.1 80.4 88.2 82 87.6 CNN 

INR 91.1 94.7 83.4 89.3 71.2 89.5 CNN 
RIT_2 [67] 90 92.6 81.4 88.4 61.1 88 FCN 

ETH_C 87.2 92 77.5 87.1 54.5 85.9 CNN 
Ano2 90.4 93 81.4 88.6 74.5 88.4 CNN 
UCal 86.8 90.8 73 84.6 42.2 84.1 FCN 

CASIA2 93.2 96.0 84.7 89.9 86.7 91.1 FCN + Resnet 

Table 6. Comparing our results with the “IVFL” and “RIT”. 

ID TOP “IVFL” “RIT” “Ours” 

1 

    

2 

    

ISPRS Int. J. Geo-Inf. 2017, 6, 245  21 of 26 

 

Table 5. Comparison with the best results achieved by each research group in the ISPRS Semantic 
Labeling Contest. Our method is denoted as “NLPR”. 

Method Imp Surf Building Grass Tree Car Overall CNN-Based Strategy 
SVL_3 [14] 86.6 91 77 85 55.6 84.8 

No 

Adaboost + CRF 
UT_Mev [17] 84.3 88.7 74.5 82.0 9.9 81.8 RULE-based 

HUST 86.9 92.0 78.3 86.9 29.0 85.9 RF + CRF 
IVFL 88.2 92.4 79.8 86.7 50.7 86.5 RF + Super-pixel 

NLPR 88.3 92.3 80.2 87.6 54.3 86.9 RFE + FCCRF 
RIT [67] 88.1 93 80.5 87.2 41.9 86.3 RF + Patch 

ADL_3 [1] 89.5 93.2 82.3 88.2 63.3 88.0 

Yes 

CNN + RF + CRF 
ONE_7 [70] 91 94.5 84.4 89.9 77.8 89.8 FCN + SegNet 
DST_2 [23] 90.5 93.7 83.4 89.2 72.6 89.1 FCN 
UZ_1 [71] 89.2 92.5 81.6 86.9 57.3 87.3 CNN + deconvolution 

DLR_10 [69] 92.3 95.2 84.1 90 79.3 90.3 CNN + edge 
UOA [24] 89.8 92.1 80.4 88.2 82 87.6 CNN 

INR 91.1 94.7 83.4 89.3 71.2 89.5 CNN 
RIT_2 [67] 90 92.6 81.4 88.4 61.1 88 FCN 

ETH_C 87.2 92 77.5 87.1 54.5 85.9 CNN 
Ano2 90.4 93 81.4 88.6 74.5 88.4 CNN 
UCal 86.8 90.8 73 84.6 42.2 84.1 FCN 

CASIA2 93.2 96.0 84.7 89.9 86.7 91.1 FCN + Resnet 

Table 6. Comparing our results with the “IVFL” and “RIT”. 

ID TOP “IVFL” “RIT” “Ours” 

1 

    

2 

    



ISPRS Int. J. Geo-Inf. 2017, 6, 245 22 of 26

Table 6. Cont.

ID TOP “IVFL” “RIT” “Ours”

3 3 

    

Table 7 shows the time required at the different stages of the proposed method for a tile with  

3 

    

Table 7 shows the time required at the different stages of the proposed method for a tile with  

3 

    

Table 7 shows the time required at the different stages of the proposed method for a tile with  

3 

    

Table 7 shows the time required at the different stages of the proposed method for a tile with  
Compared to the CNN-based methods, our “NLPR” can surpass several of them, such as the

“ETH_C” and “UCal”. Compared to the best CNN-based methods, namely “CASIA2” and “DLR_10”,
our “NLPR” still has a notable gap. However, to get a higher performance, an extremely deep and
complicated network with 101 layers is used by “CASIA2”, several deep networks with different
structures are combined in “DLR_10” [69], and the quality of NDSM used in “DLR_10” [69] is also
higher than ours. We think this gap is reasonable.

Table 7 shows the time required at the different stages of the proposed method for a tile with
2000 × 2500 pixels. We can see that most of the time is spent on the RFE classification, and the
amount of time required for the RFE classification is related to the number of RFs. Specifically, it takes
138 s to classify a tile of 2000 × 2500 pixels with a single RF classifier, and it takes 1415 s (1380 s for
RFs classification and 35 s for combining) to classify the same data with an RFE model with 10 RFs.
In contrast, at the feature extraction and FCCRF refinement stages, the time costs are not very high
and only account for approximately 10% of the whole time, which is approximately 25 min. These
suggest that the total computational time of the proposed method mainly depends on the number
of RF classifiers, which can be seen as a drawback of the ensemble-learning-based methods. Note
that with the aid of high-performance GPU, Marmanis et al. [15] spent about 18 min (9 min for coarse
classification, another 9 min for refinement) to classify a tile of the same size with a state-of-the-art
CNN-based method. Considering that no GPU was used in our case, our proposed method seems
comparable to theirs in terms of computational efficiency. Note also that in case the computational
time is a primary concern, the classification efficiency can be promoted by reducing the number of
individual RF classifiers, as indicated in Table 3.

Table 7. Time costs at different stages of the proposed classification pipeline for a tile of
2000 × 2500 pixels.

Feature Extraction (s) RFE Classification (s) FCCRF Refinement (s)

Time (s/tile) 108 138 n + 35 55

n: the number of single RFs in RFE.

4. Conclusions

The current study combines methods from RF and probabilistic graphical models to classify
high-resolution remote sensing data. Using high-resolution multispectral images and 3D geometry
data, the method proceeds in three main stages: feature extraction, classification and refinement.
A total of 13 features (color, vegetation index and texture) from the multispectral image and 11 features
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(height, elevation texture and DMP) from the 3D geometry data are first extracted to form the feature
space. Then, the random forest is selected as the basic classifier for semantic classification. Inspired
by the big training data and ensemble learning strategy adopted in the machine learning and remote
sensing communities, a tile-based scheme is used to train multiple RFs separately. The multiple RFs are
then combined to jointly predict the category probabilities of each sample. Finally, the probabilities and
the feature importance indicators are used to construct an FCCRF graph model, and a mean-field-based
statistical inference is carried out to refine the above classification results.

Experiments on the ISPRS Semantic Labeling Contest data show that features from both the
multispectral image and the 3D geometry data are important and indispensable for the accurate
semantic classification. Moreover, multispectral image-derived features play a greater role than the
3D geometry features. When comparing the classification accuracy of the single RF classifier and the
fused RF ensemble, we found that both the generalization capability and the discriminability were
enhanced significantly. Consistent with the conclusions drawn by others, the smoothness effect of the
CRF is also evident in the presented work. Moreover, by introducing the 3 most important features
to the pairwise potential of CRF, the classification accuracy is improved by approximately 1% in the
presented experiments.

Note that in addition to urban land cover mapping, the current study can also be extended and
used for other activities, such as vegetation mapping, water body mapping, and change detection.

Among the non-CNN-based methods, we achieve the highest overall accuracy, 86.9%. When
compared to the CNN-based approaches, the gap between the current method and the best CNN
method in the contest is still notable. However, we found that the presented method indeed
outperformed several CNN-based methods. Furthermore, CNN can be conveniently integrated
into the present RFE framework, as a feature extraction submodule to further boost the classification
performance of the presented method. Hopefully, the integrated method could outperform the current
best CNN method, which will be one of our future directions.
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