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Abstract: The concepts of “Smart Cities” and “Smart Manufacturing” are different data-driven
domains, although both rely on intelligent information technology and data analysis. With the
application of linked data and affordance-based approaches, both domains converge, paving the
way for new and innovative viewpoints regarding the comparison of urban tasks with indoor
manufacturing tasks. The present study builds on the work, who state that cities are scaled
versions of each other, by extending this thesis towards indoor manufacturing environments.
Based on their structure and complexity, these environments are considered to form ecosystems
of their own, comparable to “small cities”. This conceptual idea is demonstrated by examining
the process of human problem-solving in transportation situations from both perspectives (i.e.,
city-level and manufacturing-level). In particular, the authors model tasks of human operators
that are used to support transportation processes in indoor manufacturing environments based on
affordances and spatial-temporal data. This paper introduces the fundamentals of the transformation
process of outdoor tasks and process planning activities to indoor environments, particularly to
semiconductor manufacturing environments. The idea is to examine the mapping of outdoor tasks
and applications to indoor environments, and vice-versa, based on an example focusing on the
autonomous transportation of production assets in a manufacturing environment. The approach
is based on a spatial graph database, populated with an indoor navigation ontology and instances
of indoor and outdoor objects. The results indicate that human problem-solving strategies can
be applied to indoor manufacturing environments to support decision-making in autonomous
transportation tasks.

Keywords: indoor manufacturing; linked data; urban versus manufacturing; smart manufacturing;
smart transportation

1. Introduction and Motivation

The concepts of “Smart Cities” and “Smart Manufacturing” are different data-driven domains,
although both rely on intelligent information technology and data analysis. With the application
of linked data and affordance-based approaches, both domains converge, paving the way for new
and innovative viewpoints regarding the comparison of urban tasks with indoor manufacturing
tasks. This also extends towards spatial task planning and urban human characteristics in the
context of manufacturing environments. By mapping urban and human characteristics onto indoor
manufacturing environments, and vice-versa, the authors will demonstrate the occurring common
denominators. Specifically, the article discusses the mapping of human task planning activities to the

ISPRS Int. J. Geo-Inf. 2017, 6, 281; doi:10.3390/ijgi6090281 www.mdpi.com/journal/ijgi

http://www.mdpi.com/journal/ijgi
http://www.mdpi.com
https://orcid.org/0000-0002-3212-8864
http://dx.doi.org/10.3390/ijgi6090281
http://www.mdpi.com/journal/ijgi


ISPRS Int. J. Geo-Inf. 2017, 6, 281 2 of 16

indoor manufacturing environment of a semiconductor company and the application of the suggested
methodology to the example of an autonomous indoor wayfinding problem. The present study builds
on [1], who state that cities are scaled versions of each other. To successfully achieve this mapping, the
authors base their comparison on manufacturing-related data and the spatial-temporal dimension of
production processes and, thus, manufacturing data [2,3].

Urban data and the data of cities are strongly intertwined by space and time [4]. Therefore, the
authors assume the presence of similar patterns in manufacturing environments and the associated
data. Furthermore, references [1,5] point out that cities represent versions of each other at different
levels of scale [6]—i.e., cities are “mini-versions” of each other. Thus, the authors formulate the
hypothesis that any manufacturing environment may be regarded as a “mini-version” of an urban
environment as a prerequisite in this paper. This hypothesis is based on the commonalities between
the indoor manufacturing environment and the elements of a city.

To support the hypothesis, similarities of both environments are highlighted by the authors as
follows: spaces for movement exist as corridors indoors and as streets/sidewalks outdoors. Further,
each manufacturing device needs to be supplied with processing assets, thereby sharing commonalities
with industrial companies and/or households that get their raw materials and groceries delivered.
Indoor manufacturing environments may exhibit a multi-modal transportation network connecting
human transportation and automated transportation systems comparable to multi-modal public
transportation networks or supply chains. Further analogies between urban and manufacturing
environments exist in terms of potential barriers, whereby urban barriers affecting traffic or pedestrians
are comparable to barriers in production negatively impinging on transportation and production flows.
Thus, such barriers cause detours and have an impact on pathways in urban and manufacturing
environments alike. In this specific indoor context, humans represent key-stakeholders regarding
transportation, quality, and efficiency, as they serve as a common interface, physically “connecting”
machines and assets, including their transportation.

When mapping human behavioral tasks and process planning onto indoor manufacturing
environments, production assets, personnel, and machines are key elements that need to be taken
into account. Similar to urban environments, human individuals execute tasks that are based on
relationships, properties, and affordances associated with other human individuals, objects, and the
environment they reside in. To complete these tasks, human individuals visit locations and perform
specific subtasks in a certain order. This specific order is the result of case-based planning [7] and
problem decomposition into smaller subtasks [8,9]. Similar to urban environments, any individual
acting within an indoor manufacturing environment has to perform transportation and processing tasks
in a given order based on pre-defined workflows. In addition, due to occurring immediate necessities
such as production problems, machine breakdowns, or moving production targets, decisions have
to be made in a timely fashion. Individuals have to satisfy needs and tasks, regardless of their
local context (i.e., urban versus manufacturing environment). Therefore, they have to search for
appropriate locations in which to satisfy their needs/tasks prior to starting their actual journey
or transportation operation, which is not only based on physical distance [6]. Thus, the line of
argumentation is that the theory of general problem-solving and task and process planning can be
applied to manufacturing environments.

The indoor manufacturing environment at hand—serving as a test area for the present study—is
a semiconductor manufacturing environment. There, each produced production asset passes hundreds
of production steps, which are not aligned on a conveyor belt due to the high variety of product types
in conjunction with a dynamic manufacturing environment. The latter is a result of varying customer
demand, which alters the mix of product types to be manufactured. Furthermore, production processes
are globally distributed over several manufacturing sites. In addition, each production facility consists
of several manufacturing halls.

The presented indoor manufacturing environment is modeled as an indoor navigation ontology
by [10]. This indoor navigation ontology describes the indoor production space itself, as well as
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inherent navigational tasks; the authors combine historical manufacturing data with the indoor
space and its peculiarities [10,11]. Further information can be inferred using the ontology, as
it reveals links, specific relations, and a contextual perspective of each object under review [12].
According to [13], graphs, in particular in the form of the Resource Description Framework (RDF),
are useful for connecting datasets with typed links, opening up new opportunities for knowledge
extraction. Consequently, the authors introduce a graph database, comprising a semantic knowledge
description of manufacturing-relevant data, together with their respective spatial and temporal
dimension [14]. The graph database is the foundation for identifying “optimal” transportation
routes for human individuals, regarding manufacturing processes, product quality, and efficiency.
It includes a transportation optimization, similar to any urban navigation and wayfinding—whereby
the transportation in the production facility is done by humans.

The research question of this paper can be summarized as “Can urban human tasks and process
planning strategies be mapped onto an indoor manufacturing environment?” This comparison
intends to support transportation processes for manufacturing purposes by exploiting graph-oriented
databases and ontologies for navigation purposes”. Thus, the authors focus on the comparison of urban
tasks and processes with indoor manufacturing “activities” to gain an understanding of the solution
strategy of task decomposition. They apply this general approach in the context of manufacturing
environments, coupled with an affordance-based routing approach to support transportation processes
in indoor spaces. The authors do not intend to elaborate on the navigation algorithm, as this will
be outlined in a forthcoming paper [15]. Here, the authors present the idea of applying the solution
strategy of decomposition for solving tasks in outdoor spaces to an indoor manufacturing environment.
In literature, a number of navigation solutions for indoor environments exist; no publication combines
task and trip planning based on an ontology for indoor purposes. Thus, we restrict ourselves to
the description of the problem-solving methodology that involves the decomposition of complex
problems. This approach is intended to reduce the computational complexity of the problems—i.e.,
task and trip planning—in the manufacturing environment, in order to handle them with a reasonable
computational effort. The motivation behind and the benefit of the comparison are based on the
mapping of applications from outdoor to indoor environments, and vice-versa, ensuring the reusability
of applications. An additional benefit is based on the concept of affordances, as a new ruleset is
necessary for re-use.

The structure of the paper is as follows: Section 2 highlights related work and literature, followed by
the description of urban and manufacturing process characteristics in Section 3. Section 4 focuses on the
modeling of transportation tasks. Affordance-based navigation based on graphs is described in Section 5,
concentrating on supporting autonomous navigation of production assets in indoor manufacturing
environments by decomposing tasks into subtasks. The paper closes with the discussion and conclusion.

2. Related Work

This section is dedicated to related literature that contributes to the fields of expertise covered
in this paper. Hence, the authors focus on task and process planning characteristics, manufacturing
environments and processes, indoor geography, indoor navigation tasks, and the theory of affordances.
Moreover, emerging topics such as linked data and semantics, and sensor approaches in urban and
manufacturing environments, are covered.

During the past decades, data collecting techniques—indoor and outdoor—have been used in a
pervasive manner (i.e., environmental sensors, remote-sensing techniques, smartphones), creating vast
amounts of spatial data. These data are of interest for numerous scientific domains and may be helpful
for gaining new knowledge, i.e., in ecology or environmental engineering [16,17]. The amount of data
produced and processed has triggered a paradigm shift from data-scarce to data-rich geography [18].
This paradigm shift towards big spatial data requires an appropriate new set of “tools” that enable
cloud-based collaborative computing and data-intense knowledge discovery [19].
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The fact that an average person resides inside buildings 90% of the time has triggered numerous
research activities regarding the application of Geographic Information Science (GIScience) in indoor
environments [20]. Early research work on indoor modeling and pathfinding includes [21,22], where
an airport serves as an example for agent-based indoor pathfinding. To model indoor spaces, several
approaches exist that range from reducing the indoor space to a graph (e.g., [23,24]) to creating building
information models (e.g., [25]). Worboys [26] provides a comprehensive list of current approaches.
Among others, authors in [10,27] employed ontologies to model indoor space. In detail, authors
in [10] applied such an ontology modeling approach to a complex indoor manufacturing environment.
Additionally, the authors of [28] have proposed that taking the spatial and temporal dimensions into
account can support decision-making processes in manufacturing environments, thus supporting
smart manufacturing.

For any manufacturer, productivity and efficiency are the key to being successful on the market.
To support decision-making in indoor manufacturing environments, smart manufacturing is one of
the main research fields facilitating competitiveness [2]. Therefore, most manufacturing companies
collect data from manufacturing processes with explicit and implicit spatial-temporal references to
enable data analysis and visualization. By applying methods of geo-visual analytics, humans can be
supported in identifying patterns within the given data [29,30]. In addition, near real-time visualization
of manufacturing data is of interest due to the emergence of wearable devices for employees and
managers [31]. Identifying spatial-temporal patterns may help to develop optimization strategies and
technologies to increase manufacturing efficiency, i.e., cost savings and increased performance [32].

Human processes, tasks, and the planning thereof are research issues in cognitive science and in
GIScience. The planning of processes and tasks is related to this area of problem-solving [33]. To solve a
problem, past experiences can be utilized [7]. Notable are the publications of [8,9,34], who elaborate on
the processes behind problem-solving. A rather formal description of the cognitive process of human
problem-solving is presented in [35]. Raubal and Worboys [21,22] describe the problem of pathfinding
in indoor environments, which is strongly related to cognitive science. Abdalla et al. [36–38] analyze
trip planning, decision-making, and influences on spatial-temporal personal information management.

The theory of affordances itself is presented by [39] (p. 127) as the environmental offer for
“the animal, what it provides or furnishes, whether good or ill”. The theory of affordances has
been widely applied in GIScience, e.g., allowing agents to interpret environmental objects for the
purpose of wayfinding [22]. The theory of affordances is a potential solution for human task planning
and wayfinding, demonstrated by [40], who published a solution to calculate spatial suitability for
wayfinding based on affordances. The manufacturing environment at hand considers affordances of
the production asset, the indoor space—network—and the environment—blockings, contaminations,
quality—with respect to the context of the production asset—i.e., the position in the indoor space and
the next processing step.

3. Process Characteristics and Problem-Solving in Urban and Manufacturing Environments

This section highlights characteristics of problem-solving in urban environments. Specifically,
the authors demonstrate that problem-solving is a form of decomposition of a given task into several
subtasks. Furthermore, the execution of these tasks is related to space. The authors show that indoor
manufacturing environments share similar characteristics with urban spaces.

Problem-solving, in general, relates to the planning of tasks and the determination of their
particular order to fulfil a certain goal. The paper [33] (p. 284) presents a problem-solving definition, as
“cognitive processing directed at transforming a given situation into a goal situation when no obvious
method of solution is available to the problem solver”. Problems arise in an ill-defined and well-defined
manner. Eysneck and Keane [34] state that well-defined problems have a given initial state and a
well-defined set of rules to generate a solution. An ill-defined problem has a potentially infinite number
of possible solutions. To solve a given problem, humans tend to make use of past experiences. This
strategy is known as case-based planning [7]. Higher levels of experience lead to increased effectiveness
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at problem-solving. Furthermore, authors in [8,9] state that humans tend to decompose problems into
several sub-problems. Each sub-problem is solved individually, and the respective solutions are then
aggregated to generate the solution to the overarching problems. Similar decomposition approaches
regarding task planning have existed in GIScience since the early 1990s. Timpf et al. [41] describe
a conceptual model of human navigation for the US interstate highway network. Their research
work distinguishes three different levels on which decisions about navigation problems are made, i.e.,
the planning level, the instructional level, and the driver level. Abdalla and Frank [38] presented a
combination of trip- and task planning, based on the example of “how to get a passport”. In their
paper, they decompose the overarching problem of “getting a passport” into sub-problems or tasks
that have to be solved individually in a certain order.

Additionally, references [36–38,41] show that the decomposition of spatial-temporal problems
is also a matter of scale. This can be justified by the work of [41], where sub-problems (i.e., different
levels) are modeled with a finer “resolution” of the representation of the universe of discourse. On the
planning level, only highways, places, and interchanges are present, whereas on the driver level, the
highways and interchanges are modeled with high detail (see Figure 1). By taking a closer look at cities
and the processes in a city, references [1,5] argue that there are universal properties of cities, regardless
of their size and cultural and historical differences. Noulas et al. [6] (p. 8) describe this as follows:

“[ . . . ] universal properties in cities around the globe [ . . . ] where cities have been shown to be
scaled versions of each other, despite their cultural and historical differences.”

Thus, it can be concluded that the size of the universe of discourse under review does not matter
when examining general behavior and approaches to solve a given problem. Hence, the manufacturing
environment under review in this paper can be regarded as a small “urban environment” where people
try to fulfil tasks with respect to the given problem.
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scales (coarse scale in (a) and fine-grained scale in (b)) (adapted from [41]).

To justify the presented approach that the behavior of people in indoor and urban environments is
similar regarding problem-solving—e.g., navigation—the authors utilize the concept of geodesign [42].
Goodchild [43] (p. 9) describes geodesign as follows:

“[ . . . ] geodesign is concerned with manipulating those forms and intervening in these processes to
achieve specific objectives.”

This indicates that any urban environment may be regarded as constructed and controlled, since
humans impact the urban environment. In addition, the authors argue that problem-solving and the
execution of tasks in urban and indoor environments share a high level of similarity. To demonstrate
that task and process planning cannot be separated from each other—with respect to the spatial
dimension (e.g., trip planning)—they refer to [6] (p. 2):

“More importantly, our analysis is in favor of the concept of intervening opportunities rather than
gravity models, thus suggesting that trip making is not explicitly dependent on physical distance
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but on the accessibility of resources satisfying the objective of the trip. Individuals thus differ from
random walkers in exploring physical space because of the motives driving their mobility.”

Thus, Noulas, A., et al. [6] strengthen the argument that the planning of tasks in an environment
is related to trip planning (in this context, used as a specific process to reach a given objective). This is
also justifiable according to the work of [38], who combine trip and task planning—where processes
are planned accordingly.

In the field of smart mobility, further analogies to smart manufacturing have been described [44,45].
Smart mobility can be regarded as a collection of coordinated activities aimed at improving efficiency,
effectiveness, and environmental sustainability [46]. In addition, smart mobility generates an impact
through the combination of technology, existing physical and technical capabilities, and by considering
human and social needs [47]. Hence, we conclude that smart mobility present in urban environments
shares a certain similarity to indoor manufacturing processes. In both cases, intelligent planning
to support humans in decision-making seems to be the essence. Nevertheless, the generation of
“optimal” solutions is complex, as the problems are mostly computationally hard to solve and require
the integration of human behavior and the social component.

In this section, we have elaborated on the similarity of urban and manufacturing environments in
a very generic way. Nevertheless, it is worth pointing out that there are also some differences between
urban spaces—i.e., smart cities—and smart manufacturing environments. This is especially true in
the case of spatial/urban planning, where bottom-up participation replaces traditional top-down
approaches [48,49]. The shift to bottom-up participation opens new possibilities for, e.g., the web
paradigms that enable the sharing of data and new interaction modes. In addition to sensors physically
present in the city, the citizens should at least share their opinion for this bottom-up participation.
In smart manufacturing environments, sensors are present—similar to smart cities—but the design and
planning of the working space follow a top-down approach. This is especially true for semiconductor
companies, as cleanroom space is expensive to construct and maintain, resulting in “crowded” indoor
spaces optimized for manufacturing purposes.

4. Transportation Tasks: From General Principles to Production Assets

Transportation tasks are encountered in urban areas and in manufacturing environments.
In a manufacturing environment, humans execute transportation tasks, which represent the link
between production machinery and production assets. Similar to manufacturing environments,
humans link the commodities to be transported and their targets in the urban environment. Therefore,
“smart transportation” may increase efficiency, quality, and effectivity of the processes.

This section is a follow-up of the argumentation presented in Section 3 and concludes that an
indoor manufacturing environment can be described as a “mini-version” of a city, according to [1,5].
To illustrate the idea of decomposing an overall objective (problem) into specific tasks, a general design
of a transportation task is depicted in Figure 2 and described in Section 4.1. Subsequently, a more
detailed comparison of a transportation task in urban and in manufacturing environments is presented
in Section 4.2.
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(e.g., pickup or delivery of a production asset).

4.1. Transportation and Associated Subtasks

An example of a “smart transportation” task of any asset is depicted in Figure 2. Here, the task is
divided into ten main steps that have to be considered, including required process loops:

(1) Identify Asset to be Transported (Process): At the beginning of each transportation task, it is
necessary to identify the (set of) objects that (has) have to be transported.

(2) Ready for Transportation (Decision): After the identification process of an asset or several assets, it
is necessary to decide whether the human individual and the assets are ready for the transportation
task. In the case of the asset, the human has to decide whether the asset is transportable.

(3) Identify Next Candidate Stop (Process): Before the transportation task can be executed, the next
candidate stop has to be identified. The identification of the next candidate stop is a process
where we determine/calculate the next delivery location of the commodity (-ies) that are currently
transported. The identification is dependent on the current location of the transportation device,
the assets and their next manufacturing processes, and the location of available manufacturing
equipment capable of carrying out the loaded asset(s)’ further processes.

(4) Make a Route Decision (Decision): Because the next candidate stop is known and the asset/assets
are transportable a route decision can be made—until now by the human operator. Therefore, the
human has to consider the environment, asset information, and walkable ways to the candidate
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stop. If no decision regarding a route can be made, the process takes a step back to identify
a possible candidate stop.

(5) Transportation Task to Next Candidate Stop (Process): This process focuses on the actual
transportation task of the human who needs to follow a certain route. Thereby, navigation
events such as turning left or right are necessary.

(6) Proper Stop Reached (Decision): Once the transportation task finishes it has to be validated that
the right candidate stop is reached and the planned action (i.e., manufacturing process) can be
performed. In any other case, there is a fall back to either the identification of a “new” next
candidate stop or a “new” route decision.

(7) Start Action at Candidate Stop (Process): This represents the action that is performed at a candidate
stop, e.g., the processing of a commodity using manufacturing equipment or the delivery of assets
to shelves.

(8) Successfully Finished (Decision): After the planned action has been performed at the candidate
stop, it has to be checked whether the interaction was successful. If the interaction was successfully
finished, the general process can be continued. Otherwise, the action has to be started again.

(9) Check for Actions (Process): As there is a pre-defined sequence of actions/tasks, this process
determines whether there are further actions in the sequence.

(10) Last Action finished (Decision): Finally, a decision has to be made as to whether there is
a successor action defined for the asset or not. In case of a successor action in the sequence, the
loop is closed, and the transportation task starts over with the identification of the next candidate
stop. Otherwise, this transportation task has successfully finished.

4.2. Comparison of an Urban and a Manufacturing Task

In the following section, the authors compare subtasks—as described in Section 4.1—with
transportation subtasks in different contexts. Table 1 shows a direct comparison between general
transportation subtasks and more specific transportation subtasks—one within a manufacturing
environment and the other within an urban environment. Table 1 provides an example for urban
transportation via a parcel:

Table 1. Comparison of the defined general tasks and specialized tasks (manufacturing versus urban).

“Smart Transportation” Task Manufacturing Transportation Parcel Service

General
Design

Identify objects to be
transported

Manufacturing
Environment

Identify the
production asset for
a transportation task

Urban
Environment

Identification of parcels for
transportation task

Ready for
transportation

Ready for
transportation—trolley

is loaded

Ready for transportation—car/truck
is loaded

Identify next
candidate stop

Identify next
processing
equipment–

dispatching list

Identify next delivery address—i.e.,
order of customers due to time,

parcel conditions . . .

Make route decision
Make route decision

on production
assets affordances

Make route decision on vehicle and
parcels’ affordances (traffic,
dangerous goods, tolls, . . . )

Transportation task to
next candidate stop

Transportation task
to next processing

equipment

Transportation task to the next
delivery address/customer

Proper stop reached Proper stop reached Proper stop reached

Start action at
candidate stop

Start processing at
the reached
equipment

Start interaction with
customer—deliver parcel

+ confirmation via signature

Successfully finished Processing
successfully finished

Parcel successfully delivered
to customer

Check for actions Check for further
processing steps

Check if there are further parcels
for delivering

Last action finished Last processing
step finished Last package delivered
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5. Graph Databases to Support Transportation Tasks in Indoor Manufacturing Environments for
Humans Based on Affordances

This section elaborates on a digital representation of the universe of discourse that supports
autonomous transportation processes in an indoor manufacturing environment. Thus, the authors
highlight a graph database that includes an amended version of the indoor navigation ontology
developed by [10] and a set of manufacturing data. They present an affordance-based routing approach
that is capable of decomposing complex transportation problems into several subtasks based on the
implemented ontology, the environment, and the properties of the object.

5.1. Graph-Based Spatial-Temporal Representation of the Universe of Discourse

This section discusses the representation of the indoor space, the semantic description thereof,
the navigation ontology, and the manufacturing data that is integrated into a spatial graph database.
A general introduction to graph databases and their fundamental concepts are presented in, e.g., [50],
whereas the successful combination of ontologies and graph databases in GIScience is described in [51].
In general, a graph database is a database management system that is capable of creating, reading,
updating, and deleting data in the form of graphs. Graphs are a collection of vertices and edges that
correspond to real-world entities and the relationships between them. In graphs, entities are modeled
as vertices and relationships as edges. This allows real-world scenarios such as supply chains, road
networks, or the medical history of populations (see, e.g., [52]) to be modeled in terms of graphs.
Graph databases have become very popular due to their suitability for representing social networks and
are thus utilized in systems such as Facebook (Open Graph) or Google (Knowledge Graph) (see [52]).

The graph database in this paper contains historical data and data necessary for current
manufacturing purposes. In general, it combines several distributed data sources—such as sensors or
other databases—and intends to establish a linked data approach. Through this linked data approach,
which is based on graphs and relationships, a new contextual perspective is added to the data [12].
Therefore, a graph model is developed including a semantic description (i.e., an ontology) of the indoor
space and the navigation processes [10]. Additionally, the graph model also incorporates aspects of
space and time [14].

In order to store manufacturing data in the graph database, the authors extend the data model
introduced by the ontology by [10]. In the remainder of this article, the ontology developed by [10]
is denoted as IndoorOntology::Production. This data model comprises historical information and
attributive data, which are stored as a trajectory of the production asset, together with data on the next
processing steps. Based on this, Schabus, S., et al. [53] developed a spatially linked manufacturing data
approach with the production asset as the main entity in the manufacturing environment. Therefore,
the manufacturing environment involves historical information—like the trajectory and the performed
production steps—and the future manufacturing steps. The production asset links the trajectory,
equipment, and sensor data of processes along a production chain with the future production steps
(i.e., the so-called operations “aligned” on a route) and suitable equipment for each operation [53].

According to [53], Figure 3 shows the historical information of a production asset. The blue circle
denotes an abstract class of the IndoorOntology: Production. The relationship “hasIndividual” links the
abstract class with the individuals—i.e., each production asset. The nodes on the right side represent
attributes describing the production asset and are linked to the asset via the relationship “isPropertyOf ”.
A processed production asset has already executed processes—denoted in red—that are connected
via the relationship “hasExecutedProcess”. Furthermore, any production asset has a trajectory linked
via “hasTrajectory”, and each trajectory is linked to several tracked positions via “hasAssetPosition”,
visible at the bottom of Figure 3. The sequence of tracked positions is defined via the relationship
“nextPosition”. To keep the linkage to future manufacturing processes, each production asset has the
relationship “hasRoute”, which is marked with a green bubble. In addition, each route has several
operations that need to be carried out in a pre-defined order. These operations are linked with the
route via the relationship “hasOperation”, and the pre-defined sequence of operations is kept via the
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relationship “nextOperation”. These relationships are not depicted in Figure 3 but are described in [53].
One operation, which is modeled in the graph database [53], can be performed on several processing
devices and vice-versa.
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Figure 3. Visualization of the historical information of a production asset. Each circle represents
an information artefact in the graph database that is connected to other information artefacts via
relationships. A tagged arrow represents a relationship between two information artefacts. The blue
circle denotes an abstract class, ProductionAsset, with its instance depicted by a yellow circle. Attached
to the instance of the ProductionAsset are the executed processes, the trajectory with the sequence of
positions, and a number of properties, which are represented as grey circles. The route is the collection
of future production processes to be carried out [53].

According to [10], production assets move along the corridors (center lines) of the manufacturing
hall that are comparable to streets in the urban environment displayed in Figure 4. Thus, a network
model with nodes and edges is stored in the graph database to reflect these circumstances and to
support indoor navigation. Combining future production operations for production assets, equipment
information, and the indoor environment opens up the opportunity to (a) analyze historical events and
processes in the manufacturing environment and (b) support the autonomous routing of production
assets by breaking down the production process into smaller subtasks. The routing, based on the
indoor ontology and, thus, affordances, is the subject of Section 5.2.
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5.2. ‘Optimal’ Indoor Transportation Routes Supported by an Affordance-Based Approach

Based on the graph database model described in Section 5.1, the authors elaborate on an
affordance-based navigation solution for indoor manufacturing environments, which breaks down the
general problem into several subtasks, following the task decomposition for problem-solving [8,9].
The overall algorithm follows the process depicted in Figure 2, with the identification of objects, the
proof of the objects’ readiness for transportation, the identification of the next candidate stop, the route
decision itself, and, finally, the execution of tasks to check if the process was successful and if further
tasks or subtasks exist. The algorithm is based on an indoor navigation ontology describing the indoor
environment—i.e., the context—and the navigation task itself, which is the basis for the definition of
the entities and affordances of each object in the cleanroom, stored in the graph database.

To calculate an “optimal” transportation route, the transportation task is divided into smaller
subtasks, referring to the task decomposition for problem-solving [8]. The separation takes place
because a large or complex task is not automatically solvable. Therefore, the line of argumentation
leads to the decomposition of a large single task into smaller/atomic tasks that can then be solved,
processed, and automatically compared to the respective affordances.

Each small/atomic task is consecutively processed based on the affordances offered by each entity
in the manufacturing environment. According to [40], atomic tasks can be compared to affordances,
which define the spatial suitability of an entity for a given task. Thus, processing the affordances
answer the questions of where and how a decomposed task is “suitable”, i.e., the processing of an asset,
or changing the floor level.

The implemented concept proves the correlation between tasks, affordances, and the environment
based on a route decision task. To find a production asset’s route from one manufacturing device to
the next, a decision has to be made about which edges the route should traverse. Routes, including
their affordances, can be identified using a graph-based network stored in the graph database. Routes
may include elevators or stairs, especially when an action like “change floor level” is necessary. Both
basically afford the action of “transportation” and changing the floor level. Whereby, when processing
the affordances and the suitability, the elevator achieves a much better score than the stairs with respect
to safety and quality based on a much higher risk of damaging the silicon wafers through a shock
when walking down the stairs.
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To focus on the applied route decision task outlined in Section 4.1, we decompose the routing
task into subtasks to enable decision-making by robots or simply to support human transportation
in manufacturing environments. The approach is based on the affordance-based routing concept
highlighted in [10]. To visually express the optimal transportation route, Figure 5 shows the results of
a “make route decision” operation with the current position of an asset as the starting point (marked
by a green point) and a defined target (marked by a red point). In other cases, the target point is
provided by another sub-task (“process operation X”) and an entity that offers the processing of the
corresponding operation. For this example, the two identified candidate routes are visualized as a red
and a green line. As can be seen, the shortest path would be the red dashed line, which is not the
optimal path as there is an uneven floor leading to concussions of the production asset, which can be
detected by acceleration sensors and-/or personal observations by human operators. In this specific
example, the solid green line represents the optimal path for this specific route decision for the asset,
avoiding possible damage through concussions on the shortest path. The unevenness may negatively
influence the quality of this asset type, which is considered when calculating the suitability of the
route. Hence, a longer transportation route may be regarded as optimal.
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Figure 5. Visualization of the task “Make Route Decision” resulting in two visualized candidate routes
and the highlighted optimal route of these two candidate routes. The smart transportation task starts at
the green point on the left side and goes to the red point on the right side. The two possible candidate
routes are identified as green and red lines. For this specific route decision, concussions affecting
one candidate route—visualized in red—are detected by sensors or personal observations by human
operators. Therefore, the optimal route is the solid green line, which is longer than the red one, but not
optimal in terms of quality assurance.

6. Discussion and Conclusions

This paper elaborates on an approach to map characteristics of urban human tasks and process
planning onto an indoor manufacturing environment. In detail, a general transportation task is
analyzed and compared to a transportation process in a manufacturing environment. In addition,
a graph database is implemented and utilized to calculate “optimal” transportation routes with respect
to the contextual necessities of a production asset. This is done by integrating contextual data of the
indoor environment and by exploiting an affordance-based routing approach.

In the paper, we focus on the transition of the problem-solving strategy—i.e., the decomposition
of complex tasks—to an indoor manufacturing environment. The research contribution manifests itself
in the combination of task and trip planning that is fully based on an indoor ontology and semantically
enriched manufacturing data. Contemporary papers present navigation approaches for indoor spaces,
focusing on getting from a starting point to a given target. In manufacturing environments, operators
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or assets have to fulfil tasks in order to finalize products so that these are ready to be shipped to the
customers. As the production site has to fulfil volatile consumer demands, manufacturing processes
are not aligned on a conveyor belt but are mostly geographically dispersed over the production halls.
This requires a complex decision-making process, as both the target and the path need to be determined
individually for each asset while considering quality standards. Quality standards are defined on the
basis of production asset types present in the production line (usually several hundred).

The paper highlights relevant approaches to human problem-solving—mainly decomposition
approaches. Decomposition can help to break down a complex task into smaller tasks that can be solved more
easily. Here, we attempt to apply decomposition to a specific manufacturing environment—semiconductor
manufacturing. The results should provide the theoretical basis to develop an algorithm for an affordance-
based navigation solution for production assets. The navigation algorithm should include both task and trip
planning in order to support the autonomous transportation of assets in an indoor manufacturing plant.

The basis for the experiment presented in this paper is a graph database, supporting the concept
of linked data, and an ontology, describing the indoor space and the navigation tasks. Affordances
are intertwined with sensor data, which represent information on the environment. Furthermore,
the developed concept supports the determination of an optimal path from a source to a target point
in a manufacturing environment, where optimality refers to the affordances, the quality issues, and
the context of the production asset. For a spatial or spatial-temporal analysis, historical information
is stored in the graph database. These data can support case-based planning [7], which is based on
historical experiences. This approach may contribute to the decomposition approach followed in this
paper. Here, overall problems or tasks are decomposed into smaller subtasks that are solved in a given
order [8,9].

Open issues that are not tackled in the paper are a performance analysis of the algorithm
supporting the autonomous navigation of production assets and the impact of the algorithm on
the “travel behavior” of production assets. The latter could be analyzed by an approach following
geo-visual analytics or geostatistical methods, whereas a detailed performance analysis would require
an analysis of the underlying algorithm in a mathematical manner and in-situ testing—see [15] for
details. In the indoor environment under review, humans carry out transportation tasks, which leads
to the necessity of communicating the recommendations of the system in a user-centered manner,
utilizing theory and methods from the Human Computer Interaction. In addition, this paper focuses
to a large degree on the similarities between manufacturing environments and urban environments.
From a GIScience point of view, it would be interesting to look at both the similarities and differences
between them and the implications, e.g., for modeling a manufacturing environment.
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