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Abstract: This paper addresses the problem of contextual hyperspectral image (HSI) classification.
A novel conditional random fields (CRFs) model, known as higher order support vector random
fields (HSVRFs), is proposed for HSI classification. By incorporating higher order potentials into a
support vector random fields with a Mahalanobis distance boundary constraint (SVRFMC) model,
the HSVRFs model not only takes advantage of the support vector machine (SVM) classifier and the
Mahalanobis distance boundary constraint, but can also capture higher level contextual information
to depict complicated details in HSI. The higher order potentials are defined on image segments,
which are created by a fast unsupervised over-segmentation algorithm. The higher order potentials
consider the spectral vectors of each of the segment’s constituting pixels coherently, and weight these
pixels with the output probability of the support vector machine (SVM) classifier in our framework.
Therefore, the higher order potentials can model higher-level contextual information, which is useful
for the description of challenging complex structures and boundaries in HSI. Experimental results
on two publicly available HSI datasets show that the HSVRFs model outperforms traditional and
state-of-the art methods in HSI classification, especially for datasets containing complicated details.

Keywords: hyperspectral image classification; conditional random fields; support vector random
fields; higher order potentials

1. Introduction

With the development of hyperspectral imaging technology, hyperspectral image (HSI)
classification has attracted increasing attention in various fields such as disaster monitoring,
precision agriculture, and the military. The high spectral resolution of the HSI largely facilitates
the classification, which requires the discrimination of small differences among ground cover classes.
However, the high-dimensional data spaces bring challenges to the classification methods. The most
difficult issue in supervised HSI classification is the Hughes effect, which occurs when feature
dimension is high and training samples are limited [1]. Different methods have been proposed
to address the Hughes effect, among which the support vector machine (SVM) [2] has promising
performance due to its robustness to the Hughes effect compared to traditional HSI classification
methods [3–5]. However, the SVM classifier considers only pixel-level spectral information and
overlooks spatial contextual information, whereas spatially adjacent pixels are actually highly
correlated in HSI. Thus, the SVM classifier usually leads to classification maps with salt-and-pepper
noise. Many spectral–spatial classification methods have been proposed for HSI classification [6,7],
and in a recent review of HSI classification, the advantages of using both spectral and spatial
information are concluded [8]. Among spectral–spatial classification methods, conditional random
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fields (CRFs) have been extensively studied for HSI classification because of their strong spatial context
modeling ability [9,10].

CRFs were first proposed for sequence data labeling by Laffery in 2001 [11]. Kumar et al. [12]
applied CRFs to man-made structure detection in natural images. Shotton et al. [13,14] employed the
CRFs model for multi-class object recognition and segmentation. He et al. [15,16] proposed multiscale
CRFs for image labeling. Torralba et al. [17] proposed boosted random fields based on CRFs for
object detection. Gould et al. [18,19] proposed combining a relative location prior with the CRFs
model for multi-class image labeling. Ladicky et al. [20,21] utilized associative hierarchical CRFs for
object class image segmentation and dense stereo reconstruction. Huang et al. [22] used a hierarchical
CRF for labeling and segmenting street scene images. Li et al. [23] implemented multi-class object
segmentation using superpixel-based CRFs. Kohli et al. [24,25] proposed adding robust higher order
potential to pairwise CRFs to enforce label consistency in image labeling tasks. All these applications in
object detection, image labeling, recognition, and segmentation benefit from the strong spatial context
modeling ability and feature integration flexibility of CRFs. In recent years, the advantages of CRFs
have attracted the attention of researchers in the field of remote sensing image processing, and CRFs
have been introduced to model the spatial context in remote sensing images [9,10,26–32].

The SVM classifier has been proven effective for HSI classification and has been combined
with other methods to incorporate spatial information to improve classification accuracy [6,7,33,34].
Support vector random fields (SVRFs) [35] improve CRFs by embedding the SVM classifier into
the CRF framework, thus taking advantage of the powerful discriminant properties of SVM while
still maintaining the spatial context modeling ability of CRFs. The SVRFs model was employed by
Zhong et al. [26] for high spatial resolution remote sensing image classification. In this work, the SVM
classifier was used as the spectral term and a Mahalanobis distance boundary constraint model
was defined as the spatial term in CRFs, and the proposed model was called the support vector
random fields classifier with a Mahalanobis distance boundary constraint (SVRFMC) [26]. In the
Mahalanobis distance boundary constraint, both the spatial and spectral contextual information are
modeled. Thus, the SVRFMC model outperforms the earlier BC-CRF [36] that used multinomial
logistic regression (MLR) [37] as the spectral term and a boundary constraint as the spatial term, which
only captures the spatial context. However, similar to classical pairwise CRFs, SVRFMC can only
capture pairwise interactions and ignores the higher level context that extensively exists in HSI and is
potentially useful for HSI classification.

In [24], Kohli et al. incorporated higher order potentials into pairwise CRFs to model higher level
properties in natural images. After that, CRFs with higher order potentials (CRF-Hs) were applied
to HSI classification by Zhong et al. [27] and the higher order potential was proved to be an efficient
term to model complicated structures and boundaries in HSI. However, in CRF-H, the multinomial
logistic regression (MLR) [37] classifier was used as the unary term, for which the discriminant ability
for hyperspectral features is far from that of SVM. The MLR classifier has limited generalization
ability when there are not enough training samples [26]. Moreover, a generalization of the Ising model
was used to define the pairwise term in CRF-H, which does not preserve edges between different
classes very well compared to the Mahalanobis distance boundary constraint in SVRFMC. In addition,
Zhong et al. [27] integrated the class information and the situation information of each segment’s
constituting pixels into the weight parameters in the higher order potentials, which showed limited
improvement over pairwise CRF in the overall accuracies of HSI classification (0.11% and 1.13% on the
two tested datasets in their work).

In this work, we propose a novel model known as higher order support vector random fields
(HSVRFs), which incorporates higher order potentials into the SVRFMC model, for HSI classification.
In the HSVRFs model, we use a multi-class probabilistic SVM classifier [38] as the unary potential and
the Mahalanobis distance boundary constraint model [26] as the pairwise potential; these components
are similar to the two corresponding parts in the SVRFMC model. Besides the unary and pairwise
potentials, we propose incorporating higher order potentials into the HSVRFs to enforce label
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consistency in image segments, which are obtained using a recently proposed efficient unsupervised
over-segmentation algorithm called the entropy rate (ER) [39]. The higher order potentials adjust the
label inconsistency cost of each segment with two important pieces of information: the first is the
segment homogeneity, which is defined as the variance of spectral vectors of the segment’s constituting
pixels; the second is the sum of weights of inconsistent pixels (pixels not taking the dominant label)
in the segment, which is based on the label map obtained by the SVM classifier in our framework.
The labeling of each pixel in a segment is done with a different level of confidence since the SVM
classifier gives the class label of each pixel a probability. Therefore, the weight of each pixel is given as
its probability of taking the label, which is provided by the SVM classifier. This weighting strategy
improves the expressiveness of higher order potentials for complex structures and boundaries in HSI
with very little extra computation. By integrating the higher order potentials into SVRFMC model,
the HSVRFs model not only takes advantage of the SVM classifier and the pairwise potential of
Mahalanobis distance boundary constraint, but can also capture higher level context in HSI.

The main contributions of this paper are as follows. Firstly, we propose a new conditional random
field model named HSVRFs to exploit both spectral and spatial information and their context for
HSI classification based on the SVM classifier, the Mahalanobis distance boundary constraint model,
and higher order potentials. Secondly, by incorporating higher order potentials into our framework,
higher order dependencies among spectral vectors of the constituting pixels in image segments rather
than pairwise relations between neighboring pixels, are taken into consideration. Spatial contextual
information is utilized more effectively to improve HSI classification accuracy. Thirdly, a weighting
strategy for pixel labeling in each segment is proposed to compute the label inconsistency cost of
higher order potentials. This strategy enables the higher order potentials to capture the complex details
in HSI more efficiently. Fourthly, we evaluated the performance of HSVRFs model on two HSI datasets
with different spectral and spatial resolutions. Experimental results show that the HSVRFs model
outperforms traditional and state-of-the-art methods for HSI classification, and its advantages are
more obvious for HSI with high spatial resolution and more complicated details.

The rest of this paper is organized as follows: Section 2 describes the proposed HSVRFs model.
The experimental results and analysis for two HSI datasets are presented in Section 3. Finally, Section 4
gives a conclusion of our work.

2. Higher Order Support Vector Random Fields for HSI Classification

2.1. Problem Formulation

In the HSI classification problem, an observed image with V pixels is denoted by a set of spectral
vectors x = (x1, x2, ..., xi , ...xV ), where the pixel index i ranges from 1 to V . xi = [xi1,xi2, ...,xid ]T

represents the spectral vector of pixel i, and d is the number of bands. The task is to infer the labeling
of the image y = (y1,y2, ...,yi , ...,yV ), where each variable yi is the label of pixel i and takes a value from
the set C = {1, 2, ...,L}, while L is the number of classes. Thus, the y labeling takes values from the set
CV . The HSI classification problem is formulated as finding a field of class labels that represent the
maximum posterior labeling, i.e., y∗ = arдmaxy∈CV P (y|x).

2.2. Higher Order Support Vector Random Fields

The proposed HSVRFs model incorporates higher order potentials into pairwise CRFs called
SVRFMCs [26] and can be formulated as follows:

P (y|x,η) =
1

Z (x,η)
exp (−

∑
i ∈V

ϕi (yi , xi ,ϑ ) −
∑
i ∈V

∑
j ∈Ni

ϕi j (yi ,yj , xi , xj ) −
∑
c ∈S

ϕc (yc , xc , ξ )) (1)

where Z (x,η) is a normalizing constant known as the partition function, Ni is the neighbor set of
pixel i in its 8-neighborhood, S is the set of all image segments, yc is the set of labels over the higher
order clique c, and xc is the set of spectral vectors over clique c. ϕi (·), ϕi j (·), and ϕc (·) are the unary,



ISPRS Int. J. Geo-Inf. 2018, 7, 19 4 of 16

pairwise, and higher order potentials, respectively. ϑ and ξ are the parameters of unary and higher
order potentials, respectively. The pairwise potentials, which are defined as the Mahalanobis distance
boundary constraints [26], have no parameters. η is the vector of the model parameters, i.e., η = {ϑ , ξ }.

The unary potential ϕi (·) describes the tendency that each pixel belongs to a certain class
based on its spectral vector, and we use the multi-class probabilistic support vector machine (SVM)
classifier [38] to define this potential. As a discriminative classifier, SVM has been proven to have
promising performance for multispectral and hyperspectral remote sensing image classification
[4,40,41]. The SVM classifier has better performance than multinomial logistic regression (MLR)
[37] for HSI classification because by using the kernel function, the linearly inseparable spectral
signatures are projected into a higher-dimension space to be separable. SVM needs fewer training
samples compared to MLR under the structural risk minimization (SRM) principle [26]. The unary
potential ϕi (·) in (1) can be defined as follows:

ϕi (yi , xi ,ϑ ) = −
L∑

k=1

δ (yi = k )loдP (yi = k |xi ,ϑ ) (2)

where ϕi (yi , xi ,ϑ ) represents the probability of belonging to class label yi for pixel i under its
spectral vector xi , ϑ is the parameter vector of this potential, δ (·) is the zero–one indicator function,
P (yi = k |xi ,ϑ ) is the probability of pixel yi taking the class label k, based on the feature vector xi
(which is given by the multi-class probabilistic SVM model [38]), and L is the number of classes.
The multi-class probabilistic SVM model estimates the multi-class probability pk = P (yi = k |xi ),
k = 1, ...,L by combining all the pairwise class probabilities [42,43]. The objective function of the
probability estimation [42,43] is represented as:

min
p

L∑
k=1

∑
l :l,k

(rlkpk − rklpl )
2 s.t .

L∑
k=1

pk = 1 (3)

where rkl = P (yi = k |yi = k or l , xi ),k, l = 1, ...,L is the estimated pairwise class probability. The goal is
to estimate pk using all rkl . The objective function can be rewritten as

min
p

1
2

pTQp (4)

where

Qkl =



∑
s :s,k r

2
sk i f k = l ,

−rlkrkl i f k , l .
(5)

Instead of directly pursuing the optimal solution of the objective function in Equation (4), a simple
iterative method was proposed [42,43] in which the optimal solution p satisfies

Qt tpt +
∑
l :l,t

Qt lpl − pTQp = 0, ∀t . (6)

The iterative algorithm can be described as follows:
Step 1. Start with some initial pk ≥ 0,∀k and

∑L
k=1 pk = 1.

Step 2. Repeat(t = 1, ..., j, 1, ...)

pt ←−
1
Qt t

[−
∑
l :l,t

Qt lpl + pTQp] (7)

normalize p (8)
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until the optimality condition [42] is satisfied.
More details about the algorithm and the inference process can be found in [42] or [43].
In HSI, there are usually complex interactions among spectral and spatial neighborhood, and a

single SVM classifier considering only the pixel-level spectral information will get noisy classification
maps. Therefore, we need a pairwise potential to model the contextual information to correct those
wrongly classified pixels to get smoother classification results. ϕi j (·) employs a Mahalanobis distance
boundary constraint model [26] that captures both the spectral and spatial context, which is formulated
as in Equation (9):

ϕi j (yi ,yj , xi , xj ) =



−1, yi = yj

exp (−
D (xi ,xj )

2σ 2 ) − 1, yi , yj
(9)

where D (xi , xj ) is a modified Mahalanobis distance, which measures the similarity between neighboring
spectral vectors xi and xj . The detailed formulation ofD (xi , xj ) can be found in [26]. σ 2 is the mean value
of (xi − xj )T (xi − xj ) over the whole image. The boundary constraint with the modified Mahalanobis
distance captures both the spectral and spatial context, which has superiority over CRFs using the Potts
model [9] and a simple boundary constraint model [36] that considers only spatial correlation [26].

The higher order potential ϕc takes the form of a Robust Pn model [24] to capture the high-level
contextual information. These potentials are defined on image segments, which are generated by the
ER over-segmentation algorithm [39]. The major goal of the higher order potentials is to enforce label
consistency in image segments while appropriately maintaining structure details. However, the image
segments are not all equally homogeneous. There may be more than one class in some segments,
which will lead to incorrect classification if label consistency is enforced rigidly. Therefore, the higher
order potentials modulate the label inconsistency cost firstly by measuring the segment homogeneity,
which is defined as the variance of pixel spectral vectors in the segment. Secondly, the confidence for
the labeling of each pixel in a segment is different because the SVM classifier gives each pixel’s class
label with a probability. For this reason, we weight each pixel with its probability of taking the label.
Then, the label inconsistency cost is also modulated by accumulating the weights of inconsistent pixels
in a segment. By this weighting strategy, the higher order potentials can describe the complicated
details in HSI more accurately. We define the higher order potentials as in Equations (10) and (11):

ϕc (yc , xc , ξ ) =



Wi (yc )
1

T ·P λmax , Wi (yc ) ≤ T · P
λmax , otherwise

(10)

Wi (yc ) =mink (P −
∑
i ∈c

wiδ (yi = k )), k = 1, ...,L (11)

where P =
∑

i ∈c wi , and wi represents label confidence for pixel i, which is given by the multi-class
probabilistic SVM classifier, i.e., wi =maxk (P (yi = k |xi )). δ (·) is the zero–one indicator function. Wi (yc )
measures the inconsistency cost by accumulating the weights (label confidence) of pixels. In this
way, pixels with higher label confidence are given more importance, while pixels with lower label
confidence are given less importance. This weighting strategy makes the higher order potentials better
model the challenging complex details in HSI with very little extra computation. T is the threshold
parameter controlling the rigidity of the higher order potentials. According to [24], the value of T
satisfies the constraint T < 0.5, and we tune the value experimentally. λmax is a function incorporating
the homogeneity of each segment, and the inconsistency cost is positively correlated to λmax , which
means the more homogeneous the segment, the higher the inconsistency cost. WhenWi (yc ) ≤ T · P ,
the inconsistency cost is also positively correlated toWi (yc ), which means the larger the accumulated
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weights of inconsistent pixels, the higher the inconsistent cost. The function λmax is defined as in
Equation (12) to measure the homogeneity of each segment:

λmax = |c |
θα (θp + θvH (c )) (12)

where H (c ) models the homogeneity of segment c using the variance of spectral vectors for constituting
pixels in c, and θα , θp , θv are parameters. The definition of H (c ) is shown in Equation (13):

H (c ) = exp (−θβ
‖
∑

i ∈c (xi − µ )
2‖

|c |
) (13)

where ‖ · ‖ is the l2 norm, µ =
∑

i ∈c xi/|c | is the mean spectral vector, and θβ is a parameter. Therefore,
a segment containing multiple classes will have low homogeneity in Equation (13) and thus will have a
low inconsistency cost in Equation (10), which encourages some pixels in an inhomogeneous segment
to take inconsistent labels. In this way, the higher order potentials can eliminate the oversmoothing
effect caused by a rigid consistency enforcement.

2.3. Parameter Learning and Inference

Since there are many parameters in the HSVRFs model, an exhaustive search for the optimal
parameter values is impractical. We found the optimal values for different parameters of the HSVRFs
model under a piecewise training framework [44], where the model is divided into pieces and each
piece is trained independently. It has been proved in [44] that piecewise training is an effective training
method for graphical models like CRFs, performing much better than pseudolikelihood [45], and it
is often competitive for global training. In this paper, we divided the model according to the types
of cliques (i.e., unary potential, binary potential, and higher order potential), in a similar manner to
the method used in [27]. However, there is a problem with the piecewise training strategy, which is
that it may lead over-counting during inference in the combined model [44]. To compensate the
over-counting, scalar powers were introduced for each of the three potentials in HSVRFs, and all of
them functioned in the form of adding weights to the corresponding potential [14]. Then, by combining
the separately learned potentials, the posterior probability in (1) can be obtained as in Equation (14):

P (y|x,η) ∝ exp{−λ1

∑
i ∈V

ϕi (yi , xi ,ϑ ) − λ2

∑
i ∈V

∑
j ∈Ni

ϕi j (yi ,yj , xi , xj ) − λ3

∑
c ∈S

ϕc (yc , xc , ξ )} (14)

where λ1, λ2, and λ3 are the fixed powers of unary, pairwise, and higher order potentials, respectively.
Similar to the work of Zhong et al. [27], we fixed λ1 as 1 and only modulated λ2 and λ3.

Under the piecewise training framework, we selected the model parameters in a way similar
to that used in [24]. We first learned the parameters in the SVM classifier (unary potential) using
the LibSVM toolbox [43]. The radial basis function (RBF) [42] was used as the kernel of SVM and
then the unary parameters ϑ = {C,γ } (C controls the penalty during optimization, and γ is the
spread of RBF), were tuned by five-fold cross validation within the range of [2−5, 215] and [2−15, 25],
respectively, with grid-search [43]. Then, we kept the learned parameters of the SVM constant and
tuned the parameters of pairwise potential. Since the Mahalanobis distance boundary constraint has
no parameters, we only need to adjust the weight of the pairwise potential. After that we tuned the
higher order parameters in the HSVRFs with only unary and higher order potentials, and then with
the ratio between unary and pairwise potentials. For all the above steps, five-fold cross-validation
was used.

With the selected parameters, we inferred the optimal classification result (i.e., maximizing the
probability in Equation (1)) with the graph-cut-based move for making algorithms [46], which was
proven to be efficient in [24] for the inference of CRFs with higher order potentials.
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3. Experimental Results

3.1. Experimental Setting

Two hyperspectral datasets were used to evaluate the performance of HSVRFs: the Indian
Pines [47] and the Pavia University [47] datasets. The two images are very popular hyperspectral
datasets and have been widely used in many classification works. The Indian Pines image was
acquired by airborne visible/infrared imaging spectrometer (AVIRIS) over the Indian Pines test
site in Northwestern Indiana. This image covers 145 × 145 pixels with 20-m spatial resolution and
a 0.4 to 2.5-µm wavelength range. Two hundred spectral bands were observed after removing
20 water absorption bands. In this dataset, 10,249 pixels were labeled, and the rest were not.
There were 16 classes available in the original ground truth; 7 were discarded in our experiments
because they contained only few training samples. The remaining nine classes contained 9345 labeled
pixels. A three-band false color image and the ground truth image of this dataset are shown in
Figure 1a,d (in Section 3.2). The Pavia University image was collected by reflective optics system
imaging spectrometer (ROSIS) sensor over an urban area of the Pavia University in northern Italy.
This dataset contains more complex structure information than the Indian Pines. The image covers
610 × 340 pixels, with a very high spatial resolution of 1.3 m, and 103 spectral bands were preserved
after removing 12 noisy bands. There were 42,776 labeled pixels available in the ground truth, belonging
to nine different classes. Figure 2a,g (in Section 3.2) present a three-band false color image and the
ground truth for this dataset.

We conducted two groups of experiments on the Indian Pines dataset. All the compared
methods were run five times with different randomly selected training testing sets, and the average
accuracies were reported. In the first group of experiments, we randomly selected 200 training
samples for each of the nine classes from the ground truth and the rest of the samples were used
for testing. The class descriptions and the training and testing size of each class are shown in
Table 1 (see Section 3.2). We compared the classification results of HSVRFs with those of MLR [37,48],
SVM [2], CRFs, and SVRFMC [26]. In the second group of experiments, we kept the same training
testing split of reference data as Zhong et al. [27] did, and directly drew the classification results
of MLR and CRF-H on Indian Pines from his work for comparison. The details of the classes and
training/testing split are given in Table 2 (see Section 3.2). We also give the classification results of
CRF, SVM, SVRFMC, and HSVRFs for comparison in this group of experiments.

One group of experiments was conducted on the Pavia University dataset. Similar to experiments
on Indian Pines, we ran all the compared methods for five times with different randomly selected
training testing sets, and reported the average accuracies. We randomly picked 70 training samples for
each class, and the rest were used as testing sets. Table 3 (see Section 3.2) shows the class descriptions
and the training/testing sample numbers for each class. We also compared the HSVRFs model with
MLR, CRFs, SVM, and SVRFMC on this dataset.

In all the experiments, the radial basis function (RBF) kernel [38] was used for SVM classifiers, as it
has been proven to be effective for the complicated nonlinear spectral signature classification. For the
two datasets, the optimal parameter values of the SVM classifier were selected as C = 512,γ = 0.125.
The MLR classifier was trained using the backpropagation algorithm [49,50], and the weight decay
parameter λ was tuned by five-fold cross validation. λ was set to be 4.4 × 10−6 for the Indian Pines
dataset and 5 × 10−6 for the Pavia University dataset. In CRFs, the MLR classifier was used as the
unary term while the Mahalanobis distance boundary constraint model was used as the pairwise term,
and this was the same for the corresponding part in the SVRFMC. This strategy, for the fair comparison
of MLR and SVM, was used as the unary term in the CRFs framework.

The scalar powers of unary and pairwise potentials in CRFs and SVRFMC were tuned under the
piecewise training framework. The powers of CRFs were set as λ1 = 1, λ2 = 2.5 for the Indian Pines
dataset and λ1 = 1, λ2 = 1.2 for the Pavia University dataset. The powers of SVRFMC were set as
λ1 = 1, λ2 = 2.5 for Indian Pines and λ1 = 1, λ2 = 6 for Pavia University, respectively. The parameters of
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higher order potentials in HSVRFs were selected as θα = 0.8,θp = 0.2,θv = 10,θβ = 0.05, and T = 0.27
for the Indian Pines and θα = 0.8,θp = 0.2,θv = 10,θβ = 0.5, and T = 0.43 for the Pavia University
image. The optimal values of the powers were also tuned by piecewise training, and were set as
λ1 = 1, λ2 = 1.2, and λ3 = 0.18 for the Indian Pines dataset, and λ1 = 1, λ2 = 0.2, and λ3 = 0.8 for Pavia
University dataset.

3.2. Classification Performance

Figures 1 and 2 show experimental results on the Indian Pines and Pavia University datasets.
The results were obtained with the tuned parameter values mentioned above. From the classification
maps and difference images, we can see that the results of MLR and SVM have abundant
salt-and-pepper classification noise. The result of SVM is better than that of MLR, which is consistent
with the conclusion in the literature that SVM has robust performance in conditions of high feature
dimension and limited training samples, while the MLR has limited generalization ability when
training samples are not sufficient [26]. CRFs, SVRFMC, and HSVRFs exhibit better visualization results
in that the salt-and-pepper noise is greatly reduced and smoother results are obtained. This is because
the spatial context is considered in the four models. However, there is an obvious over-smoothing
effect in the classification maps of CRFs, which is illustrated more clearly in the corresponding
difference images. In the difference image of CRFs on Indian Pines (Figure 1j), it is clear that there are
patches which are entirely misclassified (shown in circles in Figure 1j). For example, on comparing
the classification map and difference image of CRFs (Figure 1g,j), we can see that the corn-notill patch
(shown in the yellow circle) in the top-left corner is misclassified into corn-mintill. The soybean-mintill
patch (shown in the purple circle) in the top-right is misclassified into soybean-clean. Meanwhile,
the soybean-clean patch (shown in the white circle) in the left of the image is misclassified into
corn-mintill, and the soybean-notill patch (shown in the blue circle) at the bottom of the image
is misclassified into soybean-mintill. In contrast, the results of SVRFMC and HSVRFs are much
better. For example, from the difference images of SVRFMC and HSVRFs on the Indian Pines image
(Figure 1k,l), we can see that the four aforementioned misclassified patches in the difference image
of CRFs (Figure 1j) are classified correctly in general. This demonstrates the advantage of SVM over
MLR used as the unary potential in the CRF framework.

Furthermore, it can be seen that compared to SVRFMC, the HSVRFs model obtains better
classification maps. Note that there are still misclassified pixels in the yellow-circled region in the
difference image of SVRFMC on the Indian Pines dataset. However, those pixels are correctly classified
in the results of HSVRFs. It is worth noting that for the Pavia University dataset, the advantage of the
HSVRFs model is more obvious. For example, when comparing the difference images of SVRFMC
and HSVRFs for Pavia University, we can see that the misclassified pixels of the Meadow patches
(shown in yellow circles), Bitumen patches, Bare Soil patches (shown in white circles), and the Brick
patches (shown in purple circles) in the result of the SVRFMC (Figure 2k) are classified into the right
classes in the results of the HSVRFs (Figure 2l). The reason for this is that the integration of higher
order potentials makes the HSVRFs model capable of modeling high-level contextual information,
and thus it can better depict the complicated details in HSI, especially for urban images that contain
many complex structures. To conclude, compared to the other four methods, the HSVRFs model
can achieve competitive classification maps, showing appropriate smoothing and preserving good
boundary information. This can be demonstrated more clearly in the comparison of circled regions in
the difference images of the five methods.
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(a)

(d)

(b) (c)

(e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 1. Classification results of the Indian Pines dataset (with 200 training samples for each
class). (a) Three-band false color image. (d) Ground truth. (b,c,g–i) Classification maps obtained
by multinomial logistic regression (MLR), support vector machines (SVMs), conditional random fields
(CRFs), support vector random fields with a Mahalanobis distance boundary constraint (SVRFMC),
and higher order support vector random fields (HSVRFs). (e,f,j–l) The corresponding difference images
of (b,c,g–i) compared with the ground truth in (d). Black regions represent pixels without ground truth;
In the rest of the areas, green regions represent correctly classified pixels and red regions represent
wrongly classified pixels.
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Figure 2. Classification results of Pavia University dataset. (a) Three-band false color image. (g) Ground
truth. (g,f) Classification maps obtained by MLR, SVMs, CRFs, SVRFMC, and HSVRFs. (h–l) The
corresponding difference images of (b–f) compared with the ground truth in (g). Black regions represent
pixels without ground truth. In the remaining part, green regions represent correctly classified pixels and
red regions represent wrongly classified pixels.

To give the quantitative evaluation, Tables 1 and 2 present class-specific accuracies (percentage of
pixels correctly classified for each class), overall accuracy (OA; percentage of pixels correctly classified)
and Kappa [51] of compared methods in the two groups of experiments on Indian Pines dataset.
Table 3 shows the accuracies of compared methods on the Pavia University dataset. We ran each
experiment five times with different randomly chosen training/testing sets and reported the mean
classification accuracies.

In the first group of experiments on the Indian Pines dataset, HSVRFs obtained the highest OA and
Kappa at 94.83% and 93.81% respectively, which were 1.36% and 1.61% higher than the corresponding
values for SVRFMC, and these were the highest class-specific accuracies for most classes. The OA of
SVM was 85.52%, which was about 8.9% higher than that of MLR. The OA of SVRFMC was about
6.44% higher than that of CRFs, which demonstrates the advantage of SVM over MLR working as the
unary classifier in CRFs framework. In the second group of experiments on this dataset, HSVRFs also
acquired the highest OA at 98.50%, which was 1.07% and 4.81% higher than the corresponding of the
SVRFMC and CRF-H [27], respectively. It is notable that even with the higher order potential, the OA
of CRF-H is still lower than that of SVRFMC. The reason for this phenomenon can be ascribed to the
advantage of SVM in SVRFMC over the MLR in CRF-H, and also the advantage of the Mahalanobis
distance boundary constraint in SVRFMC over the Ising model in CRF-H.

In the Pavia University dataset with more complex structures, the HSVRFs obtained the highest
OA and Kappa at 96.67% and 97.10% respectively. These values were 2.02% and 3.98% higher than
the corresponding values for the SVRFMC. The OA of SVRFMC was 6.23% higher than that of CRFs.
Over the two datasets, the OAs of CRFs, CRF-H, SVRFMC, and HSVRFs were higher than those of
non-contextual MLR and SVM, which shows the importance of contextual information. The HSVRFs
achieved the best performance among all the six methods. Furthermore, the advantage of HSVRFs
over SVRFMC on the Pavia University dataset is more obvious than that on the Indian Pines dataset.
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This validates the suitability of the proposed higher order potentials for modeling urban HSI containing
more complex structures.

Table 1. Classification accuracies of the different algorithms for the Indian Pines dataset (%).
OA: overall accuracy.

Class Training Samples Testing Samples MLR CRFs SVM SVRFMC HSVRFs

Corn-notill 200 1228 72.08 77.98 81.68 85.03 90.78
Corn-mintill 200 630 65.62 95.78 83.97 96.54 98.13
Grass-pasture 200 283 94.06 96.82 95.97 98.80 97.95
Grass-trees 200 530 97.96 99.66 98.94 99.89 99.92
Hay-windrowed 200 278 99.86 100 100 100 100
Soybean-notill 200 772 76.01 82.23 85.65 94.90 94.97
Soybean-mintill 200 2255 62.07 78.05 74.59 90.10 91.03
Soybean-clean 200 393 78.88 95.73 91.60 97.81 97.96
Woods 200 1065 97.45 99.32 98.46 99.57 99.61

OA 76.62 87.03 85.52 93.47 94.83
Kappa 72.46 84.64 82.84 92.20 93.81

Table 2. Classification accuracies of the different algorithms for the Indian Pines dataset (%).

Class Training Samples Testing Samples MLR CRF-H [27] CRFs SVM SVRFMC HSVRFs

Corn-notill 742 692 82.75 91.04 82.51 83.70 81.07 88.62
Corn-mintill 442 392 68.55 85.97 67.27 88.28 98.28 99.14
Grass-pasture 260 237 93.46 87.34 96.41 96.14 99.57 97.85
Grass-trees 390 357 98.46 98.32 99.71 98.96 99.58 100.00
Hay-windrowed 236 253 98.55 100.00 100.00 100.00 100.00 100.00
Soybean-notill 488 480 70.08 84.58 80.99 84.35 95.29 98.75
Soybean-mintill 1246 1222 84.27 96.07 93.63 74.51 89.98 92.06
Soybean-clean 306 308 75.82 96.10 80.49 92.42 97.38 98.54
Woods 652 642 99.23 99.84 99.18 98.72 99.61 99.80

OA 85.07 93.69 89.13 91.66 97.43 98.50
Kappa 87.12 90.18 96.97 98.23

Table 3. Classification accuracies of the different algorithms for the Pavia University dataset (%).

Class Training Samples Testing Samples MLR CRFs SVM SVRFMC HSVRFs

Asphalt 70 6561 71.75 79.13 80.98 97.95 95.11
Meadows 70 18579 80.51 90.07 87.27 96.32 96.73
Gravel 70 2029 82.12 89.48 83.53 98.99 92.78
Trees 70 2994 93.04 94.78 94.60 75.87 92.19
Metal sheets 70 1275 99.60 99.57 99.44 99.64 99.50
Bare Soil 70 4959 84.46 96.17 89.08 100.00 99.60
Bitumen 70 1260 85.89 88.65 93.76 99.62 99.87
Bricks 70 3612 73.96 90.05 82.57 84.62 98.10
Shadows 70 877 98.13 99.56 99.95 85.09 100.00

OA 80.59 88.88 87.27 94.65 96.67
Kappa 84.88 91.39 90.13 93.12 97.10

3.3. Parameter Analysis

In the proposed HSVRFs model, there are three main factors that have an influence on the final
classification accuracy. The first is the threshold parameter T which controls the rigidity of the higher
order potentials, the second is the number of superpixels (i.e., segments) in the ER over-segmentation
algorithm, and the third is the number of training samples. In this section, we give the analysis about
classification performance of the model with various values of the three parameters.

Figure 3 gives the OA curves of the HSVRFs model in relation to different values of T . Each OA
reported in the curves was the average value of five experiments with different randomly chosen
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training sets. The other parameters were kept the same as those mentioned in Section 3.1. For the
two datasets, we tuned the values of T from 0.01 to 0.49, with a stepsize of 0.01. From the two curves,
we can see that the highest OA was obtained when T = 0.27 for the Indian Pines dataset, and T = 0.43
for Pavia University. This was reported in the selected parameter values in Section 3.1.

Figure 4 gives the OA curves of the HSVRFs model in relation to different number of superpixels
in ER algorithm. Each OA reported in the curves was also the average value of five experiments with
different randomly chosen training sets. The other parameters were set the same as those mentioned in
Section 3.1. For the Indian Pines dataset, we tuned the number of superpixels from 100 to 2500, with a
stepsize of 100. For the Pavia University dataset, we tuned the number of superpixels from 300 to 3000,
with a stepsize of 100. From the two curves, we can see that the highest OA was obtained when the
number of superpixels was 500 for Indian Pines dataset, and 900 for Pavia University.

Figure 5 gives the OA curves of MLR, CRF, SVM, SVRFMC, and HSVRFs in relation to different
numbers of training samples. Each OA reported the 5-time average overall accuracy. All the other
parameters were set the same as those mentioned in Section 3.1. For the Indian Pines dataset,
the number of training samples varied from 10 to 250, with a stepsize of 50 except for the first
and second point in the curves. For the Pavia University dataset, the number of training samples
varied from 10 to 90, with a stepsize of 20. We note that on the two datasets, the OAs of the compared
methods grew with the increase in training samples, but the growth became slower when the numbers
of training samples increased to a certain point. The HSVRFs model performed the best among the
five methods on the two datasets. Lastly, the HSVRFs model obtained the highest OA when the
number of training samples was 200 for the Indian Pines dataset and 70 for the Pavia University
dataset, which was reported in Section 3.1.
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Figure 3. Overall classification accuracies for different values of T. (a,b) show the OA versus different
values of T on the Indian Pines and Pavia University datasets, respectively.
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Figure 4. Overall classification accuracies for different numbers of superpixels. (a,b) show the OA
versus different numbers of superpixels on the Indian Pines and Pavia University datasets, respectively.
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Figure 5. Overall classification accuracies with different numbers of training samples. (a,b) show
the OA versus different numbers of training samples on the Indian Pines and Pavia University
datasets, respectively.

4. Conclusions

In this work, we propose a novel CRF model named HSVRFs for HSI classification.
By incorporating higher order potentials into the SVRFMC model, the HSVRFs model not only takes
advantage of the SVM classifier and Mahalanobis distance boundary constraint in the SVRFMC model,
but can also capture higher-level contextual information. Moreover, we weight the pixels in each
segment, on which the higher order potentials are defined, with their label confidences given by
the SVM classifier in our framework. This weighting strategy further enhances the depiction ability
of the higher order potentials in our model. Experiments on two real HSI datasets show that the
HSVRFs model has better performance than the traditional MLR, SVM, and CRFs methods, and also
outperforms the recently proposed SVRFMC and CRF-H models. The experiments also reveal that
the HSVRFs model is especially efficient for HSI in urban areas, as it has high spatial resolution and
contains complicated structures and boundaries.

Currently, the pairwise potentials in our HSVRFs model are defined on neighboring pixels in
the 8-neighborhood. A further step is to define the pairwise potentials on neighboring superpixels
(superpixels sharing edges), which will incorporate a longer-range spatial context that may further
improve the classification result. This is part of our future work to better explore the spatial contextual
information in HSI. Moreover, the integration of higher order potentials in HSVRFs brings additional
computations on feature value calculation and model inference. Thus HSVRFs cost more computational
time compared to second-order CRF frameworks. Moreover, we also hope to investigate the efficiency
improvement of this model in our future work.
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