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Abstract: In many moving object databases, future locations of vehicles in arterial networks are
predicted. While most of studies apply the frequent behavior of historical trajectories or vehicles’
recent kinematics as the basis of predictions, consideration of the dynamics of the intersections is
mostly neglected. Signalized intersections make vehicles experience different delays, which vary
from zero to some minutes based on the traffic state at intersections. In the absence of traffic signal
information (red and green times of traffic signal phases, the queue lengths, approaching traffic
volume, turning volumes to each intersection leg, etc.), the experienced delays in traffic signals
are random variables. In this paper, we model the probability distribution function (PDF) and
cumulative distribution function (CDF) of the delay for any point in the arterial networks based on a
spatiotemporal model of the queue at the intersection. The probability of the presence of a vehicle in
a zone is determined based on the modeled probability function of the delay. A comparison between
the results of the proposed method and a well-known kinematic-based method indicates a significant
improvement in the precisions of the predictions.

Keywords: moving objects prediction; probability distribution function of delay; spatiotemporal
models; arterial transportation networks; traffic signals

1. Introduction

Predicting the location of vehicles has been the focus of many researchers in recent years. In many
cases, vehicles send their locations to a database so that a variety of systems utilize the information.
Location-aware advertising [1], driving safety support systems [2], and vehicular ad hoc networks
(VANET) [3] are examples of systems that consider the location of vehicles in their services. In some
systems (e.g., driving safety systems), predicting the future location of vehicles is essential, because the
systems should send some information (e.g., warnings) to vehicles before they reach specific locations.
In some other systems (e.g., VANET), only the real-time location of a vehicle is required. Although the
future location of vehicles is not required in the latter category, limitations in position updating make
such systems predict the location of the vehicles.

Different statistical and nonparametric methods have been applied in moving object
(especially vehicles) predictions [4]. Ying et al. [5] introduced a prediction model based on a
cluster-based prediction approach. They predicted the future location of users based on the similarities
between the attributes of users’ semantic trajectories. Jeung et al. [6] proposed a hybrid method
that combines an object’s pattern information with motion functions to predict the future location of
objects. In their proposed approach, a motion function is extracted from an object’s recent movement.
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They reported that their method surpassed the approaches in which an object’s trajectory pattern is
the only determinant factor in predictions.

If an object travels within a network, its movement is constrained by the geometry and dynamics of the
network. In most metropolitan cities, highways are supervised by dedicated sensing systems, such as traffic
cameras and loop detector networks. However, in many cases, especially in developing countries, arterial
networks (unlike highways) are not thoroughly covered by traffic control infrastructure [7]. Moreover,
private sectors (e.g., Internet taxi providers and delivery services) sometimes do not have access to real-time
traffic information due to financial or technological limitations. Using information collected by mobile
sensors could be an inexpensive alternative for estimating traffic states and predicting the future locations
of vehicles. Civilis et al. [8] proposed a tracking and update method for vehicles moving within road
networks. They used the kinematics of vehicles as the basis for location prediction. In their work, routes
were divided into several segments with constant accelerations. The movement of moving objects was
then reconstructed by applying a pre-computed acceleration profile and the speed of objects. Mo et al. [3]
introduced an updating strategy by using Kalman filter prediction. They could enhance the selection of
the data communication mode by improving the prediction of the location of vehicles. Their results also
indicated a reduction in the data updating frequency, which was reported as a consequence of successful
predictions. Reza et al. [9] applied the Dirichlet multinomial model to capture movement patterns in a
metropolitan network. They could reduce the number of roadside units in the tracking operation.

By exploring the literature, it is determined that most research tries to predict a vehicle’s location,
presenting methods that estimate a single point as the future location of a vehicle. Although this might
be the ultimate goal of any prediction model to determine the exact location of a moving vehicle, in
most cases, especially in arterial networks, it is far too unrealistic to predict a single point where a
vehicle will be, even in the near future. In arterial networks, the different behaviors of drivers, varying
lengths of vehicle queues at intersections, the stochastic arrival time of vehicles, and random turning
at intersections are some of the variables that make location prediction stochastic.

Instead of predicting a single point as the location of a vehicle, we estimate the probability that a
vehicle will be in a specific zone after a time interval (which is called a prediction horizon). In this paper,
a zone is defined as a continuous area that divides arterial links into smaller parts. Predicting a group
of points (the segments located in a zone) as the future location of a vehicle, instead of a single point,
might, at first glance, seem to be a step backward in the prediction of moving vehicles; however, in many
applications, the main challenge is in predicting the probable areas where a vehicle might be present.
For example, in vehicular ad hoc networks (VANETs), messages are communicated between roadside units
(RSUs) and onboard units (OBUs). The number of triggered messages by different OBUs is limited by
identifying the probable areas in which a target vehicle may exist [9]. In a more general case, in wireless
sensor networks (WSNs), positioning the moving targets is vital to energy-efficient communication [10].
A sensor node in a WSN covers some adjacent areas (faces of the network) efficiently, so it is of great
importance to determine the face that covers a moving target efficiently. As a further example, warning
systems operating based on location-based services notify vehicles based on their probable presence in
danger zones [11]. Re-identifying objects using cameras with non-overlapping coverage is also an area
that would leverage zone predictions. In such problems, an object is tracked by more than one camera.
When an object disappears from a camera, other cameras must re-identify the object. Some researchers
have tried to reduce the number of candidates in the re-identifying process by taking the kinematics of
objects into account [12]. Qualifying the search area using images, by considering the predicted zones,
although not examined heretofore, seems to be a promising approach.

In this paper, the probability of the presence of a vehicle in different zones in the future is estimated by
taking the dynamics of intersections into account. Vehicles experience some delays at intersections, which
are intrinsically uncertain [13]. For example, a vehicle that arrives at an intersection during the green phase
is prone to experience a shorter delay than a vehicle that arrives during the red phase. While some research
has attempted to handle this uncertainty by introducing the log-normal or other families of distributions as
the delay distribution function [14], the physical dynamics of intersections are almost neglected.
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The sparseness of historical data is also addressed in this paper. The limited number of the
observations is a challenge in modeling vehicles’ movements. The proposed method is flexible to the
sparseness of data by aggregating observations gathered over different days, and also by adopting
some simplifying assumptions. The data used in this study were gathered using 320 GPS devices
from taxi cabs in Roma, Italy [15]. The dataset contains the trajectories established by the GPS points,
which were recorded every 15 s.

Section 2 presents more details on the dimensions of the problem. In Section 3, some introductory
concepts are discussed. The proposed method is introduced in Section 4, and the results are discussed
in Section 5. Section 6 contains a summarized conclusion of the research.

2. Problem Definition

A city can be divided into zones, either virtually or physically (Figure 1). A vehicle traveling in a
road network in a city moves from one zone to another. In many systems, the future zone in which a
vehicle will be located has to be predicted.

While a vehicle travels in a road network, its future location is affected by the dynamics of the
network. In arterial networks, vehicles experience delays due to the presence of signalized intersections.
In other words, the future locations of vehicles are affected by signalized intersections. The delay
experienced by a vehicle at an intersection can be estimated in the presence of the dynamics of the
intersections (i.e., the length of the green and red phases, length of the queue at the intersection,
and the number of the lanes) and start time of the signal cycle in a particular time system. However,
the mentioned parameters are not available in most cases because of technological or administrative
constraints. In such a situation, the experienced delay by different vehicles remains stochastic, while
the arrival times of vehicles at intersections, and the queue lengths, are unknown. The stochastic delay
should be modeled somehow so that the future location of vehicles is predicted realistically.

In different research, the forecasting horizon varies from a few seconds (short-range) to tens of
minutes (long-range). In long-range predictions, the kinematics of the vehicles and dynamics of the
network are not the only determinative factors in the location of the vehicles. In such cases, the context
of passengers is also required in the predictions [16]. This study primarily aims to predict the location
of vehicles in the near future, which is defined to be in the order of tens of seconds. In addition, as we
are not going to predict the final destination of a vehicle, we do not consider the turning probabilities
in our model. In other words, we assume that the paths of vehicles are known.

This paper presents a method to estimate the probability of the presence of a vehicle in different
zones in the future. This is done by modeling the probability distribution function (PDF) and
cumulative distribution function (CDF) of the future location of vehicles, at any point on the links in
arterial networks. These functions are modeled in terms of the dynamics of the intersections and their
parameters are estimated using historical GPS data. While we are seeking a short-range prediction,
the probability of the presence of a vehicle is found in zones that intersect the current and adjacent
links of a vehicle.
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3. Preliminaries

3.1. Queue Model at Signalized Intersections

A classic queue model at signalized intersections was used in this study [13]. According to
this model, the queue grows at speed q during the signal cycle (red and green phases), and vehicles
forming the queue move at speed s during the green phase. It means that the queue length increases at
speed q during the red phase and decreases at speed (s − q) during the green phase. If the queue is
fully removed at the end of the green phase, the intersection is deemed undersaturated. Otherwise,
the intersection is deemed oversaturated. In an oversaturated intersection, vehicles have to stop for
more than one signal cycle so that they can pass the intersection. The queue length is:

l = Q(t) =

{
n0 + qt if t ≤ tr

n0 + qtr − (s − q)(t − tr) if t > tr
(1)

where t = 0 is the start time of the red phase, tr is the signal red time, and n0 is the initial queue length
at the beginning of the red phase (which is referred as initial queue in this paper). In an undersaturated
intersection, the initial queue is equal to zero.

3.2. Delay Distribution at Signalized Intersections

Van Zuylen et al. [13] modeled the analytical delay distribution at signalized intersections.
According to their study, the delay distribution function for an undersaturated intersection is:

P(w) = αδ(w) + β (2)

in which α = 1 − tr
{

C(1 − q
s )
}−1, β =

{
C(1 − q

s )
}−1, C is the cycle time (sum of red and green

time), and δ(w) is the Dirac delta function.
The delay distribution function for an oversaturated intersection is also calculated as:

P(w|n0) =
{

C(1 − q
s )
}−1

{
B(w, C +

(n0 + tgs)
q , tr + n0

s ) + B(w, 2tr + n0
s − C(1 − q

s ), C +
n0 − tgs

q + tr

}
(3)

in which tg is the green time and B is the block function, which is defined as:

B(x, x1, x2) =


0 if x < x1

1 if x1 ≤ x ≤ x2

0 if x > x2

Equations (2) and (3) are the probability distribution functions of the total delay experienced by
vehicles that enter an intersection. A vehicle experiences the total delay only if it enters the intersection.
Otherwise, the vehicle does not experience the total delay. For example, a vehicle that is in the queue
has not yet experienced the total delay. In this paper, the probability distribution of the total delay is
used to determine the parameters of the proposed model.

3.3. Movement Modeling Assumptions

I. Time discretization: Arterials are assumed to have discrete dynamics in time. This means that
we divided the daytime into intervals (e.g., 10:00 to 10:30, 10:30 to 11:00, and so on) and assumed
that the dynamics of our model were stationary during these intervals on different days (work days
and holidays are modeled separately). Based on this assumption, parameters of the queue model are
constant during the estimation intervals. Furthermore, a queue exhibits a periodic behavior with period
C (length of the light cycle) in each time interval. Although the assumption is not fully compatible
with the reality of arterial traffic, it is still acceptable since our method is proposed to deal with the



ISPRS Int. J. Geo-Inf. 2018, 7, 35 5 of 19

sparseness of data. Moreover, a time discretization assumption is widely accepted by researchers in
the traffic modeling area [17].

II. Neglected overtaking: Under this assumption, all vehicles travel at the same speed. The vehicles
travel at a free flow speed when they are out of the queues, and follow queue dynamics when they
are part of a queue. In addition, acceleration and decelerations are neglected. These assumptions are
considered good approximations in arterials.

III. Continuous changes in the queue length: Although the queue length increases in a discrete
manner (by joining a vehicle to it), we assumed that the queue length increases continuously. While we
are looking for movement patterns in the order of tens of seconds, subtle differences between these
two models can be ignored.

4. Methodology

4.1. Probability Distribution Function (PDF) of the Future Location of a Vehicle

PDF of the future location of vehicle Xx0,τ(x) determines the probability that a vehicle located
at x0 (at time t0) will be at x (Figure 2) after prediction horizon τ. In this paper, the PDF of a future
location of a vehicle was determined based on the PDF of the delay of the vehicle, which indicates the
probability that a vehicle located at x0 will have a delay w in time window t0 to t0 + τ. The delay of a
vehicle is defined as the difference between the travel time of a real vehicle and the travel time of a
hypothetical vehicle that travels at free flow speed vff . According to this definition, delay w is:

delay(x) = w = τ − x0 − x
vff

(4)

Since there is a one-to-one relationship between the future location of vehicle x and experienced
delay w, the PDF of the future location of vehicle px0,τ(x) is determined based on the PDF of the
(future) delay of vehicle dx0,τ(x):

px0,τ(x) = dx0,τ(delay(x)) (5)

For notational simplicity, the indices x0 and τ are omitted in the next sections.
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Figure 2. The distance between the vehicle and the downstream intersection is denoted by x.

4.2. PDF of the Delay

Although Equations (2) and (3) can be used as the probability distribution of the total delay that
a vehicle experiences in an intersection, a vehicle does not necessarily experience the total delay at
an intersection during time window t0 to t0 + τ. Instead, in this time interval, a vehicle may still
be waiting to enter the intersection or experiences a delay in more than one intersection. In the next
section, the distribution of delay between t0 to t0 + τ for one intersection is modeled. Based on the
modeled distribution, the probability of a certain delay for one or two intersections is estimated.
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A vehicle experiences a delay if it joins a queue before entering the intersection. The vehicle
may join a growing or a removing queue, which cause different delays. The delay is also dependent
on the location at which a vehicle joins a queue. The PDF and CDF of the delay are the sum of the
following terms:

1. The PDF and CDF of the delay of a vehicle, which is not in a queue at x0 and joins a removing
queue at xj (Case 1).

2. The PDF and CDF of the delay of a vehicle, which is not in a queue at x0 and joins a growing
queue at xj (Case 2).

3. The PDF and CDF of the delay of a vehicle, which is not in a queue at x0 and does not join a
queue (Case 3).

4. The PDF and CDF of the delay of a vehicle, which is already in a removing queue at x0 (Case 4).
5. The PDF and CDF of the delay of a vehicle, which is already in a growing queue at x0 (Case 5).

We model these cases for both undersaturated and oversaturated intersections. The PDF and CDF
of the delay between t0 and t0 + τ for one intersection is the sum of the PDF and CDF (respectively) of
Cases 1 to 5. The proof of the derivations for Case 1 is presented in the next section so that readers can
understand the logic behind the derivations, but the details of the derivations of other cases (for the
undersaturated intersections) can be found in Appendix A. The PDF of joining the queue at xj is
presented in the next section as a prerequisite for our model.

4.2.1. The PDF of Joining the Queue at xj

Since the signal timing (start of the cycles) is not known with respect to the time system of vehicles
(t0), the queue length at t0 remains a random variable. In other words, the probability that a vehicle
joins a queue at xj is independent of the location of the vehicle (x0).

The probability that a vehicle joins a queue at xj is proportional to the probability that queue
length l is equal to xj. We model the probability distribution of the queue length based on the queue
model at intersections (Equation (1)).

In Figure 3, dl is a differential part of the queue. While it takes time dt as a growing queue to reach
from l to l + dl (or from l + dl to l in a removing queue), the probability that the queue length is between
l and l + dl is dt

C , in which C is the total cycle duration. The differentiation of Equation (1) is:

dl =

{
q × dt if t ≤ tr

(s − q)dt if t > tr
(6)

Then dt is:

dt =

{
dl
q if t ≤ tr

dl
(s − q) if t > tr

(7)

Based on Equation (7), the probability of queue length l for a growing queue (t ≤ tr) is dl
qC ,

which is a constant value. To model the PDF of this case, we used a uniform distribution function with
support [n0, lmax]. The weight of this uniform distribution function is equal to the probability of the
presence of a growing queue in a cycle, which is the ratio of the growing time ( lmax − n0

q ) to the cycle
time (C). The PDF of the length of a growing queue, denoted by ηg, reads:

ηg(l) = U[n0,lmax]
lmax − n0

qC
(8)

in which U[n0,lmax]
is the uniform distribution function with support [n0, lmax].

Similarly, the PDF of the length of a removing queue (t > tr), denoted by ηr, reads:

ηr(l) = U[n0,lmax]
lmax − n0

(s − q)C
(9)
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The probability that the length of a growing queue is between l1 and l2 reads:

Hg
l1,l2

=
∫ l2

l1
ηg =

l2 − l1

qC
(10)

Similarly, the probability that the length of a removing queue is between l1 and l2 reads:

Hr
l1,l2

=
l2 − l1

(s − q)C
(11)
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4.2.2. The Vehicle Joins a Removing Queue (Case 1)

In this case, the vehicle located at x0 joins a removing queue at xj (Figure 4). While the vehicle

travels at the speed of vff , the vehicle reaches the queue after
x0 − xj

vff
. The remaining time of prediction

horizon (τ) is denoted by τrem:

τrem = τ −
x0 − xj

vff
(12)
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Figure 4. Illustration of Case 1. This case describes a vehicle that is located at x0 at time t0 and then
joins the queue at xj.

If τrem is smaller than zero, it means that a vehicle does not reach the queue before finishing
prediction horizon τ, which means that it does not experience delays. After joining a growing queue,
a vehicle continues its movement inside the removing queue at s speed. The time in which the vehicle
travels inside the queue is denoted by τQ:

τQ = min
{

τrem,
xj

s

}
(13)

in which
xj
s is the time the vehicle needs to reach the signal (x = 0).

When a vehicle travels at speed s for time τQ, it experiences a delay compared with a vehicle
traveling at the free flow speed. In this situation, the delay caused by traveling inside the queue is
determined as:

τQ −
sτQ

vff
= τQ (1 − s

vff
) (14)



ISPRS Int. J. Geo-Inf. 2018, 7, 35 8 of 19

in which is the difference between τQ and the time a hypothetical vehicle spends at the free flow speed
vff to traverse the same distance.

According to the explanations, the delay w in the Case 1 is determined as:

w =

{
0 if τrem ≤ 0
τQ (1 − s

vff
) if 0 < τrem

(15)

In Equation (8), w is a function of xj. The location at which a vehicle joins a queue (xj) is a random
variable with a determined probability distribution (Equations (8) and (9)). We determined xj as a
function of w so that we could model the PDF of w based on the PDF of xj. To have xj as a function of
w, Equation (15) is expanded using Equations (13) and (14):

w = W(xj) =


0 if xj ≤ x0 − τvff

τrem

(
1− s

vff

)
if x0 − τvff ≤ xj ≤

s(x0−τvff )

s−vff
xj
s (1 −

s
vff
) if

s(x0− τvff )

s − vff
≤ xj ≤ lmax

(16)

Figure 5 shows a diagram of Equation (16):
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Figure 5. Delay w as a function of xj in Case 1.

In Equation (16) (Figure 5), delay w is a hybrid function of xj. While w is monotonic, xj is also a
function of w. xj is derived by simply inverting the sub-functions in Equation (16):

xj = Xj(w) =


[0, x0 − τvff ] if w = 0

x0 − τvff −
wvff

2

s − vff
if 0 < w ≤ τ − x0

vff
swvff

vff − s if τ − x0
vff
≤ w ≤ lmax

s (1 − s
vff
)

(17)

Equation (17) determines xj for any delay w. Accordingly, the probability that a vehicle does not
experience any delay (w = 0) during the prediction horizon is equal to the probability that the vehicle
joins the queue at point xj ∈ [0, x0 − τvff ], which is a mass probability with a value of Hr

0,x0−τvff
.

We modeled this probability using a Dirac delta function (centered at 0) and its corresponding weight
Hr

0,x0−τvff
. The probability distribution of other defined values of w (0 < w ≤ lmax

s (1 − s
vff
)) is



ISPRS Int. J. Geo-Inf. 2018, 7, 35 9 of 19

determined by the PDF of joining the queue at xj (Equation (9)). The probability of undefined values
of w is 0. The PDF of delay in Case 1 reads:

ro(w) =


δ(w)Hr

0,x0−τvff
if w = 0

ηr(X j(w)) if 0 < w ≤ lmax
s (1 − s

vff
)

0 if w > lmax
s (1 − s

vff
)

(18)

Since w is monotonic (Figure 5), the cumulative distribution function (CDF) of w is equal to the
cumulative probability of xj = X j(w

)
. The CDF of the delay in Case 1 reads:

Rout(w) = Hr
0,X j(w) (19)

4.3. CDF of the Delay for Two Consecutive Intersections

We do not present any solution for deriving the PDF of the delay for two consecutive intersections
since it is not required in zone prediction. However, we introduce a method for modeling the CDF of
the delay for two consecutive intersections.

Our future work addresses modeling the delay for multiple intersections. However, in this
paper modeling the delay for two intersections is sufficient because we are looking for a short-range
prediction. To model the CDF of the delay for two intersections, we assume that the experienced delays
in two consecutive intersections are independent. This assumption is widely adopted in modeling the
travel time of arterial links [17]. By considering the delay independence assumption, the CDF of a delay
at two consecutive intersections is a convolution between the CDF of delays at individual intersections.
The CDF of delay at intersections i and i + 1 is denoted as Di(w) and Di+1(w), respectively. The CDF
of delay at two consecutive intersections, denoted as Di,i+1(w), reads:

Di,i+1(w) =
∫ w

0
(Di(w1) ∗ Di+1(w − w1))dw1 (20)

The CDF of the delay at an intersection is the sum of some linear terms (e.g., Equations (10)
and (11)). We did not derive an analytical presentation for Equation (20); instead, we applied a
numerical integration method. We used rectangular integration, which is an efficient method for the
integration of polynomial functions [18].

4.4. Probability of Zones

The arterial links are segmented by zones (Figure 6 illustrates an example). The probability of a
zone is defined as the probability that a vehicle located at x0 falls into a segment within a zone after
prediction horizon τ. It is obvious that the probability of a zone is not a constant quantity, and that its
value is dependent on the location (x0) of the vehicle. According to the definition, the probability of a
zone (in this case, zone c in Figure 6) is:

P(zone c) =
∫ xc1

xc2

p(x)dx (21)

in which p(x) is the PDF of the future location of the vehicle (Equation (5)). Based on the Equations (4)
and (5):

P(zone c) =
∫ xc1

xc2

p(x)dx =
∫ wc1 = delay(xc1)

wc2 = delay(xc2)
d(w)dw = Di,i+1(wc1) − Di,i+1(wc2) (22)
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For a vehicle, the probability of all the zones ahead is determined. Based on the estimated probabilities,
a set of priorities for the presence of the vehicle in the zones (after prediction horizon, τ) is defined.
For example, in Figure 6 if P(zone b) > P(zone c) > P(zone a) > P(zone d), then the priorities of the
zones b, c, a, and d are 1, 2, 3, and 4, respectively. These priorities can be used in some applications;
for example, in a wireless network, after an unsuccessful search for a vehicle in the zone with the highest
priority (or the greatest probability), the system looks for the vehicle with the second priority.

4.5. Parameter Estimation

Zheng and Van Zuylen [19] indicated that the parameters of a delay distribution could be properly
estimated for both undersaturated and oversaturated intersections using the trajectories of vehicles.
They used delay distribution functions at intersections (Equations (2) and (3)) to determine the parameters
of the dynamic model of the traffic at intersections. Zheng and Van Zuylen revealed that, compared with
the minimum square estimator, the maximum likelihood estimator gets better results when estimating
parameters. Based on their findings we used the maximum likelihood estimator to determine the
parameters required in modeling the future location of vehicles. Based on the time discretization
assumption, we estimated parameters tg, tr, n0, q, s, vff , and the state of an intersection (undersaturated
or oversaturated) for time intervals. We aggregate the trajectories that are collected on different days but
in the same time intervals (e.g., all the trajectory observations collected between 13:00 and 13:30 on work
days). Similar to Zheng and Van Zuylen, in the absence of an analytical solution, we applied the genetic
algorithm (GA) to estimate the best parameter set by applying a maximum likelihood estimator. Details of
the parameter estimation method can be found in Zheng and Van Zuylen’s paper.

5. Results and Discussion

The proposed method for predicting the location of vehicles can be utilized in a variety of relevant
location-based systems (e.g., advertising services and driver safety systems). While we are not going to
limit the results to a specific application, we adopted some different zonings to explore the precision of
the proposed method in different scenarios. In many service networks (e.g., wireless networks), space
is divided into Voronoi polygons around the service points [10]. Applying Voronoi diagrams or grids
are also common approaches for indexing moving objects in spatial databases [20,21]. Although the
proposed method is not built on a presumed zoning approach, constant interval grids with cell sizes
of 25 m and 50 m (Figure 7a) and Voronoi polygons (Figure 7b) are the basis of our analysis so that
some usual zonings are taken into consideration. In this paper, the centers of the Voronoi polygons are
random points with an average distance of 100 m. In selecting the size of the Voronoi polygons and
grids, we chose relatively small sizes (between 25 m and 100 m) since we are going to examine the
precision of a short-range prediction method.

To explore the efficiency of the proposed method, the results should be compared with existing
methods of predicting the future location of the vehicles. While some relevant methodologies are
found in the literature [22], most of them are dependent on the additional data sources (e.g., flow
information derived from inductive detectors). Additionally, the existing methodologies that only use
the positional information are not designed for short-range prediction of the location of vehicles in
arterial networks. In this paper, the results are compared with a kinematics-based method in which
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the future location of a vehicle is estimated regarding the kinematics of the vehicle derived from its
recent trajectory [8]. Applying the kinematics of the vehicles in location prediction is a conventional
approach in moving object databases [23,24], but the accuracy of its results is limited in the arterial
networks, as it neglects the dynamics of the intersections.

The data used in this study were collected by 320 GPS devices in taxi cabs in Roma, Italy. The dataset
contains a one-month period of trajectories, established by GPS points, which were recorded in 15-s
intervals. We chose an area containing seven arterial links and eight traffic signals (Figure 8) on Angelico
and Delle Milizie streets. The lengths of the links are between 180 m and 440 m. We applied 18,000 GPS
records in the study area. The data collected in the first three weeks were applied in the parameter
estimation (the historical data), and the prediction precision was estimated using the rest of the data,
which were the real-time data in our experiments. The future zone of vehicles was predicted for 15-, 30-,
45-, and 60-s prediction horizons in 300 randomly-chosen sample points, collected from the real-time
trajectories (the selected prediction horizons were multiples of 15 so we could extract the correct future
location of the vehicles from the trajectories and estimate the precision of the predictions).
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A proper method to assess the correctness of a modeled probability distribution function is to
compare it with the empirical distribution of the random variable. However, this is not a feasible
method in our case, because it is not possible to collect the future location of vehicles at any given
point (x0) and prediction horizon (at least by using the sparse trajectories). We define some metrics to
examine the efficiency of the proposed method. First, we compared the results of our method with a
common prediction approach (kinematics-based). Second, we looked for a relationship between the
estimated probability of the zones and the true zones extracted from the trajectories.

For all 300 sample points, we determined the probability of the zones vehicles had ahead.
We considered the zone with the greatest probability as the predicted future zone of a vehicle. At the
same time, we determined the future zone of a vehicle using the kinematics-based method. Since the
prediction horizons are on the order of tens of seconds, we considered the mean speed of vehicles as
the kinematics of their movement. Tables 1 and 2 indicate the results of both zoning methods described
in Figure 7.

Table 1. Results of the proposed method and kinematics-based method for the grid zoning described
in Figure 7a.

Prediction Horizon (s)
Percentage of Correct Predictions

Kinematics-Based Method Proposed Method

25-m Grid 50-m Grid 25-m Grid 50-m Grid

15 42% 53% 47% 62%
30 30% 41% 42% 55%
45 26% 39% 33% 41%
60 19% 31% 30% 40%

Table 2. Results of the proposed method and kinematics-based method for the Voronoi zoning
described in Figure 7b.

Prediction Horizon (s)
Percentage of Correct Predictions

Kinematics-Based Method Proposed Method

15 57% 63%
30 48% 56%
45 47% 54%
60 35% 50%

Tables 1 and 2 indicate that, in different zoning scenarios and prediction horizons, the proposed
method had significantly better results than the kinematics-based method. While the proposed
method takes the physics of arterials into account, this can be proposed as the main reason behind the
improvement in the results.

The precision of the prediction also has a meaningful relationship with the initial location of the
vehicle (x0). Figure 9 illustrates that when the prediction horizon is 15 s and 30 s, the precision of the
prediction reduces for vehicles that are closer to the intersection. It seems that vehicles have a more
predictable movement when they are far from the intersection. In other words, while the movement
of the vehicles is affected by the queues at intersections, the precision of the predictions decreases
near the intersections. However, when the prediction horizon is greater (in this case 45 s and 60 s),
the vehicles reach the intersections and their movements are affected by intersections. This can be
proposed as the reason why the precision of predictions is not related to the initial location of a vehicle
in greater prediction horizons.
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Figure 10 indicates the average of estimated probabilities and the percentage of realizations
in zones for different priorities (priority 1 to 5 are presented in the graphs). These graphs reveal a
relationship between the percentage of the realizations and average of the probabilities of zones with
specific priorities. Although we were not able to validate the modeled probability functions directly
(by comparing the modeled functions with empirical distributions), this relationship indicates that our
model follows the real-world movement of vehicles in arterials.
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6. Conclusions

In this paper, a new method for predicting the location of vehicles in arterials is proposed and
validated. The method estimates the future zone of a vehicle based on the CDF of the delay of the
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vehicles. The results indicate a promising improvement compared with a kinematics-based method
that is regularly used in the databases. Especially, when the prediction horizon is longer, the results
indicate a more significant improvement in the precision of the predictions in comparison with the
kinematic-based method. The observed improvement may be related to the result of considering the
dynamics of the intersections in the prediction model.

The proposed method not only predicts the most probable zone of vehicles but also determines
the priorities for the presence of vehicles in different zones. While the geometry of the zones is not a
determinant in the proposed model, our model can also be used in dynamic scenarios in which the
zones change over time.

Author Contributions: Rouzbeh Forouzandeh Jonaghani conceived and designed the methodology;
Sepehr Honarparvar analyzed and prepared the data; Rouzbeh Forouzandeh Jonaghani and Sepehr Honarparvar
implemented the methodology; Rouzbeh Forouzandeh Jonaghani wrote the paper; and Navid Khademi and
Sepehr Honarparvar revised the methodology and the paper.
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Appendix A. PDF and CDF of Delay at Undersaturated Intersections

Appendix A.1. The Vehicle Joins a Growing Queue (Case 2)

A vehicle that is initially located at x0 joins the growing queue at xj. While the vehicle travels at a

speed of vff , the vehicle reaches the queue after
x0 − xj

vff
. The remaining time is denoted as τrem:

τrem = τ −
x0 − xj

vff
(A1)

If τrem is smaller than zero, it means that the vehicle does not reach the queue before the end of
the prediction horizon τ, which means that it does not experience any delays. After joining a growing
queue, a vehicle completely stops until the queue reaches its maximum length lmax. The stopping

time is equal to
lmax − xj

q . If the stopping time is greater than τrem, the vehicle is completely stopped
before the end of the prediction horizon; thus, the delay equals τrem. Otherwise, if the remaining time
is greater than the stopping time, the vehicle starts moving with the removing queue (at the speed s)
after the stopping time. The vehicle travels inside the queue until it reaches the intersection. The time
in which the vehicle travels inside the queue (at the speed s) is denoted by τQ:

τQ = min


τrem −

lmax − xj

q︸ ︷︷ ︸
remained time after

end of stopping

,
xj

s


(A2)

in which
xj
s is the time it takes for the vehicle to reach the intersection. If the remaining time after the

end of the stopping time is greater than
xj
s , the vehicle continues its travel at the free flow speed in the

next link and does not experience any more delay.
When a vehicle travels at speed s for time τQ, it experiences a delay compared with a vehicle

traveling at the free flow speed. In this situation, the delay caused by traveling in the queue is τQ −
sτQ
vff

,
which is the difference between τQ and the time a hypothetical vehicle spends at free flow speed vff to
traverse the same distance.
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According to the explanations, the delay w is determined as:

w =


0 if τrem ≤ 0

τrem if 0 < τrem ≤
lmax − xj

q
lmax − xj

q +
(

τQ −
sτq
vff

)
if τrem >

lmax − xj
q

(A3)

In Equation (A3), w is a function of xj. The location in which the vehicle joins the queue (xj) is a
random variable with a determined PDF. We determine xj in terms of w so that we can model the PDF of
w based on the PDF of xj. To have xj in terms of w, Equation (A3) is expanded based on Equation (A2):

w = W(xj) =



0 if xj ≤ x0 − τvff

τrem if x0 − τvff < xj ≤
lmaxvff + qx0 − τqvff

q + vff

(τrem −
lmax−xj

q )(1 − s
vff
) if

lmaxvff + qx0 − τqvff
q + vff

< xj ≤
s(lmaxvff + qx0 − τqvff )

qs − qvff + svff
xj
s (1 −

s
vff
) if

s(lmaxvff + qx0 − τqvff )

qs − qvff + svff
< xj ≤ lmax

(A4)

Figure A1 indicates a general diagram of Equation (A4).
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Equation (A4) (Figure A1) indicates w as a hybrid function of xj. Based on Equation (A4)
(Figure A1), we constitute the relation (note that this relation is not generally a function, while w may
be non-monotonic) in which xj is in terms of w. The relation is derived by inverting the sub-functions
in Equation (A4):

xj = Xj(w) =



[0, x0 − τvff ] if w = 0
x0+ vff (w − τ) if 0 < w ≤ W(lmax){

x0 + vff (w − τ),
swvff
vff−s

}
if W(lmax) < w ≤

(1 − s
vff

)(lmaxvff + qx0 − τqvff )

qs − qvff + svff{
x0+ vff (w − τ),

lmaxvff + qx0 − τqvff
q + vff

−
qwv2

ff
(q + vff )(s − vff )

}
if

(1 − s
vff

)(lmaxvff + qx0 − τqvff )

qs − qvff + svff
< w ≤ lmax − x0+ τvff

q + vff

(A5)

Equation (A5) determines xj for any delay w. Accordingly, the probability that a vehicle does
not experience any delay (w = 0) during the prediction horizon is equal to the probability that the
vehicle joins the queue at a point in

[
0, x0 − τvff

]
, which is a mass probability with value Hg

0,x0−τvff
.

We model this probability with a Dirac delta function (centered at 0) and its corresponding weight
Hg

0,x0−τvff
. The probability distribution of other defined values of w is determined by the PDF of joining
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a growing queue at xj (Equation (8)). The probability of undefined values of w is 0. The PDF of delay
in Case 2 reads:

gin(w) =



δ(w)Hg
0,x0−τvff

if w = 0

ηg(X j(w)) if 0 < w ≤ W(lmax)

∑ ηg(xj), xj ∈ Xj(w) if W(lmax) < w ≤ lmax − x0+ τvff
q + vff

0 if w >
lmax − x0+ τvff

q + vff

(A6)

Accordingly, the CDF of the delay in Case 2 reads:

Gin(w) =



Hg
0,x0−τvff

if w = 0

Hg
0,X j(w)

if 0 < w < W(lmax)

Hg
0,min{Xj(w)} + Hg

max{Xj(w)},lmax
if W(lmax) ≤ w ≤ lmax − x0 + τvff

q + vff

Hg
0,lmax

if
lmax − x0 + τvff

q + vff
≤ w

(A7)

Appendix A.2. The Vehicle Does Not Join the Queue (Case 3)

In this case, a vehicle does not experience any delay (w = 0) at the intersection (even after the
prediction horizon). It happens if vehicles are not in a queue at t0 (Cases 4 or 5) and do not join the
queue at the intersection (Cases 1 or 2). Accordingly, the probability that a vehicle does not experience
any delay at the intersection is a mass probability with value:

1− Hr
x0,lmax︸ ︷︷ ︸

The probability that
the vehicle is in a
removing queue

− Hg
x0,lmax︸ ︷︷ ︸

The probability that
the vehicle is in a
growing queue

− Hr
0,x0︸ ︷︷ ︸

The probability that
the vehicle joins a
removing queue

− Hg
0,x0︸ ︷︷ ︸

The probability that
the vehicle joins a

growing queue

(A8)

We model this case with a Dirac delta function (centered at 0) and a weight equal to Equation (A8).
The PDF of delay in Case 3 denoted as o(w) reads:

o(w) = δ(w)(1 − Hr
x0,lmax

− Hg
x0,lmax

− Hr
0,x0
− Hg

0,x0
) (A9)

The CDF of the delay in Case 3 reads:

O(w) =

{
0 if w < 0(

1 − Hr
x0,lmax

− Hg
x0,lmax

− Hr
0,x0
− Hg

0,x0

)
if w ≥ 0

(A10)

Appendix A.3. The Vehicle Is in the Queue at t0 (Case 4 and Case 5)

If x0 > lmax, this case never happens. Thus, the probability distribution of the delay is determined
only in the case x0 < lmax. The probability that a vehicle is in the queue at (x0,t0) is equal to the
probability that the queue is removing and its length is between x0 and lmax.

In a removing queue (Case 4) the delay w reads:

w = τQ(1 −
s

vff
) (A11)

in which τQ = min
{

τ, x0
q

}
.
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As indicated by Equation (A11), in this case, the delay is a constant independent value. The PDF
of Case 4 is a mass probability with a value w = τQ(1 − s

vff
), and its weight is equal to the probability

that the queue is removing, and its length is between x0 and lmax. We model this case with a Dirac delta
function (centered at w = τQ(1 − s

vff
)) and the weight Hr

x0,lmax
. The PDF of the delay in Case 4 reads:

rin(w) = δ(w − (τQ(1 −
s

vff
)))Hr

x0,lmax
(A12)

Accordingly, the CDF of the delay in Case 4 reads:

Rin(w) =

{
0 if w < τQ(1 − s

vff
)

τQ(1 − s
vff
)Hr

x0,lmax
if τQ(1 − s

vff
) ≤ w

(A13)

Case 5 is somewhat similar to the Case 2, but the delay is dependent on the queue length. In
a growing queue (Case 5), the delay is determined as a function of the queue length l. In this case,
the delay w reads:

w = W(l) =

 τ if τ ≤ lmax − l
q

lmax − l
q + τQ

(
1 − s

vff

)
if τ > lmax − l

q
(A14)

where τQ = min
{

τ − lmax−l
q , x0

q

}
.

Then w is expanded by τQ:

w = W(l) =


τ if l ≤ τq − lmax

τ − s
vff

(
τ + l − lmax

q

)
if τq − lmax < l ≤ lmax + x0 − τq

lmax − l
q + x0

q

(
1 − s

vff

)
if lmax + x0 − τq < l ≤ lmax

(A15)

Using Equation (A15), the queue length l is constituted as a function of w. The queue length is:

l = L(w) =


[x0, lmax − τq] if w = τ

lmax − τq +
qvff (τ − ω)

s if τ − sx0
qvff
≤ w < τ

lmax + x0 − qw − sx0
vff

if x0
q (1 −

s
vff
) ≤ w < τ− sx0

qvff

(A16)

According to Equation (A16), the probability that a vehicle experiences delay w = τ during
the prediction horizon is equal to the probability that the queue length is l ∈ [x 0, lmax − τq], which
is a mass probability with value Hg

x0,lmax−τq. We model this probability with a Dirac delta function

(centered at τ) and its corresponding weight Hg
x0,lmax−τq. The probability distribution of other defined

values of w is determined by the PDF of the length of the growing queue ηg(l) (Equation (8)).
The probability of undefined values of w is 0. The PDF of delay in Case 5 reads:

gin(w) =


δ(w − τ)Hg

x0,lmax−τq if w = τ

ηg(L(w)) if x0
q (1 −

s
vff
) ≤ w < τ

0 if w < x0
q (1 −

s
vff
)

(A17)
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Therefore, the CDF of delay in Case 5 reads:

Gin(w) =


0 if w < x0

q (1 −
s

vff
)

Hg
L(w),L( x0

q (1 − s
vff

))
if x0

q (1 −
s

vff
) ≤ w < τ

Hg
x0,L( x0

q (1 − s
vff

))
if τ ≤ w

(A18)

References

1. Jensen, C.S.; Friis-Christensen, A.; Pedersen, T.B.; Pfoser, D.; Saltenis, S.; Tryfona, N. Location-based services:
A database perspective. ScanGIS 2001, 59–68. Available online: http://www.dieter.pfoser.org/publications/
jensen_lbs01.pdf (accessed on 20 September 2017).

2. Trivedi, M.M.; Gandhi, T.; McCall, J. Looking-in and looking-out of a vehicle: Computer-vision-based
enhanced vehicle safety. IEEE Trans. Int. Transp. Syst. 2007, 8, 108–120. [CrossRef]

3. Mo, Y.; Yu, D.; Song, J.; Zheng, K.; Guo, Y. Vehicle position updating strategy based on Kalman filter
prediction in VANET environment. Discret. Dyn. Nat. Soc. 2016, 2016. [CrossRef]

4. Yuan, G.; Sun, P.; Zhao, J.; Li, D.; Wang, C. A review of moving object trajectory clustering algorithms.
Artif. Intell. Rev. 2017, 47, 123–144. [CrossRef]

5. Ying, J.J.-C.; Lee, W.-C.; Weng, T.-C.; Tseng, V.S. Semantic trajectory mining for location prediction.
In Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems, Chicago, IL, USA, 1–4 November 2011; ACM: New York, NY, USA, 2011; pp. 34–43.

6. Jeung, H.; Liu, Q.; Shen, H.T.; Zhou, X. A hybrid prediction model for moving objects. In Proceedings of the
2008 IEEE 24th International Conference on Data Engineering, ICDE 2008, Cancun, Mexico, 7–12 April 2008;
IEEE: Piscataway, NJ, USA, 2008; pp. 70–79.

7. Hofleitner, A.; Herring, R.; Abbeel, P.; Bayen, A. Learning the dynamics of arterial traffic from probe data
using a dynamic Bayesian network. IEEE Trans. Intell. Transp. Syst. 2012, 13, 1679–1693. [CrossRef]

8. Civilis, A.; Jensen, C.S.; Pakalnis, S. Techniques for efficient road-network-based tracking of moving objects.
IEEE Trans. Knowl. Data Eng. 2005, 17, 698–712. [CrossRef]

9. Reza, T.A.; Barbeau, M.; Alsubaihi, B. Tracking an on the run vehicle in a metropolitan VANET. In Proceedings
of the 2013 IEEE Intelligent Vehicles Symposium (IV), Gold Coast, QLD, Australia, 23–26 June 2013; IEEE:
Piscataway, NJ, USA, 2013; pp. 220–227.

10. Bhuiyan, M.Z.A.; Wang, G.; Vasilakos, A.V. Local area prediction-based mobile target tracking in wireless
sensor networks. IEEE Trans. Comput. 2015, 64, 1968–1982. [CrossRef]

11. Li, Y.; Wang, J.; Zhang, L. LBS-based dilemma zone warning system at signalized intersection. In Progress in
Location-Based Services 2014; Springer: Berlin, Germany, 2015; pp. 223–237.

12. Pham, N.T.; Leman, K.; Chang, R.; Zhang, J.; Wang, H.L. Fusing appearance and spatio-temporal features
for multiple camera tracking. In Proceedings of the International Conference on Multimedia Modeling,
Dublin, Ireland, 6–10 January 2014; Springer: Berlin, Germany, 2014; pp. 365–374.

13. Van Zuylen, H.J.; Zheng, F.; Chen, Y. Using probe vehicle data for traffic state estimation in signalized urban
networks. In Traffic Data Collection and Its Standardization; Springer: Berlin, Germany, 2010; pp. 109–127.

14. Uno, N.; Kurauchi, F.; Tamura, H.; Iida, Y. Using bus probe data for analysis of travel time variability. J. Intell.
Transp. Syst. 2009, 13, 2–15. [CrossRef]

15. Bracciale, L.; Bonola, M.; Loreti, P.; Bianchi, G.; Amici, R.; Rabuffi, A. CRAWDAD Dataset Rome/Taxi
(v. 2014-07-17). 2014. Available online: https://crawdad.org/roma/taxi/20140717/ (accessed on 5 January 2017).

16. Cho, S.-B. Exploiting machine learning techniques for location recognition and prediction with smartphone
logs. Neurocomputing 2016, 176, 98–106. [CrossRef]

17. Hofleitner, A.; Herring, R.; Bayen, A. Arterial travel time forecast with streaming data: A hybrid approach of
flow modeling and machine learning. Transp. Res. Part B Methodol. 2012, 46, 1097–1122. [CrossRef]

18. Davis, P.J.; Rabinowitz, P. Methods of Numerical Integration; Courier Corporation: Chelmsford, MA, USA, 2007.
19. Zheng, F.; van Zuylen, H. Reconstruction of delay distribution at signalized intersections based on traffic

measurements. In Proceedings of the 13th International IEEE Conference on Intelligent Transportation
Systems (ITSC), Funchal, Portugal, 19–22 September 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 1819–1824.

http://www.dieter.pfoser.org/publications/jensen_lbs01.pdf
http://www.dieter.pfoser.org/publications/jensen_lbs01.pdf
http://dx.doi.org/10.1109/TITS.2006.889442
http://dx.doi.org/10.1155/2016/1404396
http://dx.doi.org/10.1007/s10462-016-9477-7
http://dx.doi.org/10.1109/TITS.2012.2200474
http://dx.doi.org/10.1109/TKDE.2005.80
http://dx.doi.org/10.1109/TC.2014.2346209
http://dx.doi.org/10.1080/15472450802644439
https://crawdad.org/roma/taxi/20140717/
http://dx.doi.org/10.1016/j.neucom.2015.02.079
http://dx.doi.org/10.1016/j.trb.2012.03.006


ISPRS Int. J. Geo-Inf. 2018, 7, 35 19 of 19

20. Li, C.; Gu, Y.; Qi, J.; Yu, G.; Zhang, R.; Yi, W. Processing moving k NN queries using influential neighbor sets.
Proc. VLDB Endow. 2014, 8, 113–124. [CrossRef]

21. Šidlauskas, D.; Šaltenis, S.; Christiansen, C.W.; Johansen, J.M.; Šaulys, D. Trees or grids?: Indexing moving
objects in main memory. In Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances
in Geographic Information Systems, Seattle, WA, USA, 4–6 November 2009; ACM: New York, NY, USA,
2009; pp. 236–245.

22. Mazloumi, E.; Rose, G.; Currie, G.; Sarvi, M. An integrated framework to predict bus travel time and its
variability using traffic flow data. J. Intell. Transp. Syst. 2011, 15, 75–90. [CrossRef]

23. Ding, Z.; Yang, B.; Güting, R.H.; Li, Y. Network-matched trajectory-based moving-object database: Models
and applications. IEEE Trans. Intell. Transp. Syst. 2015, 16, 1918–1928. [CrossRef]

24. Zheng, Y. Trajectory data mining: An overview. ACM Trans. Intell. Syst. Technol. 2015, 6, 29. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.14778/2735471.2735473
http://dx.doi.org/10.1080/15472450.2011.570109
http://dx.doi.org/10.1109/TITS.2014.2383494
http://dx.doi.org/10.1145/2743025
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Problem Definition 
	Preliminaries 
	Queue Model at Signalized Intersections 
	Delay Distribution at Signalized Intersections 
	Movement Modeling Assumptions 

	Methodology 
	Probability Distribution Function (PDF) of the Future Location of a Vehicle 
	PDF of the Delay 
	The PDF of Joining the Queue at xj  
	The Vehicle Joins a Removing Queue (Case 1) 

	CDF of the Delay for Two Consecutive Intersections 
	Probability of Zones 
	Parameter Estimation 

	Results and Discussion 
	Conclusions 
	PDF and CDF of Delay at Undersaturated Intersections 
	The Vehicle Joins a Growing Queue (Case 2) 
	The Vehicle Does Not Join the Queue (Case 3) 
	The Vehicle Is in the Queue at t0  (Case 4 and Case 5) 

	References

