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Abstract: Crowd-sourced geographic information is becoming increasingly available, providing
diverse and timely sources for updating existing spatial databases to facilitate urban studies,
geoinformatics, and real estate practices. However, the discrepancies between heterogeneous datasets
present challenges for automated change detection. In this paper, we identify important measurable
factors to account for issues like boundary mismatch, large offset, and discrepancies in the levels of
detail between the more current and to-be-updated datasets. These factors are organized into rule sets
that include data matching, merge of the many-to-many correspondence, controlled displacement,
shape similarity, morphology of difference parts, and the building pattern constraint. We tested
our approach against OpenStreetMap and a Dutch topographic dataset (TOP10NL). By removing
or adding some components, the results show that our approach (accuracy = 0.90) significantly
outperformed a basic geometric method (0.77), commonly used in previous studies, implying a more
reliable change detection in realistic update scenarios. We further found that distinguishing between
small and large buildings was a useful heuristic in creating the rules.

Keywords: change detection; OpenStreetMap; update; scale; data matching; turning function;
Delaunay triangulation; building patterns; cartographic generalization

1. Introduction

Crowd-sourced geographic data, such as OpenStreetMap (OSM), are collected at an unprecedented
speed and updated every minute. Besides the known problems in data quality [1,2], such data
sources can be used as timely sources for change detection and incremental update. It is important
to keep data (e.g., buildings and roads) up-to-date for domains like urban studies and management,
geoinformatics, and real estate practices. On the other hand, professional geographical data, such
as those maintained at national mapping agencies (NMAs), are usually not updated as quickly.
For example, topographic data in Kadaster, the Netherlands are revised every two years [3], possibly
because of its full coverage update policy. Commercial data providers usually have a quarterly update
cycle for their navigation and points of interest (POI) data. This can lead to a situation where, though
claimed to have better quality, professional data in many countries may always be outdated compared
with their crowd-sourced counterparts, at least in locations such as urban areas [4,5]. It is, therefore,
reasonable to combine the strengths of both sides. For example, by employing continuous revision
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methods, Ordnance Survey, United Kingdom has shortened the updating cycle of their OS MasterMap
Topography Layer to six weeks. For example, see https://www.ordnancesurvey.co.uk/business-and-
government/products/topography-layer.html. Automated change detection is thus important for a
continuous and incremental update mechanism.

However, comparing heterogeneous data sources maintained by different organizations, such as
OSM and professional providers, and detecting the changes with reasonable accuracy, is not a trivial
task. There are three main issues that make this process challenging. First, heterogeneous spatial data
can be different in their capture scale, leading to the boundary mismatch issue, which complicates the
change comparison. For crowd-sourced data like OSM, levels of detail (LOD) can vary from object
to object [6]. Second, the presence of many-to-many correspondences between datasets can further
complicate the change detection. Third, change detection usually involves many parameters that are
sensitive to small variations in position, shape, and LOD. As a result, the discrepancies observed
between any two datasets can have different origins, and not all of them are physical changes.

In this paper, we focus on the building feature, as it is one of the most frequently updated
features in map production [7]. Here, we aim to identify the measurable factors that are important for
distinguishing real changes from other types of discrepancies, and to propose appropriate techniques
for measuring and quantifying these factors for more reliable change detection. In the next section,
we review related concepts and previous work on change detection, and elaborate more on the
above-mentioned challenges.

1.1. Related Concepts and Issues in Change Detection

1.1.1. Nature of Changes

Many reasons explain the discrepancies between two data sets:

(1) Data acquisition: Positional discrepancies could be the result of varying accuracy, resolution, and
so on in data capture. Some objects might be deliberately omitted during data acquisition for
certain purposes.

(2) Data specifications: By comparison with high-resolution images, we found that OSM buildings
with greater details were outlined by including the main building and annexes such as
fences, courtyards, and garages, whereas in topographic datasets, mainly building roofs were
recorded (Figure 1).

(3) Generalization (or LOD): Objects can be simplified, displaced, aggregated, or typified during
generalization, which creates apparent discrepancies between data representations.

(4) Physical and nominal changes: The discrepancies due to real world changes to the construction
itself (e.g., new construction, removal, and partial rebuilt) or to its semantics (e.g., land-use type,
name, etc.)

The question is the following: can we distinguish real changes from other data discrepancies?

1.1.2. Previous Work and Issues in Change Detection

Most recent change detection literature is found in the remote sensing domain, which is motivated
by updating existing databases [8,9]. Several researchers noted the importance of using vector data
in image-based change analysis [10,11]. For example, Matikainen et al. [8] first extracted building
footprints from images, which were then compared with old map data by overlapping two vector
layers. The relative sizes of the overlap and difference areas were commonly used to determine the
change in these methods. We show that this is not adequate in more general cases where map scale
and map generalization can complicate the change analysis. Bouziani et al. [10] also noted that map
generalization of building outlines affects change detection, and should be considered to improve
their method.

https://www.ordnancesurvey.co.uk/business-and-government/products/topography-layer.html
https://www.ordnancesurvey.co.uk/business-and-government/products/topography-layer.html


ISPRS Int. J. Geo-Inf. 2018, 7, 406 3 of 24

As an alternative, updating existing databases from more current vector data has been a
long-standing active topic in geoinformatics [12–14]. When comparing vector datasets, the map
scale issue becomes even more important. This is especially true when updates are to be propagated
to existing data maintained at multiple scales [15,16]. To this end, Yang et al. [17] proposed a map
algebra-based technique for change detection and update in a multi-scale setting. Their method
can handle the deviations in LOD, but assumes that the more current data is produced by the same
provider so that no large offset exist between datasets. Furthermore, spatial data maintained at multiple
scales should be updated while maintaining data consistency for map production and display [18].
This requires changes to be accurately detected at a larger scale and then propagated to smaller
scales [19].

To summarize, the reviewed work on change detection with vector datasets seems to assume that
more current and to-be-updated datasets are free from the boundary mismatch problem, excluding
more practical needs of integrating updates from heterogeneous sources. Actually, updating from
crowd-sourced geographic information has become more demanding in recent years [7], and the
sources of update range from mobility tracks [20] to OSM [19,21]. Therefore, the more challenging
problem of change detection from heterogeneous datasets needs to be further studied.

To be specific, crowd-sourced geographic information does not usually have an explicitly defined
scale, and thus creates many problems in its use [6]. In the case of OSM, researchers have estimated its
positional accuracy and equivalent reference scale, which is approximately 1:10,000 [7]. For building
footprints in particular, the levels of detail are similar or with more details in general, but can be
heterogeneous across the space [22].
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Figure 1. Typical discrepancies between OpenStreetMap (OSM) (~1:10,000) and our dataset at 
1:10,000: (a–d) the more current OSM data A is in green and to-be-updated data B is in cyan; color 
blending shows A–B in green, B–A in cyan, and A∩B in brown; changes detected in each situation 
using basic geometric analysis alone are shown in (e–h), where A is in pink, B is hollow polygons with 
bold outlines, and detected changes in both A and B are highlighted with color fills and contain false 
positives. 

Basic geometric analyses, such as the size of the buildings and that of their overlapping 
differences, are not adequate in more complicated situations (Figure 1). In all cases, we observed 
discrepancies in the LOD of the two datasets, even though their capture scales were similar. For 
example, comparison of building outlines can be complicated by the boundary mismatch problem 
(Figure 1a). Such discrepancies may also be caused by data acquisition, specification, or 

Figure 1. Typical discrepancies between OpenStreetMap (OSM) (~1:10,000) and our dataset at 1:10,000:
(a–d) the more current OSM data A is in green and to-be-updated data B is in cyan; color blending
shows A-B in green, B-A in cyan, and A∩B in brown; changes detected in each situation using basic
geometric analysis alone are shown in (e–h), where A is in pink, B is hollow polygons with bold outlines,
and detected changes in both A and B are highlighted with color fills and contain false positives.
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Basic geometric analyses, such as the size of the buildings and that of their overlapping
differences, are not adequate in more complicated situations (Figure 1). In all cases, we observed
discrepancies in the LOD of the two datasets, even though their capture scales were similar.
For example, comparison of building outlines can be complicated by the boundary mismatch problem
(Figure 1a). Such discrepancies may also be caused by data acquisition, specification, or generalization
(e.g., simplification and displacement), making it hard to distinguish them from physical changes.
Overlaying the two datasets creates fragmented polygons (i.e., A-B, B-A, and A∩B). Analyzing the
fragmented polygons using size alone is problematic (Figure 1b). For instance, N would also be
regarded as a modified building (Figure 1f), which it is not, though the size of the fragmented polygon
is larger than that of M (a real change). Furthermore, the offsets between the two data sets are not
systematic (Figure 1), which cannot be rectified by geo-referencing. The same set of parameters is not
suitable for detecting changes in all situations.

In addition, decisions based solely on information at the individual level can be sensitive to the
above-mentioned small geometric variations, which may lead to inconsistent results. For example,
detected changes in Figure 1h are hardly true because detached houses in the residential area seldom
change in this minor and inconsistent way; they are usually either rebuilt or remain untouched.
The apparent discrepancies may be the result of different specifications or generalization during data
acquisition. No matter how we tune the parameters, we cannot obtain consistent results. Nevertheless,
we note that some of the inconsistencies can be corrected by further incorporating semantics, functions,
and patterns of the objects, where domain knowledge is relevant. Change detection with too many
false positives would be useless for incremental update and understanding the dynamics of the land
use change.

To overcome the above-mentioned difficulties, we present techniques that compare buildings in
two data sets, and discover data discrepancies that are more likely caused by physical changes
to the objects rather than by other causes. In particular, we compare OSM buildings with
professional topographic data at 1:10,000 (TOP10NL), and identify changes for future updating and
dynamic analysis.

This paper contributes to change detection and differs from previous methods. First, the
many-to-many correspondence [19,23] is carefully dealt with in our approach, which should be
able to leave out discrepancies by aggregation of buildings. Second, we propose a controlled alignment
to alleviate the boundary mismatch problem. Third, we propose a new measure of the morphology
of difference parts, which outperforms the basic size-based analysis and improves the accuracy.
Finally, we propose using the knowledge of building patterns to constrain the detected changes and to
reduce inconsistencies in the results.

2. Methodology

2.1. Overall Process

The general workflow is described as follows:

1. Identifying corresponding objects between two datasets (Section 2.2). We aim to identify objects
(or a group of objects) in the two datasets that correspond to each other, which is a prerequisite
for the subsequent analysis.

2. Rule-based change detection (Section 2.3). During this stage, change detection is carried out
at the individual level (i.e., building footprints) using different rules and analysis proposed in
this paper.

3. Refining results with patterns and contextual information (Section 2.4). In this stage, we show how
inconsistent results in change detection can be corrected using the building pattern constraint.
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2.2. Object Matching

The first step in our approach is relatively easy. As a preprocessing step, we merged adjacent
buildings of the same type (e.g., house, apartment, retail, etc.) in OSM, so that the polygons were more
comparable in size to our TOP10NL dataset. As we assumed that the datasets to be compared were
of similar scales or LOD to maximize the reliability of change detection, we used an overlap-based
analysis to identify the correspondence between individual objects in the two datasets (see also [19]).
Although offsets can be expected between small buildings, the offsets are relatively small for large
buildings (Figure 1). We found that the ratio between the overlapped/common area and the original
areas, that is, Equation (1), worked well for our matching problem. If one of the ratios was larger than,
for example, 15%, we identified the pair as a corresponding relation. Although Rutzinger et al. [24]
found a ratio of 30% useful in their cases (see also [5]), we had to lower this ratio to account for the
sometimes large offset between corresponding objects in our datasets (Section 3.2.2).

CommonAreaRatio(x) = Area(A∩B)/Area(x), x ∈ {A, B}, (1)

Some identified corresponding relations are shown in Figure 2. Many-to-many corresponding
relations [23] are still anticipated between datasets of similar scales. Formally, the resultant
corresponding relations have the following cardinality: m-to-n (where m ≥ 1, n ≥ 1, m 6= n, m
indicates the number of objects in OSM and n indicates the number of objects in our data), 1-to-1, 1-to-0
(i.e., new objects in OSM), and 0-to-1 relations (objects in our data being teared down). We describe
how the change detection procedure works in the following section.
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and 0-to-1 relations are those without a link.
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2.3. Rules for Change Detection

We used rule-based change detection in our study, which combines evidence from different
similarity measures and analysis. We found that distinguishing between large buildings (industrial,
institutional building, or some street block polygons) and small ones (e.g., houses) in setting the rules
and parameters proved to be useful heuristics (Section 2.3.3). First, we introduce the factors identified
to address the aforementioned issues. These fall into the following basic categories:

(1) Absolute and relative size of the differences.
(2) Set-based similarity: For any two overlapping polygons A and B, three basic sets can be

distinguished: A-B, B-A, and A∩B (Figure 1). At the implementation level, A and B result
in three non-overlapping polygons, some of which may contain multiple parts (Figure 1b).
Basic geometric measures and advanced morphological analysis are performed on these parts.

(3) Shape-based analysis [25] for measuring building similarity and characterizing the overall shape
and difference parts.

Before presenting our rules, we first explain in greater detail some key factors that should be
prepared for our change analysis. Because the many-to-many correspondence is not a good form for
geometric analysis, we first converted the relation to a 1-to-1 relation by the following aggregation.

2.3.1. Aggregation with Minimum Cost for the Many-to-Many Correspondence

To perform change analysis for any m-to-n relationship, aggregation of the many objects in the
relation is needed. Our aggregation was guided by the corresponding relation. For example, if {A1,
A2, A3} corresponds to {B1, B2}, then A1, A2, and A3 should be aggregated to B1 and B2. To do so, we
advocated a pair-wise aggregation (based on ArcGIS’s aggregation), which approximated the original
outlines (Figure 3a) better than the one-go aggregation (available in ArcGIS). This is because each
m-to-n relationship requires a different distance value for them to be aggregated. As a result, in the
one-go aggregation, the value should be very large to ensure that all buildings included in the relation
are aggregated. This could lead to an over-aggregated polygon (Figure 3a). Our pair-wise aggregation
proceeds as follows: (1) calculating the distance between the m or n objects {oi}; (2) aggregating
building pairs with ArcGIS’s aggregation functionality in increasing order of distance until there are
no more buildings to be aggregated; and (3) the aggregation is guarded with a post-evaluation: if
too much empty space is enclosed by the aggregation, the buildings should have changed physically.
The post-evaluation is performed using the following equation:

AggRatio ({oi}) = (Area(Aggregate({oi})) − Area({oi}))/Area({oi}) (2)

where {oi} is either the m or n part in the m-to-n relation. If AggRatio ≥ Tagg_ratio (threshold for
aggregation ratio), we stopped the aggregation as well as the subsequent shape analysis. The buildings
in the relation were then marked ‘changed’. For example, P, R, and S in Figure 3 are situations
where the aggregation could have enclosed too much empty space (e.g., Tagg_ratio = 0.2), indicating
that they are situations where changes may occur. If the two buildings in P are aggregated, the
shape comparison would lead to a conclusion that it had not changed. Finally, if the aggregation
passes the post-evaluation, the m-to-n relation becomes a 1-to-1 relation and proceeds with the
subsequent comparison.
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by moving the objects toward each other’s centroid. For buildings with more complex shapes, such 
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Figure 3. (a) Pair-wise vs. one-go aggregation illustrated; (b) the need for post-evaluation after the
pair-wise aggregation. (c) For the m-to-n relations O and Q, the aggregation is helpful for the change
comparison; for P, R, and S, too much empty space is enclosed by the aggregation and may lead to
misleading results (e.g., the situation of P in particular).

2.3.2. Controlled Alignment of Corresponding Objects

To overcome the boundary mismatch issue (Section 2.2), objects should be aligned to ensure a
more reliable shape-based change analysis. However, such an alignment should not be overdone,
as offset is caused mainly by cartographic displacement, which is relatively large for small buildings.
As a result, we mainly aligned small objects (<150 m2) with simple shapes (quantified in the following)
by moving the objects toward each other’s centroid. For buildings with more complex shapes, such
an alignment could introduce extra errors and is hence prohibited. For instance, building pairs in the
center of Figure 4a,b are largely offset by just looking at their centroids. They are actually perfectly
aligned with each other with expansion or contraction to the plans. As an exception, when A-B and
B-A are comparable in size (i.e., Min(Area(A-B)/Area(B-A), Area(B-A)/Area(A-B)) ≥ 0.6), the two
buildings are also aligned even for complex shapes (Figure 4c). This is because, in such situations, the
discrepancy between the objects may be because of the positional deviation. The movement is used to
alleviate this deviation and help the similarity comparison.
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Figure 4. (a,b) Situations where complex shapes should not be aligned by their centroids, (c) with
a known exception where offset causes A-B and B-A being comparable in size; (d) determination of
simple vs. complex shapes by looking into their simplified shapes (the red outlines are simplified OSM
buildings; see text for explanation).

Offset is calculated as the distance between building centroids. To determine if a building in the
corresponding relationship has a simple shape or not, we firstly simplified OSM buildings with a
parameter suitable for TOP10NL, for example, we simplified intrusions and protrusions smaller than
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5 m (Figure 4c), and then we calculated the convex hull of the simplified building. If the condition
Area(simplified building)/Area(convex hull)≥ 0.9 holds for both buildings in a corresponding relation,
meaning that they are very similar to a rectangle, then we moved the two buildings so that their
centroids aligned before the subsequent analysis. After the alignment, the difference parts A-B, B-A,
and A∩B were re-generated.

2.3.3. Global Shape Similarity Using Turning Function

Note that the above alignment cannot completely address the boundary mismatch problem
for all situations, especially when the shapes are complex. In such cases, there is a reasonable
chance that two similar shapes had shifted away from each other. The basic geometry-based change
detection cannot properly handle this situation and indicates that changes occur for these situations
(see, for example, Figure 1e).

The turning function is used here as a global shape similarity measure for building footprints and
is given in the following equation [26]:

dA,B(t, θ) =

minθ∈R, t∈[0,1]

1∫
0

(ΘA(s + t)−ΘB(s) + θ)2ds


1
2

(3)

For any polygon, the turning function Θ(s) describes the variation in the tangent-angle of its
outline (in radians) in relation to the normalized arc-length s (e.g., ΘA(s) and ΘB(s) in Figure 5), where
s ∈ [0, 1] is any point along the polygon outline and when s = {0,1}, it is situated on the start/end
vertex. The distance dA,B(t,θ) is the turning function similarity between A and B. For more details,
please refer to previously published reports [26,27].
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This shape similarity measure is used in here in two ways: to measure the general similarity of
shapes, and to address the issue where very similar shapes are not aligned with each other. If the two
similar shapes had a small turning function distance (e.g., dA,B(t,θ) < 1.0) and were further comparable
in size, we aligned them by their centroids for the subsequent analysis. This should be able to improve
the change detection.

2.3.4. Morphological Analysis of Difference Parts

After merging m-to-n relations and performing necessary alignment, we overlapped two polygons
A and B, which resulted in three parts (A-B, B-A, and A∩B). Analysis of these difference parts yielded
insight into the change analysis. In particular, the morphology of the differences is important
(e.g., Figure 1b). When the size of the difference is the same, the morphology of the difference
significantly influenced our decisions about the results. For example, the green parts of Figure 6a,c,d
are similar in size and all largely exceed the threshold for absolute size of the difference Tsize_diff_abs
(e.g., 100 m2) accounting for a change, but only the green part in Figure 6a is an obvious change
(i.e., a small expansion). If we considered absolute size, all three cases should be regarded as ‘changed’;
if we considered the relative size of the difference in relation to the entire building (i.e., Area(difference
part)/Area(x), where x ∈ {A, B}), the situation in Figure 6a would be regarded as ‘unchanged’.
What makes them different is whether the difference is fragmented into small pieces (Figure 6d)
and how the parts are shaped and distributed (c.f. Figure 6a,c). For the individual house in Figure 6b,
the expansion is not even up to Tsize_diff_abs. To account for the fact that it changed, the threshold for the
relative size of the difference (Tsize_diff_rel) had to be used.
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Figure 6. Difference parts by overlapping two building footprints (TOP10NL is in cyan and OSM is in
green, while the shared area is in brown. Note that the relative sizes of these buildings are to scale:
absolute or relative size of the difference, and the morphology or distribution of the difference should
be treated differently with respect to small and large buildings. The sizes of the difference areas (green)
in (a, c, d) are comparable, whereas the difference area in (b) is much smaller.
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The above observations have two implications: (1) a fixed threshold is insufficient for identifying
true changes, and distinguishing between small and large objects is useful in establishing our rules
and parameters. Although more size classes may be proven even better, we wanted to keep the rules
simple and more intuitive to better demonstrate our approach and the identified factors; (2) analysis of
the morphology of the difference becomes important. We thus derived the following process in our
morphologic analysis:

1. For small buildings, absolute and relative size of the difference should be considered.
2. For large buildings, absolute size of the difference is used as a first criterion, and if the size of the

difference exceeds Tsize_diff_abs,

a. First check if the part can be segmented into multiple smaller pieces (Figure 7d). If any of
them exceeds Tsize_diff_abs, proceed with the analysis in sub-step b; if none of them is large
enough, the building is regarded as unchanged;

b. For any significant part (or segmented piece), quantify their shape by examining if it is
long and narrow, thin belt-shaped (not changed), or in a more compact form (changed).
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Now, we present the details concerning the characterization of difference parts in sub-step
b. For any difference part (whether original or segmented) that qualifies as a potential change
(i.e., ≥Tsize_diff_abs), we computed the constrained Delaunay triangulation (DT) on the polygon (dashed
blue in Figure 7). The use of DT for morphologic analysis has a long history [28,29] and we used it to
generate skeletons (i.e., center lines) for characterizing the morphology of difference parts. The basic
idea was to track the triangles along the corridor of the polygon from end to end (red lines in Figure 7).
This is a well-established technique, and the technical details of this technique have been previously
published [30–32].

With skeletons and triangles, we were able to characterize the shape of the part. For example, the
skeleton reflects the length (Lskeleton) along the stretch of the polygon (Figure 7a–c). With the triangles
aligned along the skeleton, we calculated the average width (Wskeleton) [33]. The width of the difference
is important for distinguishing changes from non-changes. If it is wider than the threshold (Twidth),
the difference part is regarded to be significant enough for a change. For example, Figures 6a and 7b
are regarded as changed. The elongation ratio as given below is also useful for characterizing if the
difference is belt-shaped (if it is smaller than Telong_ratio). We observed that if the difference part was a
thin belt shape, for example, Figures 6c and 7a,c, the object was also untouched.

ElongationRatio = Wskeleton/Lskeleton, (4)

Note that in our approach, the above two thresholds Twidth and Telong_ratio are exposed as
user parameters, so that in different applications, users can control the change detection results
(see Section 4.1 for discussion).

2.3.5. Rules and Parameters

The above-mentioned rules, measures, and operations are organized in a directed acyclic graph
(DAG) structure in our rule system (Figure 8). The algorithm starts from matching corresponding
objects (Section 2.2), which results in different types of relations. The 1-to-0 and 0-to-1 relations
indicate new and demolished buildings, respectively. The m-to-n relations are aggregated into
1-to-1 relations using the procedures in Section 2.3.1. All qualified 1-to-1 relations were aligned
(Section 2.3.2.) before the rule-based change detection occurred. For small buildings in particular,
we did not look at their turning function similarity (Section 2.3.3), because the measure is easily
influenced by the discrepancies in LOD between OSM and our TOP10NL data and is hence not reliable.
However, the morphology of difference parts (Section 2.3.4) was still used to leave out those small
and belt-shaped parts from true changes (the last rules in Figure 8). Specifically, if the part was wide
enough (e.g., Wskeleton ≥ 5 m), it was considered a changed part (e.g., expansion); if it was not wide
enough but was large enough (e.g., the part was larger than Min(100 m2), 20% of the building) and
in a compact form (e.g., ElongationRatio ≥ 0.2), it was also considered a change. The definitions
of wide parts and belt-shape parts were controlled by Twidth and Telong_ratio, which are exposed as
user parameters.
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2.4. Correcting Detected Changes with Pattern and Contextual Information

As noted in Section 2 (Figure 1h), the detected changes are sensitive to small variations in size and
position of the buildings. We observed that such sensitivity can be counteracted by viewing buildings
in a group, where building patterns and alignments provide useful heuristics [34,35]. The underlying
assumption is that buildings in certain alignments (e.g., grid-like and linear patterns) are less likely
to be modified as an individual; replacement or rebuilding as a whole and addition/removal of
buildings from the plan are more probable. This is because a significant alignment (e.g., a residential
neighborhood) commonly indicates that its constituent buildings were designed, built, and managed
as a whole. This heuristic is used in our approach to refine the inconsistent changes in such alignments.

An alignment is a homogeneous group of buildings that are evenly spaced and have similar
forms, sizes, and regular layout. The steps in recognizing the alignments from building footprints are
briefly outlined in the following section (for details, refers to Zhang et al. [35], Figure 9):
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1. Compute Delaunay triangulation (DT) on the data area.
2. Derive the proximity graph of building footprints, ProxG〈V, E〉, where V is the set of buildings

and E is the set of building pairs connected by at least a triangle.
3. Prune any edge in ProxG if its two connecting buildings are very different in size, shape,

and orientation.
4. Trace alignments in the pruned ProxG following the criteria in Zhang et al. [35] and characterized

by their homogeneity value (i.e., significance).
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For this type of knowledge to be useful, we needed to know if the pattern/alignment was
maintained in its entirety in the two datasets. If the alignment was maintained in both datasets, the
buildings in the group were considered unchanged with a higher probability. To be on the safe side,
we only re-assigned the detected changes that slightly exceeded the threshold (i.e., within a small
tolerance) in a kept alignment to be unchanged (we call this inconsistency correction).

To implement this idea, significant alignments were recognized for both current and to-be-updated
data. Then, corresponding alignments in the two data sets were matched using simple positional
and geometric similarity measures [36]. Finally, if we found all buildings in the two alignments also
corresponded to each other, we considered the two alignments to be well maintained and applied the
above inconsistency correction procedure (see Section 3.2.3 for a demonstration).

3. Experiment Design and Results

Our change detection methodology, including the measures (e.g., turning function), building
simplification, DT-based morphology analysis, and building pattern recognition, were implemented
with ArcObject and partly in C++.

3.1. Data Description and Evaluation Methods

Our datasets consisted of the more current OSM data (5420 buildings) and the to-be-updated
TOP10NL data (4606 buildings) in Geldermalsen, NL. Figure 10 shows a sample area of our test
datasets, which is populated with diverse land-use characteristics. First, OSM data were projected with
‘Amersfoort/RD New’ to minimize its offset (positional discrepancy) to TOP10NL. We then measured
the offset between the two for the 1-to-1 relation, which was generally below ~9 m (with a median
of 3.38 m). This confirms that the boundary mismatch issue is widespread. A measure of building
size showed that about 60% of buildings were smaller than 150 m2, which is just about the size of an
individual house. Thus, we used it as a threshold to distinguish small from large buildings.
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Reference values for change detection were labeled by human experts. We measured true positives
(tp; when our algorithm agreed with experts on a change; here, change includes ‘New’, ‘Changed’, and
‘Removal’ in Figure 11), false positives (fp; algorithm finds a change but experts do not agree), true
negatives (tn; algorithm agree with experts on a non-change), and false negatives (fn; algorithm finds
a non-change but experts do not agree). Precision = tp/(tp + fp), recall = tp/(tp + fn), accuracy = (tp +
tn)/(tp + fp + tn + fn) and Cohen’s kappa coefficient (k) were used to evaluate the performance of our
approach. To obtain further insight into the effectiveness of our approach, especially the chosen rules,
we ran our approach in different versions (with and without some of the rules and components).
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Figure 11. Results obtained by our rule-based approach in (a) suburban, (b) industrial areas, and an
area of mixed land use (TOP10NL is superimposed on OSM data; the status ‘Changed’ indicates that
the buildings were modified in part).

3.2. Detected Changes

3.2.1. General Results

In general, our approach performed well in identifying the changes (Figure 11), though there
were some imperfections. We noticed that in the areas highlighted in Figure 11a, the offset and
boundary mismatch, caused much difficulty in change detection. However, our approach produced a
satisfactory result owing to the use of the controlled alignment technique (Section 2.3.2). We noticed
that uncertainty existed in some situations where experts were not sure of their labelling (Section 4.1
for further discussion). In Figure 11b,c, many detected changes are large buildings modified in part
(e.g., expanded or contracted). This is attributed to the use of morphology analysis (Section 2.3.3).
The general performance is measured in Table 1 (i.e., ‘Advanced’).

Table 1. The performance of our change detection algorithm in three versions (all values range from 0
to 1 and a higher value indicates a higher level of satisfaction).

Method precision recall accuracy k

Basic 1 0.55 0.76 0.77 0.47
Advanced 2 0.82 0.87 0.90 0.77
Advanced +

Pattern 3 0.87 0.87 0.92 0.81

1 basic geometric analysis without controlled alignment and morphology analysis (the one produced the results in
Figure 1); 2 with controlled alignment and morphology analysis; 3 corrected by the pattern constraint.

3.2.2. Effectiveness of the Chosen Rules and Parameters

First, we used CommonAreaRato ≥ 15% for object matching, which was relaxed from the value
of 30% that was previously used [5,24] (Section 2.2). Without this relaxation, pairs O, P, and Q in
Figure 12a could not be matched because of the large offset. Because O, P, and Q are simple shapes, they
were aligned by our algorithm to reduce their apparent difference and were classified as unchanged
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(true negatives). With the basic method (based solely on sizes of difference parts) in Table 1, however,
they were classified as changed (false positives). As the positional discrepancy was pervasive and
could not be corrected by geo-referencing, errors resulted from the basic geometric analysis. The basic
method reduced the number of false negatives (high recall) at the risk of including more false positives
(low precision).
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The threshold for aggregation ratio (Tagg_ratio = 0.2) that was used to evaluate whether we could
turn an m-to-n relation into a 1-to-1 relation (Section 2.3.1) also had an effect on the detected results.
For instance, R in Figure 12b points to situations where the post-evaluation was passed and the
subsequent analysis (e.g., morphology analysis) proceeded. S and T failed to pass the post-evaluation
and were directly identified as changed (see our rules in Figure 8). By adjusting Tagg_ratio, we obtained
different results. However, S, R, and T in Figure 12b are highly ambiguous and we did not have a
golden standard to judge which result was more correct (see Section 4.1).

Note that the parameter values were empirically determined so they might have fitting or
overfitting problems. To generalize our approach to other datasets, machine learning could be an
option (see Section 4.4).

Figure 12c demonstrates how a large offset can be counteracted by controlled alignment, and
hence correct results were produced. First, our algorithm merged the two OSM buildings in this 2-to-1
relationship. Then, it concluded that A-B and B-A are comparable in size, indicating a possible case
of similar shapes shifted away from each other. Finally, our algorithm tried to align the TOP10NL
building to its OSM counterpart, and carried out the subsequent set-based, shape, and morphology
analysis, which predicted that the situation had not changed. This exemplifies the importance of
controlled alignment in handling the boundary mismatch problem in certain situations.
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Now, we look into some details of the morphology analysis (Section 2.3.4) in Figure 13. Here, the
difference parts in A, C, and E are the smallest, even smaller than those of F, G, and H. Our morphology
analysis was able to identify that F, G, and H were unchanged, as the skeleton width of their parts was
less than Twidth (e.g., 5 m in the presented results) and the elongation ratio was very low. Many long
and thin-belt parts in other buildings in Figure 13 were identified using the same process. This was
useful for further identifying where the expansion or contraction occurred (e.g., arrows in Figure 13).

The advanced method (Table 1) that considered the above factors performed remarkably better
than the basic method. A closer look at the process revealed that about 63% of the buildings were
temporarily aligned in the advanced version, which is a major improvement in performance.
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3.2.3. Corrections Guided by Building Patterns

As mentioned in Section 2.2, small variations in geometry can lead to inconsistent results if viewed
in context. Here, we evaluate how contextual knowledge, such as building alignments (Section 2.4),
could help improve our change detection.

In total, we recognized 126 alignments that were present in both OSM and TOP10NL, among
which we only selected significant alignments with homogeneity values ≤1.5 [35]. In these alignments,
we looked for buildings that were assigned as ‘changed’ by the advanced method. If these buildings
only slightly exceeded the criteria, for example, (measured value − threshold)/threshold ≤ 10%,
they were re-assigned by this inconsistency correction procedure as ‘unchanged’. For example, the
two light blue buildings in Figure 14a were classified as ‘changed’ because their parts were large
compact shapes (i.e., larger than 20% of the original building) by exceeding the threshold slightly by
less than 1%. The other two (white) in the alignment were below this threshold, though their parts
were also compact (i.e., ElongationRatio > 0.2). Therefore, the two blue buildings were corrected to be
‘unchanged’ (Figure 14a,c). We cannot be sure about this correction if the buildings are not present in a
special pattern.
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On the other hand, the blue buildings in alignment in Figure 14d,e were not corrected in
this procedure because their parts significantly exceeded the criteria. Consequently, they stayed
as ‘changed’. Although experts labelled the two cases as ‘unchanged’ (they said that the differences
were the result of different specifications), they agreed that the situations are highly uncertain, and
hence their reference value should be taken with care. Thus, we tried not to overanalyze this aspect.

Finally, our algorithm corrected 94 cases with this conservative treatment, substantially improving
performance (Table 1). Because such a correction only reduces false negatives and increases true
negatives, it does not improve the recall rate.

To summarize, we experimentally confirmed that the controlled alignment, morphology analysis,
and pattern constraint are three important components in this challenging problem. Given the
ambiguities involved, we found that the final results are quite satisfactory.
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4. Discussion

4.1. Uncertainty and User Parameters

We showed that to determine whether an object is changed or not is highly ambiguous even for
datasets of a similar scale (e.g., OSM and TOP10NL). The experts also confirmed such uncertainty in
the labeling of changes. For example, S, R, and T in Figure 12 and A, C, E, I, and J in Figure 13 were
classified differently by different experts. Recording this uncertainty during the labeling should be
insightful for evaluating our approach in the future. Noticeably, the uncertainty was partly because
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OSM and TOP10NL datasets use different specifications in this particular region (Geldermalsen, NL).
We did not explicitly handle this issue, as some further assumptions were required that may not be
applicable elsewhere. From a different perspective, it would also be useful to inform stakeholders of
the uncertainty in the detected changes for better decisions.

Nevertheless, the question is sometimes more about whether a change is significant enough for
a certain purpose, rather than if it is a change. To this end, the user parameters that determined the
width of a significant part (Twidth) and its elongation ratio (Telong_ratio) are useful. For example, we set
Twidth = 5 m because in our TOP10NL data, protrusions or intrusions with a width less than five meters
were simplified when the data were registered in the database. For instance, by setting Twidth = 10 m, A,
C, E, and I in Figure 13 became ‘unchanged’ to a different application. This provides a flexible method
for users to decide which changes are meaningful to them for their own purposes.

4.2. Effect of Scales on Change Detection

For datasets produced by the same data provider, boundary mismatch may not be a problem. It is
thus possible to detect changes within an acceptable rate even when there is substantial discrepancy
in scale [17]. However, sometimes boundary mismatch still exists for the data within the same
organization, where finding corresponding objects across multiple scales becomes challenging [23].
For datasets maintained by different organizations (e.g., OSM and professional data), change detection
becomes challenging because of differences in data capture, specification, and LOD among the
organizations. The task as presented in this paper is already challenging enough given their similar
scales in data capture. Zhang et al. [19] showed that as the difference in scale increases, reliable change
detection tends to be increasingly difficult (if not impossible). As a result, we recommend that, without
prior knowledge, change detection should be applied only for datasets that have scales as close to each
other as possible. Furthermore, change detection is better performed at larger scales. This is because
different organizations tend to adopt different protocols in generalizing their datasets at smaller scales,
leading to false positive discrepancies.

4.3. Potential Use of Contextual Information

Currently, we used knowledge of building alignments to constrain our detection results.
In essence, when buildings are located in an alignment they are in a functional context. We showed
that such contextual information improved our detection accuracy (Table 1). In our experiment, we
found that the proximity relationship can be used to improve inconsistent results.

As illustrated in Figure 15, T1 was classified as ‘changed’ (a false positive). When compared with
its surrounding cases, this inconsistency was the result of small geometric variations. First, the turning
function value between O1 and T1 was 1.2, so they were not aligned to reduce the apparent difference.
Then, it could not be corrected by the alignment constraint as the buildings were not in any alignment.
Here, we propose the following idea: if a situation is very similar to its neighbors, the result among the
similar neighbors can be cross-validated for inconsistency correction. Specifically, the turning function
value among T1, T2, and T3 was about 0.012, and that between O1, O2, and O3 was about 0.19, which
means that situations 〈O1, T1〉, 〈O2, T2〉, and 〈O3, T3〉 were nearly identical. Then, along a similar
line of thought as in Section 3.2.3, T1 can be corrected and re-assigned as ‘unchanged’. This shows
another way where contextual information can play a role. We think that greater usage of contextual
information can be identified in change detection when presented with more diverse data.
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4.4. Fit into Machine Learning?

Without doubt, the change detection can be formulated as a classification problem using C4.5,
naïve Bayes, or support vector machine (SVM) models. However, it is not currently clear if the results
from machine learning can be comparable to our results. The main reason is that some of the prominent
factors used in our approach are not readily accessible in the form of features in a classification problem.
For example, morphological analysis of difference parts can lead to a non-fixed number of descriptors
for different objects, which causes difficulties in a standard machine learning framework. Hence, by
translating our approach into a machine learning model, we have to simplify or even discard some of
the analysis shown to be critical in change detection.

Our approach is a mixture of rules and operations (e.g., displacement, simplification, shape
analysis). The latter is applied on-demand for certain situations during change detection. For example,
whether buildings in Figure 12c need to be aligned or not depends on whether or not the difference
parts are comparable in size. Currently, we used a parameter value of 0.6. If this value was learned
from data, it would be hard to predetermine which objects should be aligned from the outset. This is
critical because the movement of buildings generates an updated set of features, that is, shape and size
descriptors of the difference parts, as in Figure 12c. It will be challenging to mix rules and operations in
machine learning correctly, as the algorithm tries different parameter values, and each turn generates
dynamically new features for the training in this round.

Additionally, because parameters are learned from training samples in machine learning, not
much room is left for user-specified parameters. The prediction of whether a building is changed or not
can be determined, but the details concerning a change are not provided. In our approach, however,
the dimensions (width, length, and elongation ratio) of the parts are left to the user to fine-tune the
results, as in Section 4.1. However, this can be ill-fitted for machine learning. To achieve similar effects,
different versions of training samples could be prepared for different user-defined parameter values,
leading to many learned models (one model for each parameter value). This can be frustrating for both
training and predicting.

Note that the main objective of this paper was to identify the factors crucial for change detection
and propose computational methods for their measurement. Hence, we tried to keep our rules as clear
and compact as possible. A more complicated rule system would definitely yield better results, but that
is not the point for a manually crafted rule set. With machine learning, we obtain more complicated
models (e.g., rule tree), optimized parameter values, and probabilistic prediction power (with certain
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classifiers). In a next step, we will determine how the important factors identified here can be fitted
into a machine learning framework.

5. Conclusions

In this paper, we identified several measurable factors for change analysis that can properly
handle boundary mismatch, LOD differences, generalization, and non-systematic offset that exist
between datasets and are commonly encountered in current database update scenarios. In our case,
OpenStreetMap was used to update professional data, so changes were derived by comparing the two.
Specifically, data matching, aggregation of the many-to-many correspondence, controlled alignment,
and morphology analysis of difference parts were identified as important factors and integrated for
our change detection. The rules and operations were parameterized and organized in a directed acyclic
graph structure, which is different from a typical decision tree.

The results showed that our approach based on these factors is much more powerful (accuracy = 0.90,
kappa = 0.77) than a basic geometric method (0.77, 0.47, respectively). The main reason for this finding
is that the pervasive non-systematic offset (median: 3.38 m, max.: ~9 m) between OSM and our data
was largely handled by the controlled alignment in our approach. By further using knowledge of
building patterns, many inconsistent results were corrected, yielding even better performance (0.92,
0.81, respectively). Considering the uncertainty involved, we are quite satisfied with this result.

We found further that distinguishing between small and large objects and setting different rules
for them was a useful strategy in change detection. For heterogeneous data, shape discrepancies
were common for small objects due to different levels of generalization used. As a result, it is
less meaningful to compute shape similarity for small objects. In the future, we will look at how
the important factors can be transferred into a machine learning framework to better handle the
uncertainty during change detection, which could further facilitate applications in urban studies,
geoinformatics, and real estate practices.
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