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Abstract: Urban land cover classification and mapping is an important and ongoing research field
in monitoring and managing urban sprawl and terrestrial ecosystems. The changes in land cover
largely affect the terrestrial ecosystem, thus information on land cover is important for understanding
the ecological environment. Quantification of land cover in urban areas is challenging due to
their diversified activities and large spatial and temporal variations. To improve urban land cover
classification and mapping, this study presents three new spectral indices and an automated approach
to classifying four major urban land types: impervious, bare land, vegetation, and water. A modified
normalized difference bare-land index (MNDBI) is proposed to enhance the separation of impervious
and bare land. A tasseled cap water and vegetation index (TCWVI) is proposed to enhance the
detection of vegetation and water areas. A shadow index (ShDI) is proposed to further improve
water detection by separating water from shadows. An approach for optimizing the thresholds of
the new indices is also developed. Finally, the optimized thresholds are used to classify land covers
using a decision tree algorithm. Using Landsat-8 Operational Land Imager (OLI) data from two study
sites (Hong Kong and Dhaka City, Bangladesh) with different urban characteristics, the proposed
approach is systematically evaluated. Spectral separability analysis of the new indices is performed
and compared with other common indices. The urban land cover classifications achieved by the
proposed approach are compared with those of the classic support vector machine (SVM) algorithm.
The proposed approach achieves an overall classification accuracy of 94-96%, which is superior to
the accuracy of the SVM algorithm.

Keywords: terrestrial ecosystem; land cover; classification; spectral indices

1. Introduction

Land cover analysis is a fundamental procedure in the study of the geographic environment [1,2].
Urban sprawl largely affects land covers and the terrestrial ecosystems [3,4]. The changes in land
cover result in changes in ecosystems [5]. Information on land cover is essential for monitoring and
managing the ecosystem, and is also important for regional and local level planning and for managing
urban sprawl [6,7]. Traditional land cover surveys are labor intensive and time-consuming [8]. It is
highly desirable to develop reliable and more automated methods for land cover mapping. Satellite
imagery provides efficient data for monitoring land cover changes at local and global scales [2,6].
However, in urban areas, land cover mapping is challenging due to the large spatial and temporal
variations caused by the diversified activities in these areas [9].

Over the past decades, remote sensing has been widely used to map urban land covers. The land
cover maps derived from image classification is important for monitoring multi-temporal changes
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and analyzing socio-ecological issues [10]. Various image classification approaches [11-16] have been
developed to classify urban land covers. The classification approaches have been commonly grouped
as parametric and non-parametric classifiers. Image classification based on either pixels or objects
have also been widely used in the past [17]. Although various land cover classification approaches
are available [12-16], the selection of the best classifier is difficult because each of the methods has its
own strengths and limitations. Use of spectral indices has proved to be an effective alternative means
of mapping land covers. Because spectral indices demonstrate the relative abundance of features of
interest [18]. Moreover, the spectral index values primarily characterize a particular land cover.

Various spectral indices have been developed and used to detect different land cover types [6,19].
For example, the normalized difference vegetation index (NDVI), developed by Rouse et al. [20],
extracts vegetation and biomass information. The soil-adjusted vegetation index (SAVI) proposed
by Huete [21] separates vegetation and water in urban areas. The normalized difference water
index (NDWI) developed by McFeeters [22] delineates open water features in remote sensing images.
The modified normalized difference water index (MNDWI) [23] enhances accurate water detection.
The normalized difference built-up index (NDBI), developed by Zha et al. [24] is widely used to map
built-up urban areas. The built-up index (BUI) [25] and the indexed-based built-up index (IBI) [26]
delineate urban built-up features. The tasseled cap (TC) indices have been used to enhance the
information on biophysical coastal zones, water, soil, and vegetation [27].

In addition to the individual indices, different combinations of indices or modified indices have
been developed and used to map land covers [6,28-30]. Although there are various methods for
mapping land cover types, the existing approaches face limitations to classify urban land covers. First,
separating impervious and bare land is still a challenge [6,31]. Second, although several indices can
detect vegetation and water, no single index can detect them both. Third, the existing water indices do
not accurately separate water from shadows. In urban areas, detecting surface water is a challenge
because of the existence of dark building shadows [32]. However, no previous studies have considered
shadows when detecting urban water in relatively low-resolution images. In this study, we propose
three novel indices: the modified normalized difference bare-land index (MNDBI), tasseled cap water
and vegetation index (TCWVI), and shadow index (ShDI). Together, they address the above-mentioned
limitations of existing methods. Approaches for optimizing the thresholds of the proposed indices are
also developed. Based on the new indices, an automatic approach for urban land cover classification
is implemented.

In the next section, the paper continues with a brief literature review on land cover classification.
Section 3 describes the study areas and data sources, and presents the principles of the formulation
of the three novel spectral indices in detail. An approach of threshold optimization for the spectral
indices is elaborated in this section. Section 4 details the experimental validation and results. Section 5
discusses the findings, and finally, concluding remarks are presented in Section 6.

2. Literature Review

Various image classification approaches; e.g., parametric and non-parametric classification
methods have been used to map land covers [11,12,18,33-39]. Among these works, the traditional
parametric maximum likelihood classifier (MLC) has been widely used. This approach has proved to
be an optimal classifier for normally distributed training data [11]. Non-parametric algorithms, e.g.,
support vector machines (SVMs), neural networks (NNs), decision tree (DT) and random forest (RF),
have been developed to enhance the classification accuracy. SVM employs optimization algorithms
to generate boundaries and provides good classification results with limited spectral-mixed training
data. However, the selection of required parameters of the SVM algorithm significantly influence
the classification accuracy [40,41], thus requires an optimum parameter search [13]. NN classifier
involves a repeated feedforward and back-propagation process and performs well for land cover
classification. However, the training phase requires many input parameters that are difficult to
set, and the efficiency is low during the training phase [42]. DT is a non-parametric classifier that
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does not require any a priori statistical assumptions regarding the distribution of data. However,
the performance of this classifier is affected by the decision threshold [43,44]; therefore, it is important
to assign appropriate thresholds. RF is an ensemble classifier that breaks down the classification
process into a series of trees [11]. The land cover classification methods can also be based on either
pixels or objects [17]. Pixel-based methods are favorable to moderate and low-resolution images,
but they may fail to accurately differentiate adjacent classes that have a high spectral similarity [45].
In contrast, object-oriented classification uses a minimum unit of information and minimizes the
salt-and-pepper effect [15], and this technique has been proved to be suitable for high-resolution
images [17,46].

Spectral index has also been widely used as an effective alternative means of mapping land
covers. Over the last decades, various spectral index based automatic and semi-automatic classification
methods have been exploited for mapping land covers [6,33,47]. For example, Li et al. [6] applied a
combination of the NDVI, vegetation and water masking index (VWMI), bright impervious surface
binary (BISB), and normalized difference bare land index (NDBLI) to classify urban land covers
using Landsat-8 Operational Land Imager (OLI) images. In this approach, the spectral indices were
used to select training data, and then a machine learning classifier support vector machine (SVM)
was applied to detect land covers. He et al. [33] applied a semiautomatic segmentation approach to
map urban built-up areas by enhancing the normalized difference built-up index. Chen et al. [47]
developed an integrated automated approach to map land covers using iterated training samples and
markov random fields (MRFs) model. They applied iterations to refine the unchanged area as training
samples and the MRF model to reduce salt-and-pepper effects. Different combinations of indices
have also been used to map land covers. For example, Doustfatemeh and Baleghi [1] used Landsat
7 Enhanced Thematic Mapper Plus (ETM+) to extract urban areas. In the first step, they used Otsu
optimal thresholding [48] to extract features using the NDVI, NDWI, and SVI, and then extracted urban
points (UPs) using a symmetric gradient calculation based on structural features. When the results
were combined, 90-95% overall accuracy was achieved at three study sites. Patel and Mukherjee [28]
extracted impervious features by inputting the SAVI, MNDWI, NDBI, BUI, and IBI indices into a
backpropagation neural network. However, this approach detected only impervious features; all of
the other land cover types were grouped into a single class. Bhatt et al. [29] used the NDVI, MNDWI,
and modified SAVI indices and applied object-oriented classification to Landsat-5 (TM) and Landsat-8
(OLI) images. It is notable that the object-based classification is appropriate for high-resolution imagery;
this approach achieved an overall accuracy of 90.1%. Eslami and Mohammadzadeh [30] introduced
two novel vegetation indices, subdividing vegetation index (SVI) and minus/subdividing vegetation
index (MSVI), to extract vegetation. Then, they extracted 24 textural features using the gray level
co-occurrence matrix (GLCM) and applied the maximum noise fraction (MNF) to map urban land
cover using hyperspectral thermal infrared data.

The existing land cover classification approaches have their merits but they also face limitations
as described previously, especially in the complex urban environment. Precise land cover mapping in a
heterogeneous urban environment is still a challenge and it is an ongoing subject of research. This study
proposes three novel spectral indices, MNDBI, TCWVI, and ShD], and a threshold optimization
approach to enhance urban land cover mapping. This paper highlights the following contributions:

1. The proposed MNDBI is effective to separate impervious and bare land by using the spectral
bands blue and shortwave infrared 2 (SWIR2).

2. The proposed TCWVI can facilitate simultaneous detection of vegetation and water using the
tasseled cap brightness index (TCpy) and the tasseled cap greenness index (TCg;).

3. The proposed ShDI uses the spectral bands near infrared (NIR), SWIR?2, blue and red for
delineating shadows in low-resolution images in order to improve the accuracy of water extraction in
urban areas.

4. The proposed threshold optimization approach for the spectral indices is able to maximize
spectral separability between adjacent land covers for enhanced land cover classification.
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3. Urban Land Cover Classification Based on Novel Spectral Indices

In this study, we automatically map four major urban land covers, i.e., water, vegetation, bare
land, and impervious areas, using three new spectral indices and optimized thresholds for the indices.
These are the fundamental components of an urban ecosystem [6,49]. The information on these land
covers is essential to monitor and manage the urban environment, water resources, microclimate,
and urban sprawl. An understanding of the spatial and temporal changes of water is important
for protecting ecosystems, and planning and managing watersheds. The size of the impervious
area is widely used as an indicator of urbanization [50], which is used to monitor urban sprawl.
Bare land is recognized as an indicator of activities associated with expanding urban areas [51].
The proportions of water, vegetation, and human activities can be used to assess the ecosystems and
urban microclimate [52]. Thus, this study focuses on the four types of land covers as shown in Figure 1.
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Figure 1. Composition of land cover classes.

3.1. Study Areas and Datasets

Two study areas (Hong Kong and Dhaka City, Bangladesh) with different geographic
characteristics are selected to test the transferability of the proposed indices and to evaluate their
robustness in urban land cover classification. The first study site, Hong Kong, has an area of 1095 km?
and is situated between latitudes 22°09’ to 23°37" and longitudes 113°52' to 114°30'. It is surrounded by
the South China Sea to the east, west, and south, and shares a border to the north with the Guangdong
province of China. It is a mountainous area that contains skyscrapers and several country parks. Due to
its rugged terrain, a significant portion of the area is undeveloped; therefore, the urban population
is squeezed into less than 25% of the area (the built-up area is approximately 260 km?) [53]. For this
study, an area of 285 km? is selected as the study site (see Figure 2a).

The second study site, Dhaka, the capital city of Bangladesh, is located at 23°43’ north and 90°24’
east. The entire city is 1464 km?. For this study, an area of 285 km?, shown in Figure 2b, is selected.
The study area is almost flat and its surface elevation ranges between 1 and 14 m. It is surrounded by
three major rivers, the Buriganga, Turag, and Balu, which flow to the south, west, and east, respectively.
Dhaka is one of the most densely populated megacities in the world; with a population of nearly
18.23 million. As a major economic hub, the area is experiencing enormous urbanization pressure.
This extensive industrialization and urbanization are changing the land cover and degrading the city’s
natural ecosystem.
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Figure 2. Location of the study sites.

In the current decade, other high-resolution satellite data are available for mapping urban land
covers. However, this study uses Landsat data because it offers a cross-calibrated earth observation
data of more than four decades [54]. Moreover, these data are publicly available and users are no
longer restricted by processing limitations [55]. Landsat data is favored for longitudinal analysis and
importantly favorable to cities where other satellite data are not available.

This study uses Landsat-8 Operational Land Imager (OLI) level 1 data to classify land cover.
The 2013 Landsat imagery for Hong Kong and the 2016 data for Dhaka are obtained from the official
website (https://earthexplorer.usgs.gov/) of the US Geological Survey. Landsat Path 122, Row 44
covers the entire area of Hong Kong, and Path 137, Row 44 covers the whole study area of Dhaka. The
Map Projection of the collected images is the Universal Transverse Mercator (UTM) within Zone 49N
(Hong Kong) and Zone 46N (Dhaka) Datum World Geodetic System (WGS) 84. The spatial resolution
of all of the Landsat-8 images is 30 m/pixel. In this study, ZY-3 multispectral images (5.8 m/pixel)
of Hong Kong collected in 2013 and SPOT-6 multispectral images (6 m/pixel) of Dhaka collected in
2016 are used for validation. The attributes of the satellite datasets are shown in Table 1. We have
tried to collect and use similar dated images to avoid seasonal variation. Because the solar angle and
the seasonal variation influence the spectral reflectance of land covers including water and shadow.
However, the datasets have some variations, because the temporal resolution of the satellite data
(Landsat, SPOT, and ZY) are different. Moreover, similar dated cloud-free Landsat images are rarely
available. The datasets also have some variation in the solar angle, because the view angle, revisit cycle,
and the equator crossing time of the satellites are distinct. Considering these limitations, a careful
assessment is done throughout the study.

Table 1. Description of the satellite data.

Study Area Sensor Date Resolution (m/pixel) Sun Angle
Hong Kong Landsat-8 OLI 2013-12-31 30 51.67
ZY-3 2013-03-08 5.8 48.29
Dhaka Landsat-8 OLI 2016-11-14 30 45.58
SPOT-6 2016-12-12 6 52.67

3.2. Image Processing

In the proposed framework, image processing is carried out before the spectral indices are
generated. The collected raw images store digital number (DN) values. To some extent, atmospheric
effects change the image properties. Thus, it is desirable to convert DN values to surface reflectance
values, a process that requires radiometric and atmospheric correction. The atmospheric effects and
solar incidence angle change the spectral properties of the images; thus, image processing is required
to eliminate these effects [27]. Several atmospheric correction models, such as 6s, ATCOR, FLAASH
(FLS), dark subtraction (DS), empirical line method (ELM), and gain and bias (GB), are available.
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The selection of the appropriate atmospheric correction model is necessary to obtain the desired results.
In this study, three atmospheric correction models (FLAASH, DS, and GB) are applied to assess the
effect of atmospheric correction on band reflectance, index values and on the degree of mean difference
between adjacent land covers. The GB model is selected for this study because an analysis of the three
methods showed that the GB model gives a consistent performance at both study sites and maximizes
the degree of spectral reflectance between adjacent land covers.

3.3. Formulation of Novel Spectral Indices

Spectral indices are used to demonstrate the relative abundance of features of interest, which are
distinguished by differences in the surface reflectance values of two or more particular bands [18].
To address the previously discussed challenges in urban land cover mapping, this study develops the
three novel spectral indices: MNDBI, TCWVI and ShDI. The following section describes the rationale
and principles of the formulation of the novel spectral indices.

3.3.1. Modified Normalized Difference Bare-land Index (MNDBI)

The size of the impervious area is an important indicator of urbanization [50] but its separation
from bare land is a challenge [6,31]. Many indices e.g., NDBI, NDBLI, and BU, [6,24,33] have been
developed to enhance the detection of impervious and bare land. For example, Zha et al. [24] used the
spectral bands near-infrared (NIR) and shortwave infrared 1 (SWIR1) to develop NDBI, but it does
not accurately distinguish built-up areas from bare lands. Li et al. [6] developed the NDBLI using
the spectral bands green and coastal aerosol. However, the NDBLI was favorable to extract bare land
from only dark impervious surfaces. In contrary, He et al. [33] developed the built-up continuous
(BU¢) index using the continuous image of NDBI. and NDVI.. These indices are to some extent able
to separate built-up areas from bare land; however, their complete separation is still a challenge,
as the reflectance values of impervious areas are very similar to those of bare land. To enhance their
separation, the spectral reflectance between adjacent land covers must be maximized. Thus, this study
proposes the MNDBI using the spectral bands blue and SWIR2. The following describes the principle
of the formulation of the proposed MNDBI.

Figure 3 is a false color image of Hong Kong that illustrates the clear distinctions between the
four common land covers (impervious, bare land, vegetation, and water). In this process, with the help
of a high-resolution ZY3 image, a total 200 representative pixels of the individual land cover types
are selected manually from the false-color image, and their average band reflectance is computed,
as shown in Figure 4a. The band reflectance profile indicates that shortwave infrared (SWIR) band 1
has the highest reflectance for bare land, but that the reflectance for vegetation and impervious areas is
almost the same. The SWIR band 2 shows clear distinctions between all land cover types; bare land
has the highest reflectance and has a significant mean difference from impervious areas. In contrast,
in the blue band, impervious areas have the highest reflectance. Thus, combining the SWIR band 2
and blue band, as in Equation (1), results in positive values for bare land only, and negative values
for all of the other land cover types, as shown in Figure 4b. Moreover, it maximizes the reflectance
between impervious and bare land.

MNDBI = (pswir2 = PBiue) / (Pswirz2 + PBlue)- 1)

where pgwro and ppy,,. are the reflectance values of the shortwave infrared 2 (wavelength: 2.107-2.294
um) and blue (wavelength: 0.452-0.512 pm) bands.
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Figure 3. False color image of Hong Kong. Typical land covers: water (dark blue), vegetation (red),
bare land (yellow), and impervious (bluish ash).
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Figure 4. Reflectance of the typical land cover types in the Hong Kong study area: (a) band reflectance
and (b) proposed modified normalized difference bare-land index (MNDBI).

3.3.2. Tasseled Cap Water and Vegetation Index (TCWVI)

This study develops the TCWVTI to facilitate simultaneous detection of vegetation and water.
The NDWI and MNDWI are widely used for water extraction and the NDVI for vegetation
extraction [6,56]. McFeeters [22] developed the NDWI using the spectral bands NIR and green with
the aim to detect water. Xu [23] developed the MNDWI using the spectral bands green and SWIR
to enhance water detection. In contrary, Rouse et al. [20] developed the NDVI using the spectral
bands NIR and red to facilitate vegetation detection. Although, several indices are available to detect
vegetation and water none of them can simultaneously detect and separate water and vegetation.
The tasseled cap brightness index (TCpj) is responsive to physical properties and the tasseled cap
greenness index (TCgj) is responsive to healthy green vegetation [57]. This study proposes the
TCWVI using the TCp; and TCgy to enhance the relative abundance of natural features in order to
facilitate simultaneous detection of vegetation and water. The following describes the principle of the
formulation of the proposed TCWVIL.

The representative pixels selected in the previous section are used to compute the appropriate
index values (Figure 5a). The spectral reflectance illustrates that TCgy has the highest index values
for vegetation, but water and impervious areas have almost the same spectral reflectance. In contrast,
TCpi has the lowest values for water, whereas vegetation and impervious areas have almost the same
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reflectance. Thus, combining these indices, as in Equation (2), yields the highest positive values for
water and the lowest values for vegetation (Figure 5b). These high and low index values facilitate
the simultaneous detection of water and vegetation. Moreover, the proposed TCWVI generates a
significant high index value for water that maximizes its separability from other land cover types,
thus minimizes misclassification in the detection of water.

tewvi = TSe —TCen)

(TCBI + TCG[) )

where TCpjand TCgy are the tasseled cap brightness index and tasseled cap greenness index, respectively.

0.4
(]
0.3 =
g c
r_>\5 0.2 S
- E
>
g e
0.0 ¢
Water  Vegetation Impetvious Bare land
-0.1 Vegetation Bare land
—o—TCBI TCGI Water Impervious
(a) (b)

Figure 5. Reflectance of the typical land cover types in the Hong Kong study area: (a) index values and
(b) proposed tasseled cap water and vegetation index (TCWVI).

3.3.3. Shadow Index (ShDI)

Shadows are in general less significant in land cover mapping that uses low-resolution imagery.
However, in metropolitan cities such as Hong Kong, skyscrapers throw shadows that create problems
in the analysis of low-resolution images, as shown in Figure 6a. Shadowed areas have reflectance
that is similar to water, and it can be difficult to distinguish them in land cover mapping. Many
shadow detection techniques [58,59] are available for high-resolution images (HRI), however, none
are available for low-resolution images (LRI). For example, He et al. [59] detected shadows using
object-based classification. In contrary, Li et al. [58] used vectorization algorithms based on object
shape features to remove shadow and other noises from water. However, none of these methods is
favorable to LRI. Therefore, to improve the accuracy of water extraction in urban areas, we develop
an index for delineating shadows in low-resolution images. The proposed index uses the spectral
bands NIR, SWIR?2, blue, and red. The following describes the principle of the formulation of the
proposed ShDI.
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Figure 6. Building shadows in Hong Kong: (a) 30 m Landsat-8 and (b) 5.8 m ZY-3.

The false-color images shown in Figure 6a generally distinguish water from shadow.
Representative pixels of water and shadow are selected and their average band reflectance is computed,
as shown in Figure 7a. A close examination of Figure 7a demonstrates that the band reflectance
differences between water and shadow are slight (ranging from 0.01 to 0.03); therefore, the standardized
differentiation between the two bands is not large enough to distinguish water and shadow. The band
reflectance profile demonstrates that the blue band and the SWIR band 2 have respectively the highest
and lowest reflectance of water. In contrast, the shadow areas have a high reflectance for the blue band
but it is low compared to the reflectance of water. The results also demonstrate that the NIR band has
the highest reflectance difference (0.03) between water and shadow. Moreover, the red band shows a
sharp increase in the reflectance of water. Thus, combining the NIR, SWIR2, blue, and red bands, as in
Equation (3), maximizes the index reflectance between water and shadow, as shown in Figure 7b.

2% PNIR — pSWIRZ] [pNIR — pBlue]
ShDI = - +4 % PRed 3)
2% pNIR T PSWIR2 PNIR + PBlue PRe

where pniR, Pswir2, PBiues and pre.s are the reflectance values of the near infrared (wavelength:
0.851-0.879 pm), SWIR2 (wavelength: 2.107-2.294 um), blue (wavelength: 0.452-0.512 um), and red
(wavelength: 0.636-0.673 um) bands.

0.14 1.70
0.12 165 3¢
g 010 3 160
5 008 2 155
8 006 T 150
T 004 E 145
0.02 g 1.40
0.00 1.35 >¢
Blue Green NIR Red SWIR1 SWIR2 1.30
—e— Water —#&— Shadow Water Shadow
(a) (b)

Figure 7. Reflectance of surface water and shadow in the Hong Kong study area: (a) band reflectance
and (b) proposed shadow index (ShDI).

3.4. Spectral Separability Analysis and Threshold Optimization

An important step in urban land cover mapping is optimizing the threshold for a particular
land cover type when applying the spectral indices. This study uses ground spectral reflectance to
optimize the thresholds and then conducts spectral separability analysis. In the first stage, to evaluate
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spectral separability, 1200 ground sample points, 300 for each land cover type, are collected from
the high-resolution ZY-3 images for Hong Kong and the SPOT 6 images for Dhaka. To account for
potential variability in the surface reflectance, the ground sample points are randomly selected from
the entire study area, and then the spectral values are extracted. In the next stage, the graphical and
statistical analyses are used to compute the degree of spectral mean difference and the thresholds
between adjacent land cover types. For example, Figure 8 illustrates the distribution of observed
MNDBI values in Dhaka. Table 2 shows the statistics of different land cover types identified by the
proposed indices.

0.4
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e
s -0.6
0.8 WWW’WJ\MA’
-1.0 -
Number of Sample Pixels
Water 00 —-meeeee- Vegetation
Impervious Bare land
Figure 8. Ground reflectance of different land cover types identified by the MNDBI in the
Dhaka dataset.

Table 2. Statistics of different land cover types identified by the proposed indices.

(a) Hong Kong dataset
L. MNDBI TCWVI ShDI
Statistics
\4 \" I B \4 \" I B W A" I B
Max -0.76 —0.07 022 027 410 124 225 1.00 183 121 139 0.81
Min —-094 -0.83 —0.76 —0.31 1.73 034 1.14 062 138 054 078 0.53
Mean () —0.90 —045 —0.28 0.08 3.04 053 155 0.77 162 0.73 1.06 0.62
SD (o) 0.03 014 0.9 011 051 014 022 0.08 0.13 012 0.10 0.06
(b) Dhaka dataset.
L. MNDBI TCWVI ShDI
Statistics
\4 \" I B \4 A" I B W \" I B
Max —-0.64 008 0.17 031 336 1.03 150 140 1.68 088 1.02 097
Min —-091 -050 —0.25 —0.05 1.52 0.30 1.07 0.75 1.16 057 0.62 0.59
Mean (n) —0.85 —028 —0.04 020 234 058 129 114 148 070 0.84 0.80
SD (o) 0.03 0.09 0.07 0.06 033 013 007 0.08 0.06 0.07 0.06 0.09

Note: W, water; V, vegetation; I, impervious; B, bare land, and SD, standard deviation.

After the separability analysis, the threshold is optimized to segment the land cover areas.
The image segmentation method used is thresholding. The most common thresholding methods are
based on histograms, clustering, entropy, and spatial, local, and object attributes [60]. Otsu optimal
multilevel thresholding, which uses histograms of grey-level images, is a well-known approach to
image thresholding [48]. However, none of these methods is designed for threshold optimization using
ground reflectance data. Therefore, this study uses a novel approach to threshold optimization based on
the ground spectral reflectance between adjacent land covers, as Equation (4). The proposed threshold
optimization approach is developed considering the typical statistics; i.e., maximum, minimum,
and mean ground reflectance of each land covers. In addition, to minimize the influence of any extreme
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values the mean of less than mean and mean of greater than mean values of adjacent land covers
are considered, and then the standard deviation is enumerated. Thus, the proposed approach highly
optimizes the spectral reflectance difference between adjacent land covers.

X +Y,n
T0:<"2”>_|_G @)

where T, is the optimized threshold between adjacent land covers, X, & Y,,». indicate the observed
minimum and maximum mean values of adjacent land covers and o. is the standard deviation of
mean threshold (Equation 5), mean of less than mean and mean of greater than mean values.

T}t = - 2Xi (5)

where T), is the mean threshold, n is the total number of ground samples, and X; is the spectral
reflectance of ith observed points for a particular land cover.

3.5. Land Cover Classification Using the Novel Spectral Indices

In the proposed framework, the performances of the indices are evaluated, and the threshold is
optimized before the land cover is segmented. Then, using an optimized threshold (OT) a decision tree
algorithm is implemented to detect land covers. Figure 9 illustrates the workflow of the urban land
cover classification procedure using the new spectral indices. The TCWVI index results in vegetation
and bare land as adjacent land covers. Thus, in the first stage, the TCWVI is used as the starting node
to segregate vegetation and bare land from other land cover types. Second, the optimized threshold
of the MNDBI is used to segregate bare land from vegetation. Third, impervious and shaded areas
are segregated from water using the ShDI. Fourth, the optimized threshold of the TCWVI is used to
enhance water detection. Fifth, impervious and shaded areas are segregated using the ShDI. Notably,
the ShDI enhances the separation of shadow from water, however, the complete separation between
impervious and shaded areas are not possible using the optimized threshold of the ShDI. Shadows
consist of both impervious and vegetative lands thus, after careful examination, finally, NDVIis used to
improve the segregation of shaded areas as impervious and vegetation. In the final stage, the threshold
of the MNDBI is used to enhance further separation of impervious areas. Finally, the detected land
covers types are combined into four classes, as shown in Figure 1. Table 3 summarizes the thresholds
of the developed indices for both study sites. The investigation confirms that thresholds of the spectral
indices are variable to study sites thus careful consideration should be given when applying this
approach of classification to other cities of the world.
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TCWVI |
oth Vegetation &
ers =0T i
No Yes re Land |
ShDI MMNDEI
Impervious & - ot ~oT i
Shaded Area .~ ) Yes Mo Yes
ShDI TCWVI Vegetation Bare land
| |
Impervious Shaded Area
=0T
Mo Yes
MMNDBI NDVI Impervious Water
: 20T ™ =0T
No Yes Mo Ves
Impervicus Bare land Impervious Vegetation

Figure 9. Workflow for the proposed land cover classification procedure.

Table 3. Optimized thresholds of the land cover classes.

Indices Hong Kong Dhaka Types
TCWVI <1.14 <1.12 Vegetation & Bare land
TCWVI >2.41 >1.79 Water
TCWVI <0.87 <0.95 Vegetation
MNDBI >0.05 >0.14 Bare land
MNDBI <0.05 <0.14 Impervious (** applicable only after segregation of water
and vegetation)
ShDI >1.2and <1.5 - Shadow
SHDI >1.5 >1.2 Water
Egzi >gi‘é - Shaded vegetation }*"‘ Applicable to segregate
<0. -
Shaded impervious shadows if any

4. Experimental Validation

This section describes the evaluation of the proposed indices, threshold optimization, and the
final classification results. In the first stage, the performances of the proposed indices are evaluated.
To evaluate the performance of the MNDBI, two other indices, the NDBI and NDBLI, are used in a
comparative analysis. Next, impervious and bare lands are segregated using optimized thresholds for
the MNDBI, NDBI, and NDBLI. As a further test, a sensitivity analysis is carried out. The performance
of the TCWVI is compared to the performance of the MNDWI and NDVI. First, the accuracy of the
TCWVI’s detection of water is assessed by comparing it with the MNDWI. Second, a comparative
analysis of the TCWVI and NDVI is performed to assess the accuracy of the TCWVI in detecting
vegetation. Finally, quantitative accuracy assessment measures are used to evaluate the indices
sensitivity. The performance of the ShDI is also evaluated by comparing the results of the two
study sites.

In the second stage, the threshold optimization procedure is evaluated. First, mean and optimized
thresholds are used to detect land covers; then sensitivity analysis is performed for both study sites.
The most frequently used accuracy assessment measures, overall accuracy (OA) and kappa coefficient,
are computed to assess the sensitivity of the threshold optimization. In the final stage, the results
of the automated classification are evaluated. A comparative analysis is performed using the SVM
algorithm because a number of studies used this robust classifier for comparison with other land cover
classification methods [36-39]. In this study, the SVM algorithm is implemented using the radial basis
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function (RBF) kernel. The optimized parameters C, P and vy are set to 312, 0 and 0.5, respectively,
for the Hong Kong dataset, and to 100, 0 and 0.5, respectively, for the Dhaka dataset. For evaluation,
the accuracy assessment measures are computed. Several studies [6,12,18] have conducted accuracy
assessments using random sample pixels. In contrast, Goodchild et al. [61] suggested using a minimum
of 50 random point samples for each class to assess accuracy. However, it is important to select an
appropriate number of samples to accurately assess post classification [12]. To determine the number
of required samples, the Multinominal Distribution Equation (6) offered by Congalton [62] is used.

L BIL(1—TI))

= ©®)

where 7 is the number of required pixels, B = (x/k)*100, « is the confidence interval, k is the number
of classes, I1; is the ratio of area of the ith class, and b; is the desired precision.

In the Hong Kong dataset, a minimum of 53 reference pixels are required to accurately assess bare
land and a maximum of 615 are required to assess vegetation. For the Dhaka dataset, a minimum of
114 pixels is required for bare land and a maximum of 618 for vegetation. In this study, we use more
than the minimum requirement. To improve the accuracy of our assessment, 4000 ground truth data
are collected from high-resolution images of Hong Kong and 4100 from images of Dhaka. In this study,
land covers are classified using images with a resolution of 30 m/pixel, afterward, ground truth data is
collected from high-resolution images (6 m/pixel) for validation purpose. A classified pixel of 30 m is
equivalent to a patch of 25 pixels on the high-resolution image. Thus, careful consideration is given so
that the selected ground truth data adequately form a patch of 25 pixels of the high-resolution image.

4.1. Performance Evaluation of the Proposed Indices

The following section presents the performance of the proposed indices in addressing the
previously mentioned limitations of urban land cover classification. In this study, to test the
transferability and robustness a similar evaluation approach is implemented in both study sites.
However, to be concise, the results of the Hong Kong study site are provided in detail. In contrast,
the evaluation results of the Dhaka study site are summarized in brief.

4.1.1. Evaluation of the MNDBI

Figure 10 shows the delineated MNDBI maps for the Hong Kong and Dhaka datasets. The highest
values indicate bare land and the lowest values indicate water. The intermediate values indicate
impervious areas and vegetation.

Jj High: 074

Low: -1 Low: -1

(a) k (b)
Figure 10. MNDBI-based maps of two study sites: (a) Hong Kong and (b) Dhaka.

Figure 11 presents the evaluation results of the MNDBI for the Hong Kong dataset. As illustrated
in Figure 11a, the impervious and bare land are integrated and the spectral mean difference is not
significant; thus, the NDBI is not good enough to separate impervious and bare land. However,
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the NDBI clearly separates natural features such as vegetation and water from other types of land
cover. Figure 11c indicates that, to some extent, the NDBLI can separate bare land from impervious
areas but complete separation is still a challenge. As large numbers of areas of impervious and bare
land have similar reflectance values, there is a high degree of misclassification of these types, as shown
in Figure 11d. However, Figure 11e illustrates that the MNDBI has the highest positive values for bare
land and the spectral mean difference between bare land and adjacent impervious areas are significant.
Thus, the MNDBI is better at separating impervious and bare land, as shown in Figure 11f.

Index Reflectance Classification Results
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Figure 11. Impervious and bare land separation in Hong Kong using (a,b) normalized difference
bare-land index (NDBI), (c,d) normalized difference bare land index (NDBLI), (e ,f) MNDBI.

As a further comparison, the Dhaka dataset is used to evaluate the performance of the MNDBI.
The accuracy of the results is summarized in Table 4. The sensitivity analysis results indicate that the
MNDBI has a better performance than the other indices. Specifically, the highest accuracy is observed
for the MNDBI and the lowest for the NDBLI. The investigation confirms that the results are consistent
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and similar to those for the Hong Kong dataset. In summary, the proposed MNDBI is better than the
other indices in separating impervious and bare land.

Table 4. Sensitivity of indices in the detection of impervious and bare land.

. Hong Kong Dhaka
Indices
Overall Accuracy =~ Kappa Coefficient  Overall Accuracy  Kappa Coefficient
NDBI 80.7 0.74 90.7 0.88
NDBLI 70.8 0.56 85.0 0.74
MNDBI 94.0 0.92 95.8 0.94

4.1.2. Evaluation of the TCWVI

Figure 12 shows the delineated TCWVI maps based on the Hong Kong and Dhaka datasets.
These maps show a clear separation between water and vegetation, with the highest values indicating
water and the lowest vegetation. The intermediate values indicate areas of impervious and bare land.

. High:11.32 . High : 4.52

Low:0.22

@ | (b)

-
Low: 0.27

Figure 12. TCWVI-based maps of the two study sites: (a) Hong Kong and (b) Dhaka.

The results of the evaluation of the TCWVI for the Hong Kong dataset are presented in Figure 13.
As illustrated in Figure 13a, in the MNDWI map water has the lowest negative values and bare land
has the highest positive values. There is also a significant mean difference between water and adjacent
land cover types. The separability analysis shows that the MNDWI is a good indicator of water, but a
salt and pepper effect is observed when thresholds are used to extract water, as shown in Figure 13b.
As illustrated in Figure 13c, the scatter plot of the NDVI results indicates that vegetation has the
highest positive values, bare land has the second highest values, and these two are adjacent land
cover types. Water has the lowest values. The extracted vegetation using the optimized threshold of
the NDVI is shown in Figure 13d. The spectral separability of the TCWVI produces results that are
opposite those of the NDVLI. In this case, the highest values are observed for water, with a significant
mean difference between water and adjacent land cover types, and the lowest values are observed for
vegetation, as shown in Figure 13e. In the proposed framework, vegetation and water are extracted
together using the TCWVI, as shown in Figure 13f. The comparative analysis demonstrates a good
agreement between the NDVI and TCWVI for detecting vegetation, and a good agreement between
the MNDWI and TCWVI for detecting water.
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Figure 13. Water and vegetation detection in Hong Kong using (a,b) MNDWI, (¢, d) NDVI,
and (e f) TCWVL

As a further comparison, the Dhaka dataset is used to evaluate the performance of the TCWVI.
The results of the sensitivity analysis, shown in Table 5, indicate an acceptable performance of
the TCWVI for both study sites. In summary, the results demonstrate that the proposed TCWVI
can simultaneously detect water and vegetation with a satisfactory degree of accuracy. Moreover,
the TCWVI improves the detection of water, as it minimizes the salt and pepper effect. The results
also demonstrate that the TCWVI reduces dependency on two indices and enhances the extraction of
vegetation and water using a single index.
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Table 5. Sensitivity of indices in the detection of vegetation and water.

Vegetation Detection Water Detection
Study Sites . Overall Kappa . Overall Kappa
Indices Accuracy  Coefficient Indices Accuracy Coefficient
Hone Kon NDVI 93.5 0.80 MNDWI 99.5 0.98
ERONE  tewvi 941 0.78 TCWVI 9.7 0.99
hak NDVI 97.0 0.94 MNDWI 95.1 0.93
Dhaka TCWVI 96.4 0.93 TCWVI 95.8 0.93

4.1.3. Evaluation of the ShDI

Figure 14 shows the delineated ShDI maps for the Hong Kong and Dhaka datasets. In the Hong
Kong dataset, the highest values indicate water, the second highest shadow, and the lowest vegetation
(Figure 14a). In the Dhaka dataset, the highest values indicate water, the second highest impervious
land, and the lowest vegetation (Figure 14b).

. High: 2.57 . High: 1.83

- |
Low:-0.22 Low: -0.14

o

Figure 14. ShDI-based maps of the two study sites: (a) Hong Kong and (b) Dhaka.

Figure 15 presents the results of the evaluation of the ShDI. Landsat-8 false-color images of Hong
Kong indicate the existence of shadows, as shown in Figure 6a. Therefore, although water is extracted,
as shown in Figure 13b, the salt-and-pepper effect is observed. As illustrated in Figure 15a, for the
ShDI, water has the highest reflectance values, the second highest is shadow, and vegetation has the
lowest values. The classification results illustrated in Figure 15b show that the ShDI can separate water
from shadows. A similar pattern is observed at the second study site, but as shadow is not detected in
Dhaka, water has the highest values and vegetation has the lowest values.

Index Value

O SO i

[ . L% -
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Water ~ --------- Shadow N e 4,
(a) Index Reflectance. (b) Classification Results.

Figure 15. Water and shadow detection using the ShDI in Hong Kong.



ISPRS Int. ]. Geo-Inf. 2018, 7, 453 18 of 25

4.2. Sensitivity of Threshold Optimization

Table 6 shows the impact of the mean and optimized threshold values for the TCWVI on the
detection of water and vegetation. The water detection results demonstrate that the optimized
threshold provides higher accuracy than the mean threshold. The result also indicates that the
optimized threshold improves the detection of vegetation. Similar findings are observed in the
separation of impervious and bare land. In this section, we have illustrated the sensitivity of the
TCWVL. A similar approach to assess the sensitivity of other indices demonstrates that the optimized
threshold produces the most consistent performance and the highest accuracy in detecting land covers
of both study sites.

Table 6. Impact of the parameter threshold of the TCWVI on detection of water and vegetation.

Hong Kong Dhaka
Sensitivity — —
Mean Optimized Mean Optimized
Water OA 79.1 98.7 88.2 98.1
K 0.55 0.96 0.55 0.95
Vegetation OA 81.1 94.1 79.5 97.1
K 0.38 0.78 0.55 0.93

Note: OA, overall accuracy and K, kappa coefficient.

4.3. Results of the Land Cover Classification and Comparative Analysis

In this section, the results of the proposed method for classifying urban land cover based on three
new indices are compared to the results of a popular classifier, the SVM algorithm. The proposed
method is automated and uses the optimized thresholds of the new indices. In contrast, the SVM
algorithm is implemented after optimization the parameters C, P and y. Figure 16 presents a visual
comparison of the classifications obtained by the proposed approach and the SVM algorithm for the
Hong Kong dataset. The results of the SVM algorithm have an over-detection of water and bare
land, reducing the accuracy of the detection of these land cover types compared to the proposed
approach. As illustrated in Table 7, the classified data of the SVM algorithm substantially deviate from
the user and producer accuracy for all land cover types. In contrast, the proposed approach has a
better overall performance with slight deviations. Its overall accuracy, 96.1% with a kappa coefficient
of 0.95, also demonstrates that the proposed approach performs better than the SVM algorithm.
The assessment indicates that the approach is most accurate for classifying water and least accurate
for classifying bare land. Although the accuracy in classifying bare land is relatively low compared
to other land covers, the proposed approach improves the separation of impervious and bare land.
Overall, the approach has an accuracy of 94% in the detection of impervious areas.
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(a) SVM. (b) Proposed.

Legend .
M Impervious +
I Water
[ Vegetation s s o
I Bare land ———
(c) False color image.
Figure 16. Classification of land cover in Hong Kong.
Table 7. Accuracy of results for the Hong Kong dataset.
Proposed SVM
B I v w Total UA (%) B I \% w Total UA (%)
B 430 58 1 0 489 87.9 462 11 129 0 602 76.7
I 2 1084 16 6 1108  97.8 23 1080 51 17 1171 92.2
\% 68 4 1336 0 1408 949 15 1 1124 0 1140  98.6
w 1 0 994 995 99.9 0 55 49 983 1087  90.4
Total 500 1147 1353 1000 4000 500 1147 1353 1000 4000
PA (%)  86.0 94.5 98.7 99.4 92 94.2 83.1 98.3
OA
pros 96.1 91.2
k 0.95 0.88

Note: B, bare land; I, impervious areas; V, vegetation; W, water; PA, producer’s accuracy; UA, user’s accuracy; OA,
overall accuracy; k, kappa coefficient.
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A comparison of the results of the proposed approach and the SVM algorithm for the Dhaka
dataset is presented in Figure 17. The results are very similar to those for Hong Kong. The accuracy
assessment for the Dhaka dataset, shown in Table 8, indicates that the proposed approach has a
better performance than the SVM algorithm. The overall classification accuracy, 94.1% with a kappa
coefficient of 0.92, is higher than the classification accuracy of the SVM algorithm. In the Dhaka
example, the best performance is in the classification of water and the worst in the classification of bare
land. Impervious areas are detected with an accuracy of nearly 94%. Overall, our proposed approach
can detect land covers with a level of accuracy that is better than that of the SVM algorithm. However,
the proposed approach is slightly more accurate for Hong Kong than for Dhaka.

(a) SVM. (b) Proposed.

Legend "

M Impervicus +

Il Water

0 Vegetation s s \
M Eare land ————

(c) False color image.

Figure 17. Classification of land cover in Dhaka.
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Table 8. Accuracy of results for the Dhaka dataset.

Proposed SVM

B I A% w Total UA (%) B I A% w Total UA (%)
B 396 10 1 407 97.3 477 92 133 721 66.1
I 41 1301 28 38 1408 924 11 1273 15 12 1281 994
A% 55 59 1177 1291 912 4 1 1045 1051 994
w 2 8 984 994 98.9 6 21 1010 1047  96.47
Total 492 1372 1214 1022 4100 492 1372 1214 1022 4100
PA (%) 80.5 94.8 96.9 96.3 96.9 92.8 86.1 98.8
OA
(%) 94.1 92.8
k 0.92 0.90

Note: the symbols are the same with those in Table 7.

5. Discussion

Various factors, e.g., atmospheric transmission, cloud, wind, image acquisition time,
and vegetation types, can affect spectral band reflectance. Moreover, the characteristics of the physical
properties and the variation in atmospheric correction altogether can affect the threshold values of the
indices. Thus, careful consideration should be given to choosing spectral thresholds to detect land
cover types in different cities. For example, the bare land in Dhaka is sand and soil, the geology of
Hong Kong is dominated by rocks. As the physical properties of bare land in these two study sites are
dissimilar, the range of band reflectance and index values using the proposed MNDBI varies between
the two study sites. Moreover, as the vegetative covers are also variable, the band reflectance and
threshold of the TCWVI and NDVI also vary between the two study sites. Similarly, the thresholds for
other land cover types are variable, thus it is important to identify the local spectral values to each land
cover type prior to applying this approach of classification. The proposed approach is a pixel-based
solution; thus, its performance with high-resolution images must be assessed. In this study, we have
used only Landsat-8 OLI images. A future study is required to fully evaluate the applicability of this
approach to other higher resolution dataset; e.g., the Sentinel 2 data.

The results indicate high accuracy in Hong Kong compared to the Dhaka case study. In terms
of development, Hong Kong is compact and has a less fragmented pattern of land cover, whereas
Dhaka is very dense, but characterized by fragmented urban sprawl. The extent of fragmentation is
reflected in the complicated and diverse pattern of land cover types in Dhaka. Dhaka also encompasses
several small bodies of water, such as ponds and canals, which are surrounded by vegetation that
reduces visibility. The use of low-resolution image is impotent to properly detect narrow water
bodies and results in misclassification. An example of such misclassification is illustrated in Figure 18.
It is noticeable that a narrow strip of water body is classified as vegetation 18c. In this illustration,
the existence of water is verified using the Google Earth image and the high-resolution SPOT-6 image.
The verifications confirm that the strip covers a body of water having an average width of 10 m
(Google Earth) and 6 m (SPOT 6), respectively. However, the resolution of Landsat data is 30 m/pixel.
Thus, such narrow water bodies are not properly detected in the low-resolution Landsat images.
These underlying factors contribute to the relatively lower accuracy in the detection of water and
vegetation, and the overall lower accuracy in the Dhaka case study compared to the Hong Kong
case study.

Statistical accuracy assessment is important to the thematic maps derived from remote sensing
data, thus the Kappa coefficient is often used. This study uses similar accuracy assessment measures.
However, the Kappa coefficient does not deal with the pairwise comparison, and agreement and
disagreement between categories [63]. Moreover, the Kappa index compares accuracy to a baseline of
randomness. However, randomness is not a reasonable alternative for mapping [64]. The use of the
Bradley-Terry (BT) model determines the agreement within a category and disagreement in relation
to another category [63]. In addition, the quantity disagreement and allocation disagreement of two
simple measures are useful compared to Kappa indices [64]. In this study, we have estimated only
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the kappa coefficient, however, other accuracy assessment measures will be considered in our future
works to facilitate a pairwise comparison, and agreement and disagreement between categories.

M Impervious
"Il Water
[0 Vegetation

(a) Landsat 8 OLI (black water, red vegetation). (b) SPOT 6. (c) Classified data.
Figure 18. Effect of image resolution to the detection of small bodies of water.

6. Conclusions

The main purpose of this study is to improve automatic land cover mapping in urban areas.
To achieve this task, we propose three novel indices and a new approach to threshold optimization.
As band reflectance and index values vary over different physical properties and land covers, spectral
separability analysis is needed to effectively determine the optimized threshold for separating land
cover types. The evaluation of the proposed indices and the process of threshold optimization indicates
that they perform satisfactorily at both study sites. Specifically, we achieve better results separating
impervious and bare land with the MNDBI than with other indices. The MNDBI also has the lowest
negative values for water, and the mean difference with other land covers are significant at both study
sites. Thus, future studies could evaluate the ability of the MNDBI to detect water. The TCWVI can
simultaneously detect vegetation and water with acceptable accuracy. Moreover, the shadow index
developed in this study improves water detection by maximizing the reflectance between water and
shadow. The experimental analysis demonstrates that the proposed approach performs better than the
SVM algorithm. The new approach is a reliable automatic classification method that provides between
94% and 96% accuracy.

Although this method enhances land cover classification and improves the separation between
impervious and bare land, complete separation is still a challenge. In addition, thresholds are optimized
using training data, thus further study is required to develop an automatic approach of threshold
optimization and make the proposed approach more functional in the near future. The overall results
indicate that the proposed method is promising and reliable to enhance land cover classification
in urban areas. The proposed land cover classification approach is of significance to facilitate the
monitoring of terrestrial ecosystems, water resources, and urban sprawl.
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