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Abstract: The European Space Agency (ESA) defines Earth observation (EO) Level 2 

information product the stack of: (i) a single-date multi-spectral (MS) image, radiometrically 

corrected for atmospheric, adjacency and topographic effects, with (ii) its data-derived scene 

classification map (SCM), whose thematic map legend includes quality layers cloud and 

cloud–shadow. Never accomplished to date in an operating mode by any EO data provider 

at the ground segment, systematic ESA EO Level 2 product generation is an inherently ill-

posed computer vision (CV) problem (chicken-and-egg dilemma) in the multi-disciplinary 

domain of cognitive science, encompassing CV as subset-of artificial intelligence (AI). This 

research and technological development (RTD) study aims at creating a “universal” 

AutoCloud+ software system in operating mode, capable of systematic cloud and cloud–

shadow quality layers detection in multi-sensor, multi-temporal and multi-angular EO big 

data cubes characterized by the five Vs, namely, volume, variety, veracity, velocity and value. 

For the sake of readability this paper is divided in two. The previous Part 1 highlights why 

AutoCloud+ is important in a broad context of systematic ESA EO Level 2 product generation 

at the ground segment within a “seamless chain of innovation” needed for a new era of Space 

Economy 4.0. In the notion of Space 4.0, the ESA EO Level 2 product definition is proposed 

as the new standard of EO Analysis Ready Data (ARD) format. In the present Part 2 

(considered as Supplementary Materials), first, the proposed “universal” AutoCloud+ 

software system is instantiated in terms of outcome and process requirements specification, 

information/knowledge representation, system design, algorithm and implementation. 

Second, preliminary experimental results collected from the AutoCloud+ software prototype 

are presented and discussed in comparison with those of standard cloud/cloud–shadow 

detectors, available either open source or free of cost, such as the free-of-cost single-date 

sensor-specific ESA Sen2Cor software toolbox, to be run on the user side, and the multi-date 

multi-sensor MAJA software, developed and run by CNES/ CESBIO/ DLR.   
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1. Introduction 

To contribute toward filling an analytic and pragmatic information gap from Earth 

observation (EO) big data, characterized by the five Vs of volume, variety, veracity, velocity 

and value [1], to timely, comprehensive and operational EO data-derived value-adding 

products and services (VAPS), this paper presents a research and technological development 

(RTD) study of a “universal” AutoCloud+ computer vision (CV) software system for cloud and 

cloud–shadow quality layer detection in multi-sensor, multi-temporal and multi-angular EO 

big data cubes, in compliance with the intergovernmental Group on Earth Observations (GEO)-

Committee on Earth Observation Satellites (CEOS) Quality Accuracy Framework for Earth 

Observation (QA4EO) Calibration/Validation (Cal/Val) requirements [2] and with the visionary 

goal of a GEO’s implementation plan for years 2005-2015 of a Global Earth Observation System 

of Systems (GEOSS) [3], unaccomplished to date. 

For the sake of readability this paper is divided in two. The previous Part 1 highlights 

why AutoCloud+ is important in a broad context of systematic European Space Agency (ESA) 

EO Level 2 information product generation at the ground segment, aimed at harmonization of 

missions acquiring multi-source EO data across time and geographic space, within a “seamless 

chain of innovation” needed for a new era of Space Economy 4.0 [4] (refer to Section 2 in the 

Part 1). In the notion of Space 4.0 (see Figure 8 in the Part 1), ESA EO Level 2 product was 

regarded as an “augmented” standard of EO Analysis Ready Data (ARD), alternative to 

existing U.S. Landsat ARD [5–9] and CEOS ARD for Land (CARD4L) format definitions [10]. 

In the present Part 2 (proposed as Supplementary Materials), first, a “universal” AutoCloud+ 

CV software system is instantiated at the Marr five levels of understanding of an information 

processing system, specifically [11–15]: 

 outcome and process requirements specification, including computational complexity 

estimation, 

 information/knowledge representation,  

 system design (architecture),  

 algorithm, and  

 implementation.  

Among these five levels, the three more abstract ones, namely, outcome and process 

requirements specification, information/knowledge representation and system design, are 

typically considered the linchpin of success of an information processing system, rather than 

algorithm and implementation [11–15]. Second, the AutoCloud+ prototypical implementation 

is compared with standard cloud/cloud–shadow detectors available either open source or free 

of cost (see Table 5 in the Part 1), such as the single-date sensor-specific ESA Sentinel 2 

(atmospheric and topographic) Correction Prototype Processor (Sen2Cor), to be run free-of-

cost on the user side [16,17] (see Figure 11 in the Part 1), and the multi-date Multisensor 

Atmospheric Correction and Cloud Screening (MACCS)-Atmospheric/Topographic 

Correction (ATCOR) Joint Algorithm (MAJA), developed and run by the Centre national 

d'études spatiales (CNES)/ Centre d'Etudes Spatiales de la Biosphère (CESBIO)/ Deutsches 

Zentrum für Luft- und Raumfahrt (German Aerospace Center, DLR) [18–20], which 

incorporates capabilities of the ATCOR commercial software toolbox [21–24], refer to Section 

3 in the Part 1. 

The rest of the present Part 2 is organized as follows. To make this Part 2 self-contained, 

background definitions and concepts are reported in Section 2. In Sections 3 and 4 the 
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AutoCloud+ CV system software instantiation is proposed in terms of methods and materials 

respectively. Preliminary experimental results are presented in Section 5 and discussed in 

Section 6. Conclusions are reported in Section 7.  

2. Background definitions and concepts  

In recent years the European Space Agency (ESA) has been defining an ESA Earth 

observation (EO) Level 2 information product as follows [16,17] (refer to Section 1 in Part 1):  

(i) a single-date multi-spectral (MS) image, radiometrically corrected for atmospheric, 

adjacency and topographic effects,  

(ii) stacked with its data-derived scene classification map (SCM), whose general-purpose, 

user- and application-independent thematic map legend includes quality layers cloud 

and cloud–shadow,  

(iii) to be systematically generated at the ground segment, automatically (without 

human–machine interaction) and in near real-time.  

Never accomplished to date in an operating mode by any EO data provider at the ground 

segment, systematic ESA EO Level 2 product generation is an inherently ill-posed computer 

vision (CV) problem (chicken-and-egg dilemma) [11,13,25,26] in the multi-disciplinary domain 

of cognitive science [27–32] (see Figure 2 in the Part 1), encompassing CV as subset-of artificial 

(general) intelligence (AI) [27–32], i.e., ‘[AI  CV]  cognitive science’ in symbols of the 

standard Unified Modeling Language (UML) for graphical modeling of object-oriented 

software [33], where symbol ‘’ denotes relationship part-of pointing from the supplier to the 

client, not to be confused with relationship subset-of, ‘’, meaning specialization with 

inheritance from the superset to the subset. 

Encompassing both biological vision and CV in the cognitive science domain (see Figure 

2 in the Part 1), the word vision is synonym for inherently ill-posed scene-from-image 

reconstruction and understanding [11,13,25,26], see Figure 6 in the Part 1. Vision is a cognitive 

(information-as-data-interpretation) problem [27] very difficult to solve because (refer to Section 

2 in the Part 1): (i) non-polynomial (NP)-hard in computational complexity [34,35], (ii) 

inherently ill-posed in the Hadamard sense [36], i.e., vision admits no solution, multiple 

solutions or, if the solution exists, the solution's behavior changes continuously with the initial 

conditions [25,26]. Vision is inherently ill-posed because affected by: (I) a 4D-to-2D data 

dimensionality reduction from the 4D geospatial-temporal scene-domain to the (2D, planar) 

image-domain, e.g., responsible of occlusion phenomena, and (II) a semantic information gap 

from ever-varying sub-symbolic sensory data (sensations) in the physical world to stable 

symbolic percepts in the mental model of the physical world (modeled world, world ontology, 

real-world model) [11,12,25,27,37–40]. Since it is inherently ill-posed, vision requires a priori 

knowledge in addition to sensory data to become better posed for numerical solution [41,42].  

Largely oversighted by the remote sensing (RS) and CV literature, an undisputable true 

fact (observation) is that, in general, spatial information dominates color information in vision 

[11,25]. This commonsense knowledge is obvious, but not trivial. On the one hand, it may 

sound awkward to many readers, including RS experts and CV practitioners. On the other 

hand, it is acknowledged implicitly by all human beings wearing sunglasses: human 

panchromatic vision is nearly as effective as chromatic vision in scene-from-image 

reconstruction and understanding [11]. This true fact means that spatial information 

dominates both the 4D geospatial-temporal scene-domain and the (2D, planar) image-domain 

involved with the cognitive task of vision, see Figure 6 in the Part 1. This evidence is 

acknowledged by the Tobler’s first law (TFL) of geography, familiar to geographers working 

in the real-world (geographic) domain. The TFL of geography states that “all things are related, 

but nearby things are more related than distant things”[43], although certain phenomena 

clearly constitute exceptions [44]. Obscure to many geographers familiar with the TFL 

formulation, the statistical concept of spatial autocorrelation is the quantitative counterpart of 

the qualitative TFL of geography [11]. The relevance of spatial autocorrelation in both the 4D 
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geospatial-temporal scene-domain and the (2D) image-domain involved with vision is at the 

very foundation of the object-based image analysis (OBIA) approach to CV, originally 

conceived around year 2000 by the geographic information science (GIScience) community as 

a viable alternative to traditional 1D spatial-context insensitive (pixel-based) image analysis 

[45,46]. 

In more detail, the observation that, in general, spatial information dominates color 

information in vision [11,25], proved by perceptual evidence about vision in primates 

[11,13,35,47–63], means that primary spatial topological information (e.g., adjacency, inclusion, 

etc.) [11,35,47,55,64] and spatial non-topological information (e.g., spatial distance, angle 

measure) components dominate secondary color information [25], which is the sole 

information available at the imaging sensor’s spatial resolution, i.e., at the pixel level of spatial 

analysis (refer to Section 2 in the Part 1). Irrespective of this undisputable true fact 

(observation), to date, a large majority of EO image understanding (EO-IU)  CV systems 

consists of 1D image analysis algorithms (see Figure 15 in the Part 1), either pixel-based, 

synonym for spatial context-insensitive and spatial topology non-preserving (non-

retinotopic), or spatial context-sensitive (e.g., image object-based or local window-based), but 

spatial topology non-preserving (non-retinotopic) [11,35,47,55,64]. Intuitively, 1D image 

analysis algorithms are invariant to permutations in the 1D vector data sequence generated 

from a (2D) image [65], where image is synonym for 2D gridded data set (see Figure 15 in the 

Part 1). In short, 1D analysis of (2D) imagery is affected by a loss in data dimensionality. 

Inferred from Table 5 in the Part 1, instances of 1D image analysis algorithms are the popular 

CV systems for cloud and cloud–shadow quality layers detection available either open source 

or free-of-cost, such as the single-date multi-sensor Function of Mask (FMask) open source 

algorithm [66,67], the single-date single-sensor ESA Sen2Cor prototype processor, to be run 

free-of-cost on the user side [16,17] (see Figure 11 in the Part 1), and the multi-date multi-sensor 

MAJA, developed and run by CNES/ CESBIO/ DLR [18–20]. 

Alternative to 1D image analysis is 2D image analysis, which is spatial context-sensitive 

and spatial topology-preserving (retinotopic) [11,35,47,55,64], i.e., it is sensitive to 

permutations in the order of presentation of the input 2D data set [65] (see Figure 16 in the Part 

1). In our understanding, 2D spatial topology-preserving mapping is the fundamental basis of 

success of multi-scale 2D spatial filter banks for image analysis (encoding, decomposition), 

synthesis (decoding, reconstruction) and classification (understanding), either 

deductive/physical model-based [11,13,35,47–63] or end-to-end inductive learning-from-data, 

such as increasingly popular deep convolutional neural networks (DCNNs) [65,68–71]. 

3. Methods  

To overcome structural drawbacks of 1D image analysis (refer to Section 2 in the Part 1) 

and well-known failure modes of standard CV systems available open source or free-of-cost 

for cloud and cloud–shadow detection in MS imagery [19,72–75], such as the single-date open 

source FMask algorithm [66,67], the single-date sensor-specific ESA Sen2Cor software, to be 

run free-of-cost on the user side [16,17,72], and the multi-date multi-sensor MAJA algorithm, 

developed and run by CNES/ CESBIO/ DLR [18–20], which are all 1D image analysis 

approaches (refer to Table 5 in the Part 1), an inherently ill-posed “universal” AutoCloud+ CV 

system [11,76,77] was constrained as follows, to become better-posed for numerical solution 

[41,42], at the Marr five levels of understanding of an information processing system (refer to 

Section 1) [11–15]. 

 Outcome and process requirements specification: Suitable for cloud and cloud–shadow 

quality layer detection in MS imagery under operational constraints of “universality”. To be 

considered “universal” in operating mode (refer to Section 2 in the Part 1), AutoCloud+ was 

required to be: (i) “fully automated”, i.e., to run, it requires no human–machine interaction and 

no labeled data set for supervised inductive learning-from-data, (ii) near real-time, e.g., its 

computational complexity increases linearly with image size, (iii) robust to changes in input 
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data acquired across space-time and sensors, (iv) robust to changes in MS imaging sensor’s 

spatial and spectral resolution specifications, and (v) robust to changes in radiometric Cal 

metadata parameters, i.e., AutoCloud+ can be input with multi-source, multi-angular and 

multi-temporal MS imagery whether or not radiometrically calibrated into TOARF, SURF or 

surface albedo values. In other words, a “universal” AutoCloud+ software can be input with 

any MS imagery acquired by multiple platforms, either spaceborne or airborne, including 

unmanned aerial vehicles (UAVs), even when a lightweight optical imaging sensor, such as 

those mounted aboard small satellites [78] or small UAVs [79], does not feature any on-board 

radiometric calibrator to provide an acquired image with its image-specific radiometric Cal 

metadata file(s).  

 Information/knowledge representation and system design: Hybrid (combined deductive 

and inductive) inference, where deductive and inductive inference alternate at increasing 

levels of specialization, see Figure 12 in the Part 1, to take advantage of each and overcome 

their shortcomings [11,14,15,80], refer to Section 2 in the Part 1. 

 Information/knowledge representation and system design: 2D (retinotopic, spatial 

topology-preserving) image analysis, see Figure 16 in the Part 1, where primary spatial 

information and secondary color information in vision are combined according to a 

convergence-of-evidence approach [25], consistent with human symbolic reasoning, where 

eventually weak, but independent sources of evidence can be combined to infer strong 

conjectures, and where it is acknowledged that “vision goes symbolic almost immediately” 

[11,13]. 

 Information/knowledge representation and system design: Provided with feedback loops 

(feedback system) [35,47–52,55–57]. A hybrid feedback CV system is alternative to inductive 

feedforward CV systems, such as increasingly popular DCNNs trained from data end-to-end 

[65,68–71], deductive feedforward CV systems, such as the ESA Sen2Cor prototype processor, 

see Figure 11 and Table 5 in the Part 1, and hybrid feedforward CV systems, such as the 

“augmented” ATCOR software toolbox [24], see Figure 10 in the Part 1. 

 Information/knowledge representation: the AutoCloud+ CV subsystem adopts a 

convergence-of-evidence approach [25], equivalent to a Bayesian naïve classifier [11,41,42]. 

According to the Bayesian law, a naive Bayes classifier assumes the “naive” conditional 

independence of input features Fi, i = 1, …, I, hence,        

�(�|��, … , ��) = �(�) ∏ �(��|�)�
��� . (1) 

Deeply investigated by the CV community [12,13,43] and by those portions of the RS 

community involved with traditional content-based image retrieval (CBIR) [81,82] and with 

EO-IU applications for biophysical variable estimation at the Earth surface [11,14,15,25,83–88], 

well-known visual features are: (i) color values, typically discretized by humans into a finite 

and discrete vocabulary of basic color (BC) names [89,90]; (ii) planar shape [11,86–92]; (iii) 

texture, defined as the perceptual spatial grouping of texture elements known as texels 

[11,12,93–95] or tokens [13]; (iv) inter-object spatial topological relationships, e.g., adjacency, 

inclusion, etc., and (v) inter-object spatial non-topological relationships, e.g., spatial distance, 

angle measure, etc. [11,12,25,37–39]. In vision, color is the sole visual property available at the 

imaging sensor’s spatial resolution, i.e., at the pixel level of spatial analysis. In other words, 

pixel-based information is spatial context-independent, i.e., per-pixel information is 

exclusively related to color properties. Among the aforementioned visual variables, per-pixel 

color values are the sole non-spatial (spatial context-insensitive) numeric variable. It is easy to 

prove that, irrespective of their Pearson inter-feature cross-correlation, if any, individual 

sources of visual evidence, specifically, color, local shape, texture and inter-object spatial 

relationships, are statistically independent because, in general, Pearson’s linear cross-

correlation does not imply causation [11,12,42,96–98]. In the CV domain, if priors are ignored 

because considered equiprobable in a maximum class-conditional likelihood inference 

approach, alternative to a maximum a posteriori optimization criterion, and if a canonical 

interpretation based on frequentist statistics can be relaxed by fuzzy logic [99] into a 
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membership function m() belonging to range 0.0–1.0, then the naive Bayes classifier, see 

Equation (1), becomes [11,83,84]: 

p(c| ColorValue(x), ShapeValue(x), TextureValue(x), SpatialRelationships(x, 

Neigh(x))) =  

�(�|��, … , ����) = �(�) ∏ �(��|�)���
���   

m(c| ColorValue(x), ShapeValue(x), TextureValue(x), SpatialRelationships(x, 

Neigh(x)))   

min{� ��(ColorValue(x)|ColorName) ∙
��������������������������

�����������

��(ColorName|c), ��(ShapeValue(x)| c), ��(TextureValue(x)| c), 

��(SpatialRelationships(x, Neigh(x))| c)} =  

min{ �� (ColorName*| c), �� (ShapeValue(x)| c), �� (TextureValue(x)| c), 

�� (SpatialRelationships(x, Neigh(x))| c)}, c = 1, …, 

ObjectClassLegendCardinality, where ColorName*  {1, 

ColorVocabularyCardinality}, such that ��(ColorValue(x)| ColorName*) = 1 

and ��(ColorName*| c)  {0, 1}, 

(2) 

where x is a spatial unit in the (2D) image-domain, either 0D point, 1D line or 2D polygon [100], 

Neigh(x) is a generic 2D spatial neighborhood of spatial unit x, colorValue(x) belongs to a MS 

measurement space MS, i.e., ColorValue(x)  MS, and color space MS is partitioned into a set 

of mutually exclusive and totally exhaustive hyperpolyhedra, equivalent to a discrete and 

finite vocabulary (categorical variable) of static color names, with ColorName = 1, .., 

ColorVocabularityCardinality. About Equation (2), the following considerations hold. 

 Each numeric ColorValue(x) is a vector data equivalent to one point in a MS color 

space MS. In the MS color space, each point belongs to a single color name 

(hyperpolyhedron), identified as ColorName* in the static color vocabulary, i.e.,  

ColorValue(x)  MS, then 

equality � ��(ColorValue(x)|ColorName) =
��������������������������

�����������

��(ColorValue(x)|ColorName∗) = 1  holds, where m1(ColorValue(x)| ColorName)  

{0, 1} is a binary (crisp) membership function, with ColorName = 1, …, 

ColorVocabularyCardinality.  

 Equation (2) shows that any convergence-of-evidence approach is more selective than 

each individual source of evidence, in line with a focus-of-visual-attention mechanism 

[34].  

 In Equation (2), a vocabulary of color names, physically equivalent to a partition of a 

numeric color hyperspace MS into color name-specific hyperpolyhedra, is 

conceptually equivalent to a latent/ hidden/ hypothetical categorical variable, see 

Figure 1. In statistics, the popular concept of latent/hidden categorical variable was 

introduced to fill the information gap from input numeric observables, e.g., sub-

symbolic sensory data such as color values in a color space, to an output categorical 

variable, such as a discrete and finite dictionary of LC classes in the mental model of 

the physical world (world ontology, world model). Latent/hidden variables are 

categorical variables not directly measured, but inferred from lower level variables. 

“The terms hypothetical variable or hypothetical construct may be used when latent 

variables correspond to abstract concepts, like perceptual categories or discrete mental 

states” [11,12,101,102]. Hence, to fill the semantic gap from input sub-symbolic sensory 

data to an output categorical variable of symbolic quality, an hypothetical categorical 

variable, such as a discrete and finite dictionary of BC names [89,90], is considered to 

be of “semi-symbolic” quality, i.e., superior to zero semantics, but inferior to the 

symbolic quality of the output categorical variable.  
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Figure 1. Graphical model of color naming, adapted from [101]. Let us consider z as a (sub-

symbolic) numeric variable, such as MS color values of a population of spatial units, with 

vector data z  MS, where MS represents the MS data space, while c represents a categorical 

variable of symbolic classes in the physical world, with c = 1, …, 

ObjectClassLegendCardinality. (a) According to Bayesian theory, posterior probability p(c|z) 

 p(z|c)p(c) = p(c) ∑ p(z|k)p(k|c)��������������������������
������������� , where color names, equivalent to 

color hyperpolyhedra in a numeric color space MS, provide a partition of the domain of 

change, MS, of numeric variable z. (b) For discriminative inference, the arrows in the graphical 

model are reversed using Bayes rule. Hence, a vocabulary of color names, physically 

equivalent to a partition of a numeric color space MS into color name-specific hyperpolyhedra, 

is conceptually equivalent to a latent/ hidden/ hypothetical variable linking observables (sub-

symbolic sensory data) in the real world, specifically, color values, to a categorical variable of 

semantic (symbolic) quality in the mental model of the physical world (world ontology, world 

model). 

 Equation (2) shows that for any spatial unit x in the image-domain, either 0D point, 1D 

line or 2D polygon [100], when a hierarchical CV classification approach estimates 

posterior m(c| ColorValue(x), ShapeValue(x), TextureValue(x), 

SpatialRelationships(x, Neigh(x))) starting from an a priori knowledge-based near real-

time color naming first stage, where condition m1(ColorValue(x)| ColorName*) = 1 

holds, if condition m2(ColorName*| c) = 0 is true according to a community-agreed 

binary relationship R: VocabularyOfColorNames  LegendOfObjectClassNames 

(and vice versa) known a priori at first stage, see Table 6 in the Part 1, then the output 

membership function m(c| ColorValue(x), ShapeValue(x), TextureValue(x), 

SpatialRelationships(x, Neigh(x))) = 0 irrespective of any second-stage assessment of 

spatial terms ShapeValue(x), TextureValue(x) and SpatialRelationships(x, Neigh(x)), 

whose computational model is typically difficult to find and computationally 

expensive. Intuitively, Equation (2) shows that first-stage static color naming of any 

spatial unit x in the image-domain, either (0D) pixel, (1D) line or (2D) polygon [100], 

allows the color-based stratification of unconditional multivariate spatial variables 

into color class-conditional multivariate data distributions, in agreement with the 

statistic stratification principle [103] and the divide-and-conquer (dividi-et-impera) 

problem solving approach [41,42,104]. Well known in statistics, the principle of 

statistic stratification guarantees that “stratification will always achieve greater 

precision provided that the strata have been chosen so that members of the same 

stratum are as similar as possible in respect of the characteristic of interest” [103]. 

 System design (architecture), algorithm and implementation: The AutoCloud+ CV system 

requirements specification listed above is ambitious, but realistic, because AutoCloud+ can 
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rely upon several low-level CV  EO-IU software functions (modules) already 

implemented, tested (by their authors) and validated (by independent third-parties) in 

recent years [11,83,84,105]. These existing CV  EO-IU software units, capable of low-level 

(pre-attentive) vision tasks [11–13,35,47-52,54–63], can be combined according to an 

original six-stage hybrid feedback EO-IU system architecture, hereafter identified as 

QuickMap™ technology [13], see Figure 2, in compliance with the engineering principles 

of modularity, hierarchy and regularity considered mandatory by structured system 

design to guarantee scalability [104]. The six-stage hybrid feedback CV  EO-IU system 

shown in Figure 2 constitutes the core of the inference engine required by the closed-loop 

EO-IU4SQ system to systematically provide sub-symbolic EO big data cubes with meanings 

(semantics, intelligence), eligible for transforming a traditional Data and Information 

Access Services (DIAS), typically affected by a so-called Data-Rich Information-Poor 

(DRIP) syndrome, into an innovative AI4DIAS framework, see Figure 5 in the Part 1 [13, 

106– 110]. 

 

 

Figure 2. Six-stage hybrid (combined deductive and inductive) feedback EO image 

understanding (EO-IU) system design, identified as QuickMap™ technology, where acronym 

SIAM stays for Satellite Image Automatic Mapper (SIAM), a lightweight computer program 

for MS reflectance space hyperpolyhedralization into a static vocabulary of MS color names, 

superpixel detection and vector quantization (VQ) quality assessment [13–15,80,83,84,111–

116]. The proposed six-stage hybrid EO-IU system architecture is based on a convergence-of-

evidence approach to vision [25], consistent with Bayesian naïve classification [11,41,42], refer 

to Equation (2). Alternative to inductive feedforward EO-IU system architectures adopted by 

the RS mainstream, such as Deep Convolutional Neural Networks (DCNNs) trained from data 

end-to-end [65,68–71], the proposed six-stage hybrid EO-IU system design complies with the 

engineering principles of modularity, hierarchy and regularity considered necessary for 

scalability in structured system design [104]. Its hierarchy comprises a first-stage general-

purpose, sensor-, application- and user-independent EO image understanding (classification) 

subsystem, followed by a second-stage sensor-, application- and user-specific EO image 

understanding subsystem. This two-stage EO-IU system design is fully consistent with the 

standard two-stage fully-nested Land Cover Classification System (LCCS) taxonomy 

promoted by the Food and Agriculture Organization (FAO) of the United Nations, where a 

first-stage 3-level 8-class Dichotomous Phase (DP) is preliminary to a second-stage Modular 

Hierarchical Phase (MHP) [117]. For the sake of visualization, each of the six EO data 

processing stages plus stage-zero for EO data pre-processing (enhancement) is depicted as a 
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rectangle with a different color fill. Visual evidence stems from multiple information sources, 

specifically, numeric color values quantized into categorical color names, local shape, texture 

and inter-object spatial relationships, either topological or non-topological. An example of 

first-stage general-purpose, user- and application-independent EO image classification 

taxonomy required by an ESA EO Level 2 Scene Classification Map (SCM) product is the 3-

level 8-class FAO LCCS-DP legend, in addition to quality layers cloud and cloud–shadow. 

Second-stage EO image classification is user- and application-specific, where an SCM product 

of Level 3 or superior is provided with a map legend consistent with the FAO LCCS-MHP 

taxonomy [117], see Figure 1 in the Part 1.  

In more detail, at the two levels of understanding known as algorithm and implementation 

(refer to Section 1), the six-stage hybrid feedback CV  EO-IU system architecture shown in 

Figure 2 can benefit from an ensemble (library) of existing CV software functions (modules).  

(i) Zero-stage EO image pre-processing (enhancement), to guarantee multi-source multi-

temporal and multi-angular EO image harmonization and interoperability [11].  

I. Required input data set: MS image provided with a radiometric Cal metadata file, 

in agreement with the GEO-CEOS QA4EO Cal requirements [2].  

a. Absolute radiometric Cal of DNs into TOARF values, based on 

radiometric Cal gain and offset metadata parameters available per spectral 

channel.  

b.  Automated (without human–machine interaction) stratified (class-

conditional, masked) atmospheric correction, stratified adjacency 

correction and stratified topographic correction (STRATCOR) of TOARF 

into SURF values at increasing levels of radiometric quality for data 

harmonization (reconciliation) purposes, see Figure 3, e.g., refer to [11,80]. 

 

 

(a) (b) 
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Figure 3. Automated stratified topographic correction (STRATCOR) of TOARF into SURF 

values, see Figure 4, e.g., refer to [11,80]. (a) Input data set 1: Digital Terrain Model (DTM) of 

Tirol, Austria. 10 m resolution. (b) Input data set 2: Sentinel-2 Multi-Spectral Instrument (MSI) 

image of Austria (acquisition date: 2016-08-07), depicted in false colors (R: band MIR, G: band 

NIR, B: band Blue), 10 m resolution, calibrated into TOARF values. No histogram stretching is 

applied for visualization purposes. (c) Input data set 3: Satellite Image Automatic Mapper 

(SIAM) output map in color names [13–15,80,83,84,111–116], automatically generated from the 

input Sentinel-2 image in TOARF values. Output map legend at coarse granularity, 18 spectral 

categories, depicted in false colors:  (d) STRATCOR output product. Sentinel-2 MSI 

image of Austria, depicted in false colors (R: band MIR, G: band NIR, B: band Blue), 10m 

resolution, radiometrically calibrated into TOARF values and automatically corrected for 

topographic effects. No histogram stretching is applied for visualization purposes. (e) Zoom-

in of the DTM shown in (a). (f) Zoom-in of the input Sentinel-2 image in TOARF values shown 

in (b). (g) Zoom-in of the STRATCOR output image shown in (d). To be compared with the 

zoomed-in input image shown in (f). (h) Zoom-in of the SIAM output map in color names, 

automatically generated from the input Sentinel-2 image in TOARF values shown in (b). 

Output map legend at coarse granularity, 96 spectral categories, depicted in false colors: 

. (i) Zoom-in of the SIAM output map in color names, automatically generated 

from the STRATCOR output image in TOARF values shown in (d). Output map legend at 

coarse granularity, 96 spectral categories, depicted in false colors: . To be 

compared with the zoomed-in SIAM map generated from the input image, shown in (h).This 

is an example of the radiometric correction approach sketched in Figure 12 of the Part 1, where 

preliminary classification and correction stages alternate in a hierarchical sequence. 

II. Required input data set: panchromatic image or MS image provided with no 

radiometric Cal metadata file. In this case, an inherently ill-posed color constancy 

algorithm must be run for image pre-processing to guarantee input data 

interoperability (harmonization, reconciliation) across time, space and sensors, see 

Figure 4. In human vision [11,13,35,47–63], color constancy ensures that the 

perceived color of objects remains relatively constant under varying illumination 

conditions, so that they appear identical to a “canonical” (reference) image subject 

to a “canonical” (known) light source (of controlled quality), e.g., under a white 

light source [118]. In short, solution of the color constancy problem is the recovery 

“of an illuminant-independent representation of the reflectance values in a scene” 

[119]. In practice, color constancy supports image harmonization and 

interoperability when a radiometric Cal metadata file is not available to transform 

dimensionless DNs into a physical unit of radiometric measure. Computational 

color constancy is an under-constrained problem in the Hadamard sense [118,120], 

hence it is difficult to solve. Since it does not have a unique solution, color 

constancy requires a priori knowledge in addition to sensory data to become better 

conditioned for numerical solution [41,42]. Unfortunately, biophysical 

mechanisms of color constancy remain largely unknown to date. Hence, to become 

better posed for numerical solution, inherently ill-posed computational color 

constancy algorithms cannot be constrained by prior knowledge of color 

constancy mechanisms in biological vision. For these reasons, a large number of 
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alternative color constancy algorithms have been proposed in the CV literature in 

the last 30 years [118–120]. Inspired by human vision, a novel self-organizing 

statistical algorithm for multi-band image color constancy was recently 

implemented, as reported in [13,121,122]. 

 

 

 

Figure 4. Top left: RGB image, source: Akiyoshi Kitaoka @AkiyoshiKitaoka, web page: 

http://nymag.com/selectall/2017/02/strawberries-look-red-without-red-pixels-color-

constancy.html. Strawberries appear to be reddish, though the pixels are not, refer to the 

monitor-typical RGB input-output histograms shown at bottom left. No histogram stretching 

is applied for visualization purposes, see the monitor-typical RGB input-output histograms 

shown at bottom left. Top right: Output of the self-organizing statistical model-based color 

constancy algorithm, as reported in [13,121,122], input with the image shown top left. No 

histogram stretching is applied for visualization purposes, see the monitor-typical RGB input-

output histograms shown at bottom right. 

(ii) First-stage prior knowledge-based (deductive) color naming.  
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I. Required input data set: MS image radiometrically calibrated into TOARF, SURF 

or surface albedo values, in agreement with the GEO-CEOS QA4EO Cal/Val 

requirements [2]. Proposed to the RS community in recent years, the Satellite 

Image Automatic Mapper™ (SIAM™) is a lightweight computer program for 

automated near real-time MS reflectance space hyperpolyhedralization into MS 

color names, superpixel detection and vector quantization (VQ) quality 

assessment [13–15,80,83,84,111–116], see Figure 5, Figure 6 and Figure 7. SIAM 

claims its scalability to MS imaging sensors featuring different spectral resolution 

specifications, see Table 1 and Table 2. Moreover, the SIAM’s spectral knowkedge-

based decision tree for MS reflectance space hyperpolyhedralization outperforms 

its counterparts in terms of spectral quantization capability at different 

quantization levels, parameterized by the total number of detected color names at 

different levels of color granularity, see Table 1 in comparison with Table 1 in the 

Part 1 for Sen2Cor [16,17], Table 3 in the Part 1 for ATCOR [21,22] and Table 4 in 

the Part 1 for ATCOR-SPECL [23]. To accomplish a superior scalability to changes 

in sensor’s specifications (e.g., spectral resolution and per-channel curve of 

sensitivity) and a superior robustness to changes in input data, ranging from 

TOARF, SURF to surface albedo values, SIAM features a superior degree of 

redundancy of its multivariate spectral rule set [83,84] in comparison with 

Sen2Cor, ATCOR and SPECL’s. For example, among the spectral knowledge-

based decision trees under comparison, the SIAM decision tree is the sole to adopt 

two different sets of spectral rules to model the multivariate shape and the 

multivariate intensity information components of a target manifold 

(hypervolume) of MS signatures, see Figure 18 in the Part 1. 

 

  

(a) (b) 
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(c) (d) 

  

(e) (f) 

Figure 5. (a) Meteosat Second Generation (MSG) SEVIRI image acquired on 2012-05-30, 

radiometrically calibrated into TOARF values and depicted in false colors (R: band MIR, G: 

band NIR, B: band Blue), spatial resolution: 3 km. No histogram stretching is applied for 

visualization purposes. (b). Advanced Very High Resolution Radiometer (AVHRR)-like SIAM 

(AV-SIAM™, release 88 version 7) hyperpolyhedralization of the MS reflectance hyperspace 

and prior color map of the input MS image. The AV-SIAM map legend, consisting of 83 

spectral categories, see Table 1, is depicted in pseudocolors. Map legend, similar to Table 2: 

 (c) To visualize contours of image-segments automatically 

detected in the multi-level SIAM color map-domain by a deterministic two-pass connected-

component multi-level image labeling algorithm [12,123], see Figure 6, an automatic 4- or 8-

adjacency cross-aura measure is estimated in linear time, see Figure 7. (d) Segmentation map 

deterministically generated from the SIAM multi-level output map shown in (b). Each segment 

is identified by a monotonically increasing (from top to bottom) integer number. (e). 

Vegetation binary mask, automatically generated from the SIAM multi-level output map 

shown in (b). On the left, pixel candidates for vegetation belong to spectral category: 

vegetation in shadow. (f) Piecewise-constant image reconstruction, where each pixel is 

replaced by the mean reflectance value of the segment that pixel belongs to (“object-mean 

view”). If the color quantization error (equal to the per-pixel absolute difference between the 
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input image and the piecewise-constant image reconstruction) is “low”, then the quality of the 

prior knowledge-based SIAM’s color space partitioning is “high”. No histogram stretching is 

applied for visualization purposes. 

 

Figure 6. One segmentation map is deterministically generated from one multi-level (e.g., 

binary) image, such as a thematic map, but the vice versa does not hold, i.e., many multi-level 

images can generate the same segmentation map. To accomplish the determinist task of 

segmentation map generation from a multi-level image, the two-pass connected-component 

multi-level image labeling algorithm [12,123] requires two raster scans of the input data set. In 

the figure above, as an example, nine image-objects/segments S1 to S9 can be detected in the 

3-level thematic map shown at left. Each segment (image-object) consists of a connected set of 

pixels sharing the same multi-level map label. An image-object is either (0D) pixel, (1) line or 

(2D) polygon [100]. Each stratum/layer/level consists of one or more segments, e.g., stratum 

Vegetation (V) consists of two disjoint segments, S1 and S8. In general, a stratum is a multi-

part polygon. Hence, in any multi-level (categorical, nominal, qualitative) image domain, three 

labeled spatial primitives (spatial units) co-exist and are provided with parent-child 

relationships: (i) pixel with a level-label and a pixel identifier (ID, e.g., the row-column 

coordinate pair), (ii) segment (either 0D, 1D, or 2D) with a level-specific label and a segment 

ID, and (iii) stratum (multi-part polygon) with a level-specific label, equivalent to a stratum 

ID. This overcomes the ill-fated dichotomy between traditional unlabeled sub-symbolic pixels 

versus labeled sub-symbolic segments in the numeric (quantitative) image domain 

traditionally coped with by the object-based image analysis (OBIA) paradigm [46].  
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Figure 7. Example of a 4-adjacency cross-aura map, shown at right, generated in linear time 

from a multi-level (e.g., two-level, binary) image shown at left [11].  

Table 1. The SIAM computer program (release 88 version 7) is an EO system of systems 

scalable to any past, existing or future MS imaging sensor provided with radiometric 

calibration metadata parameters. It encompasses the following subsystems. (i) 7-band 

Landsat-like SIAM™ (L-SIAM™), with input channels Blue (B), Green (G), Red (R), Near Infra-

Red (NIR), Medium IR1 (MIR1), Medium IR2 (MIR2), and Thermal IR (TIR). (ii) 4-band 

(channels G, R, NIR, MIR1) SPOT-like SIAM™ (S-SIAM™). (iii) 4-band (channels R, NIR, 

MIR1, and TIR) Advanced Very High Resolution Radiometer (AVHRR)-like SIAM™ (AV-

SIAM™). (iv) 4-band (channels B, G, R, and NIR) QuickBird-like SIAM™ (Q-SIAM™) [13–

15,80,83,84,111–116]. 

SIAM, 
r88v7 

Input bands Prior knowledge-based color map legends: Number of output 
spectral categories = Vocabulary of multi-spectral (MS) color names 
Fine 
discretization 
levels 

Intermediate 
discretization 
levels 

Coarse 
discretization 
levels 

Inter-sensor 
discretization 
levels (*) 

L-SIAM 7 – B, G, R, NIR, 
MIR1, MIR2, 
TIR 

96 48 18 33 (*): employed 
for inter-sensor 
post-
classification 
change/no-
change detection 

S-SIAM 4 – G, R, NIR, 
MIR1 

68 40 15 

AV-
SIAM 

4 – R, NIR, 
MIR1, TIR 

83 43 17 

Q-SIAM 4 – B, G, R, NIR 61 28 12 

 

Table 2. Legend (vocabulary) of the prior knowledge-based color map generated from a 7-

band MS image (consisting of Landsat-like bands B, G, R, NIR, MIR1, MIR2 and TIR), 

radiometrically calibrated into TOARF, SURF or surface albedo values, by the Landsat-like 

SIAM (L-SIAM™, release 88 version 7) implementation, also refer to Table 1. For the sake of 

representation compactness, pseudo-colors of the 96 spectral categories are gathered along the 

same raw if they share the same parent spectral category in the decision tree, e.g., "strong" 

vegetation, equivalent to a spectral end-member. The pseudo-color of a spectral category 

(color name) is chosen as to mimic natural colors of pixels belonging to that spectral category. 

 
 

II. Required input data set: RGB image, either true- or false-color, not provided with 

radiometric calibration metadata parameters, but submitted to a self-organizing 

color constancy algorithm for harmonization purposes. The RGB Image Automatic 

Mapper™ (RGBIAM™) is a lightweight computer program capable of color 

naming, superpixel detection and VQ quality assessment in non-calibrated RGB 

imagery, either true- or false-color, submitted to color constancy as a mandatory 

non-calibrated RGB image pre-processing stage for image harmonization across 

space, time and sensors [13,121,122]. RGBIAM comprises a novel expert system (a 

priori spectral knowledge-based decision tree) capable of partitioning a three-band 

RGB data cube, either true- or false-color, into a pre-defined vocabulary of RGB 

color names (equivalent to a discrete and finite set of mutually exclusive and 
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totally exhaustive polyhedra, neither necessarily convex nor connected) at two 

different quantization levels of color granularity, specifically 50 and 11 color 

names, see Figure 8 and Table 3 [13,121,122]. 

 

(a) (b) 

 

(c) (d) 

Figure 8. (a) Airborne 10 cm resolution true-color RGB orthophoto of Trento, Italy, 4017 x 4096 

pixels in size x 3 bands, acquired in 2014 and provided with no radiometric calibration 

metadata file. No histogram stretching is applied for visualization purposes. (b) Same RGB 

orthophoto subject to self-organizing statistical color constancy. (c) RGBIAM 

polyhedralization of the RGB color space and prior color map of the RGB image subject to 

color constancy. The RGBIAM map legend, consisting of 50 spectral categories, is depicted in 

pseudocolors. Map legend, shown in Table 3: . Input 

parameters: none. Processing time (one-pass, IDL implementation) = 2 min. (d) To visualize 

contours of image-segments automatically detected in the multi-level RGBIAM color map-

domain by a deterministic two-pass connected-component multi-level image labeling 

algorithm [12,123], see Figure 6, an automatic 4- and/or 8-adjacency cross-aura measure is 

estimated in linear time, see Figure 7. 
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Table 3. Legend (vocabulary) of the prior knowledge-based color map generated from a 3-

band RGB image, in either true- or false-color and submitted to a color constancy pre-

processing stage, by the RGBIAM (release 6 version 2) implementation at fine color 

quantization with 50 color names (versus 11 basic color names at coarse color space 

partitioning). For the sake of representation compactness, pseudo-colors of the 50 spectral 

categories are gathered along the same raw if they share the same parent spectral category in 

the decision tree. The pseudo-color of a spectral category (color name) is chosen as to mimic 

natural colors of pixels belonging to that spectral category.  

 

 

(iii) Second stage for image-contour detection and image-segmentation (raw primal sketch) 

[11,13]. Based on an original physical model-based multi-scale multi-orientation 2D 

wavelet-based spatial filter bank [11], equivalent to a prior knowledge-based (deductive) 

CNN alternative to inductive learning-from-data DCNNs currently dominating the CV 

literature and whose architecture is based on heuristics, the proposed physical model-

based CNN is consistent with constraint ‘Human vision  CV  EO-IU’, see Figure 2 in 

the Part 1. In particular, a CV  EO-IU subsystem is tested on complex EO 

spaceborne/airborne images if and only if it performs in agreement with human visual 

perception on test cases at increasing levels of signal complexity, e.g., 1D synthetic signal, 

(2D) synthetic image, natural panchromatic imagery and natural color imagery whose 

“ground truth” is intuitive to understand, etc. Perceptual criteria to comply with are: (I) 

the perceptual true fact that human panchromatic and chromatic vision mechanisms are 

nearly as effective in scene-from-image reconstruction and understanding (refer to Section 

2 in the Part 1), and (II) the Mach bands visual illusion [11,124], see Figure 9 in the Part 1. 

In the words of Serre, “there is growing consensus that optical illusions are not a bug but 

a feature. I think they are a feature. They may represent edge cases for our visual system, 

but our vision is so powerful in day-to-day life and in recognizing objects" [56,57]. 

Traditional DCNNs only include feedforward connections between layers, not Serre's 

innovative feedback connections between neurons within a layer, which were found to be 

necessary and sufficient to model contextual optical illusions in human vision [56,57]. The 

proposed physical model-based multi-scale multi-orientation 2D spatial filter bank 

(convolutional neural network, CNN) design and implementation complies with the two 

aforementioned perceptual requirements. To reduce computation time, each 2D wavelet-

based spatial filter, 2D_f(), assumed to be W  W pixels in size, is implemented as a 2D 

separable filter, such that 2D_f(x,y) = 1D_g(x)  1D_g(y), where the 1D wavelet-based 

spatial filter, 1D_g(), is W pixels in size [53]. Hence, computational complexity of separable 

per-filter image convolution is 2W  image size in pixels, rather than W  W  image size 

in pixels. On theory, four filter orientations (0, 45, 90 and 135) and four (up to seven) 

dyadic spatial scales, s = 0, …3, are employed in agreement with biological evidence [54, 

58–63], where filter size W0 = 20  3 = 3 pixels, W1 = 21  3  7 pixels, W2 = 22  3  13 pixels 

and W3 = 23  3  25 pixels. In practice, the same W0  filter is applied hierarchically upon 
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the raw image at scale 0 and on three low-pass filtered images, downscaled by a factor of 

2 at scales 1 to 3 (eventually, down to scale 7) [53]. The implemented physical model-based 

CNN is capable of: (a) near-orthogonal image analysis/decomposition and lossless image 

synthesis/reconstruction, in analogy with the well-known multi-scale Gaussian and 

Laplacian pyramid proposed in [53], (b) automated (requiring no human–machine 

interaction) zero-crossing (ZX) image-contour detection [11], in line with a biologically 

plausible [11,35,47–63] CV system proposed by Marr [13], and (c) automated ZX image-

segment (blob, closed-contour) detection [11], never accomplished by Marr in his seminal 

work [13], see Figure 9. Such a deductive CNN implementation is alternative to inductive 

learning-from-data algorithms for image-contour detection and image segmentation, 

either 2D image analysis approaches, such as DCNNs [65,68–71], or 1D image analysis 

approaches, e.g., [125–127], which are inherently semi-automatic and site-specific [128]. 

 

(a) (b) (c) 

 

(d) (e)  

(f) (g) (h) 
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(r) (s) (t) 
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(u) (v)  

Figure 9. To comply with constraint ‘Human vision  CV  EO-IU’, see Figure 2 in the Part 1, 

an EO-IU subsystem for image-contour detection and image segmentation is tested on 

complex EO spaceborne/airborne images if and only if it performs in agreement with human 

visual perception [56,57], such as: (1) the Mach bands visual illusion [124] and (2) the 

perceptual true fact that human panchromatic and chromatic vision mechanisms are nearly as 

effective in scene-from-image reconstruction and understanding, starting from simpler test of 

increasing signal complexity, e.g., 1D synthetic signal, 2D synthetic image, natural 

panchromatic and natural chromatic images of intuitive “ground truth”, etc. (a) SUSAN 

synthetic panchromatic image, byte coded in range {0, 255}. Step edges and ramp edges at 

known locations (the latter forming the two inner rectangles visible at the bottom right corner) 

form angles from acute to obtuse. According to human vision, 31 image-segments can be 

detected as reference “ground-truth”. (b) Sum (synthesis) of the wavelet-based near-

orthogonal multi-scale multi-orientation image decomposition. Filter value sum in range from 

-255.0 to +255.0. (c) Automated (requiring no human–machine interaction) image 

segmentation into zero-crossing (ZX) segments generated from ZX pixels detected by a multi-

scale multi-orientation spatial filter bank, equivalent to a prior knowledge-based CNN, 

different from Marr’s single-scale isotropic ZX pixel detection [13]. Exactly 31 image-segments 

are detected with 100% contour accuracy. Segment contours depicted with 8-adjacency cross-

aura values in range {0, 8}, see Figure 7. (d) Image-object mean view = object-wise constant 

input image reconstruction. (e) Object-wise constant input image reconstruction compared 

with the input image, per-pixel root mean square error (RMSE) in range 0.0–255.0. (f) Natural 

panchromatic image of Lenna. (g) Same as (b). (h) Same as (c), there is no CV system’s free- 

parameter to be user-defined. (i) Same as (d). (l) Same as (e). (m) Natural RGB-color image of 

Lenna. (n) Same as (b). (o) Same as (c), there is no CV system’s free- parameter to be user-

defined. (p) Same as (d). (q) Same as (e). (r) Zoom-in of a Sentinel-2A MSI Level-1C image of 

the Earth surface south of the city of Salzburg, Austria. Acquired on 2015-09-11. Spatial 

resolution: 10 m. Radiometrically calibrated into top-of-atmosphere reflectance (TOARF) 

values in range {0, 255}, it is depicted as a false color RGB image, where: R = Medium InfraRed 

(MIR) = Band 11, G = Near IR (NIR) = Band 8, B = Blue = Band 2. Standard ENVI histogram 

stretching applied for visualization purposes. (s) Same as (b). (t) Same as (c), there is no CV 

system’s free-parameter to be user-defined. (u) Same as (d). (v) Same as (e). 

(iv) Third stage for planar shape indexing. An original minimally dependent and maximally 

informative (mDMI) set of planar shape (geometric) indexes was conceived and 

implemented as described in [11,12,92]. The proposed mDMI set of geometric functions 

comprises scale-invariant roundness (compactness and no holiness) in range 0.0–1.0, 

elongatedness (and no holiness)  1, multi-scale straightness of boundaries in range 0.0–

1.0, simple connectivity (no holiness) in range 0.0–1.0, rectangularity (and no holiness) in 

range 0.0–1.0 and convexity (and no holiness) in range 0.0–1.0, to be estimated per image-

object in addition to size and orientation, see Figure 10. 
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Figure 10. Screenshot of a graphic user interface (GUI) specifically developed to show a human 

expert values of the proposed minimally dependent and maximally informative (mDMI) set 

of geometric attributes. In this GUI, darker cells correspond to: (i) higher values of geometric 

attributes and (ii) lower values of photometric attributes, like the panchromatic mean intensity 

shown at the rightest column. In this figure, for reasons of readability only nine segments are 

shown simultaneously for comparison. Detected in the spaceborne very high resolution (VHR) 

test image of an urban area, segments 1 through 6 correspond to buildings or parts of buildings 

while segments 7 through 9 belong to roads. These two families of segments appear easy to 

discriminate based on different combinations of ranges of change of their geometric attributes. 

(v) Fourth stage for texture segmentation (full primal sketch), synonym for perceptual spatial 

grouping of texture elements, texels [11,12,93–95] or tokens [13]. Based on a multi-scale 

texture binary profile accomplished in linear time complexity via multi-scale window-

based analysis of the spatial distribution of binary image-contours [11]. To date, automated 

image-texture segmentation (perceptual grouping of texels) is an open problem 

[13,25,26,54,129]. 

(vi) Fifth stage for general-purpose, user- and application-independent ESA EO Level 2 

product generation (refer to Section 1 in the Part 1), based on a 2D convergence-of-visual-

evidence approach, according to Equation (2) [11], where the proposed ESA EO Level 2 

SCM product taxonomy consists of a standard 3-level 8-class FAO LCCS-DP legend 

augmented with quality layers cloud and cloud–shadow, see Table 2 and Figure 1 in the 

Part 1.  

(vii) Sixth stage for user- and application-dependent FAO LCCS-MHP classification (see Figure 

1 in the Part 1), based on a 2D convergence-of-visual-evidence approach, according to 

Equation (2) [11]. 

At the four levels of understanding known as information/knowledge representation, 

system architecture, algorithm and implementation (refer to Section 1), the AutoCloud+ CV 

system can be considered a specific instantiation of the aforementioned six-stage hybrid 
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feedback CV system design, shown in Figure 2. In more detail, the AutoCloud+ flow chart, 

algorithm and implementation are instantiated as follows [11,76,77], see Figure 11.  

 

Figure 11. AutoCloud+ hybrid (combined physical model-based and statistical model-based) 

2D image analysis system design (architecture) for spatial context-sensitive and spatial 

topology-preserving cloud/cloud–shadow detection. (1) True- or false-color RGB channel 

selection. (2) Statistical self-organizing color constancy algorithm. (3) RGBIAM lightweight 

computer program for RGB color space polyhedralization into color names, superpixel 

detection and vector quantization (VQ) quality assessment. (4) Candidate cloud areas, based 

on convergence-of evidence. (5) Candidate no-cloud areas, based on convergence-of evidence. 

(6) Candidate cloud–shadow areas, based on convergence-of evidence. (7) Candidate no-

cloud–shadow areas, based on convergence-of evidence. (8) Candidate cloud neighboring 

areas, based on convergence-of evidence. (9) Radiometric calibration of digital numbers (DNs) 

into TOARF, SURF or surface albedo values, in compliance with the GEO-CEOS QA4EO 

Cal/Val requirements [2,130]. (10) SIAM lightweight computer program for multi-spectral (MS) 

reflectance space hyperpolyhedralization into color names, superpixel detection and VQ 

quality assessment. (11) Spatial cloud modeler: Clouds detected from candidate cloud and 

cloud neighboring areas. (12) Spatial bidirectional cloud and cloud–shadow modeler: Physical 

model-based cloud shadow detection, moving from cloud to cloud–shadow candidates and 

vice versa, for mutual reinforcement learning. 

First, the two SIAM and RGBIAM lightweight computer programs for color space 

discretization into color names are combined to pursue convergence of photometric 

(colorimetric) evidence, whether or not the color space is radiometrically calibrated [130]. For 

example, when the input MS image is radiometrically calibrated into TOARF, SURF or surface 

albedo values in compliance with the GEO-CEOS QA4EO Cal/Val requirements [2], then SIAM 

and RGBIAM are run in parallel upon, respectively, the original input MS image (calibrated) 

and an RGB false-color selection of the input (calibrated) image pre-processed by the self-

organizing algorithm for color constancy (similar to image enhancement by histogram 

stretching). The two output multi-level maps in color names generated as output by SIAM and 

RGBIAM can be deterministically segmented in linear time complexity with image size into 

labeled image-objects (super-pixels, connected sets of pixels featuring the same color label) by 

a well-known deterministic (well-posed) two-pass connected-component multi-level image 

labeling algorithm [12,123], see Figure 6. In the SIAM and RGBIAM output segmentation map, 

each connected-component is labeled with one segment identifier (ID) together with one semi-
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symbolic color name. For example, an image-object, either (0D) pixel, (1) line or (2D) polygon 

[100], is provided with a segment ID, a MS color name ‘green-as-Vegetation’ by SIAM and an 

RGB color name ‘Green’ by RGBIAM.  

Second, candidate cloud-objects and candidate cloud–shadow-objects are detected in the 

image-domain based on a convergence of shape and size properties with SIAM and RGBIAM 

color names. Stratified (class-conditioned) by color names, a driven-by-knowledge shape-

preserving dilation process is run to fill small spatial gaps within cloud/cloud–shadow 

candidate areas (e.g., due to self-occlusion and shadow-casting phenomena occurring in 

clouds, where solar luminance decreases) and along boundaries of candidate cloud areas. 

Third, the cloud candidate image-objects can grow in the image-domain to include 

spatially adjacent image-objects whose color, shape and size properties are consistent with the 

hypothesis of belonging to class crown-of-cloud.  

Finally, a bidirectional physical knowledge-based data modeler is run for spatial 

reasoning (see software blocks identified with numbers 11 and 12 in Figure 11). Making use of 

OBIA concepts for spatial information modeling [25], it is capable of cloud/cloud–shadow 

image-object pair spatial matching in shape while accounting for the sun position, to reduce 

cloud and cloud–shadow false positives and false negatives. In the quest for a unidirectional 

cloud-to-cloud–shadow relationship, candidate cloud–shadows are searched for in the (2D) 

image-domain to be matched in shape by each individual candidate cloud-object adopted as 

starting position. This spatial search moves from the candidate cloud-object of interest, in the 

direction of the sun azimuth angle (known from the input EO image metadata file) with 

orientation away from the sun, for a spatial length estimated as a dependent variable of the 

cloud height, which is the sole unknown independent physical variable to cope with, estimated 

according to an a priori physical knowledge-based model of real-world cloud heights, in line 

with Sen2Cor [17]. The dual quest for object-pair matching in shape deals with the cloud–

shadow-to-cloud unidirectional relationship, which is usually neglected in other cloud/cloud–

shadow detectors, such as Sen2Cor [17] and MAJA [18]. A simplified flow chart of the hybrid 

AutoCloud+ software toolbox for automated cloud/cloud–shadow detection is shown in 

Figure 12. 

At the implementation level of system understanding, it is worth mentioning that 

candidate cloud/cloud–shadow image-object pairs are matched in shape according to the 

mDMI set of planar shape functions implemented in [11,12,92]. The AutoCloud+ software 

blocks identified as data processing units 4 to 8, 11 and 12 in Figure 11 were implemented 

within the Trimble's eCognition Developer commercial software environment for fast 

prototyping OBIA solutions [131].  
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Figure 12. Simplified flow chart of the hybrid AutoCloud+ software toolbox for automated 

cloud/cloud–shadow detection, see Figure 11. This intuitive workflow is depicted as a 

sequence of two input data sets (1) and (2), generated from the same input MS image, one 

submitted to radiometric Cal (when radiometric Cal metadata parameters are available) and 

the other submitted to statistical color constancy, followed by four intermediate information 

products (3) to (6), and one final output product, specifically, a three-level output map with 

semantic layers cloud/cloud–shadow/others (rest of the world, depicted as the input image), 

shown at bottom right. 

4. Materials  

For testing purposes, the novel AutoCloud+ algorithm for joint cloud and cloud–shadow 

detection in single-date MS imagery was compared in quantitative terms of outcome and 

process quality, in compliance with the mDMI set of EO outcome and process (OP) quantitative 

quality indicators (OP-Q2Is) proposed in Section 2 of the Part 1 [11], with alternative standard 

CV software solutions available open source or free of cost, specifically, the single-date ESA 

Sen2Cor and multi-temporal MAJA software toolboxes. 
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As proof of concept, AutoCloud+, Sen2Cor and MAJA (refer to Table 5 in the Part 1) were 

compared upon two test images, selected to be representative of the complexity of the 

cloud/cloud–shadow detection problem in real-world situations.  

The first test image was selected as a Sentinel-2 A (S2A) Multi-Spectral Instrument (MSI) 

Level 1C image radiometrically calibrated into TOARF values, depicting an Earth-surface area 

located in Cambodia (Product ID: 

S2A_MSIL1C_20170421T031541_N0204_R118_T48PWV_20170421T033212), see Figure 13, for 

which Sen2Cor and MAJA results were available for download from the Copernicus Open 

Access Hub [132] and from the CNES website [133] respectively. This first test image shows a 

large variety of cloud patterns, varying in shape, size and cloud height, together with typical 

critical elements in cloud and cloud–shadow detection, such as cloud–shadows projected over 

water and vegetated surface types, in addition to occluded cloud and cloud–shadow 

phenomena. 

A second test image was identified in a Sentinel-2 B (S2B) Level 1C image radiometrically 

calibrated into TOARF values, depicting an Earth-surface area located in the Alpine area 

between Austria and Germany (Product ID: 

S2B_MSIL1C_20180616T102019_N0206_R065_T32TPT_20180616T154713), see Figure 13. In 

this second test image, potential critical elements in cloud/cloud–shadow detection are the 

presence of snow/ice patterns in high-elevation areas, eligible for confusion with ice clouds, of 

clouds located next to visible snow/ice surface types and of Earth surfaces affected by shadows 

casted by mountains rather than clouds. For this second test image, no MAJA mapping result 

was available for download from the aforementioned CNES website. 

 

 

Figure 13. Overview of the two study areas adopted for testing (Left: Cambodia test site, Right: 

Alpine test site located between Austria and Germany). Test EO images of these two study 

areas are expected to be representative of the complexity of the cloud/cloud–shadow detection 

problem in real-world situations. At left, second test image, identified as a Sentinel-2 B Multi-

Spectral Instrument (MSI) Level 1C image, radiometrically calibrated into TOARF values, 

depicted in false-colors: monitor-typical RGB channels are selected as R = Near InfraRed (NIR) 
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channel, G = Visible Red channel, B = Visible Green channel. Histogram stretching is applied 

for visualization purposes. Product ID: 

S2B_MSIL1C_20180616T102019_N0206_R065_T32TPT_20180616T154713. At right, first test 

image, identified as Sentinel-2 B MSI Level 1C image, radiometrically calibrated into TOARF 

values, and depicted in false-colors as the second test image shown at left. Product ID: 

S2A_MSIL1C_20170421T031541_N0204_R118_T48PWV_20170421T033212. 

5. Results 

Alternative cloud/cloud–shadow output maps generated by the single-date AutoCloud+, 

single-date Sen2Cor and multi-temporal MAJA software toolboxes were compared in 

quantitative terms of outcome (product) quality defined in the mDMI set of EO OP-Q2Is 

proposed in Section 2 of the Part 1. In addition, the AutoCloud+ CV subsystem was assessed 

in quantitative terms of process quality, in agreement with the mDMI set of OP-Q2Is proposed 

in Section 2 of the Part 1. Noteworthy, this quality assurance strategy goes far beyond the 

traditional quantitative assessment policy of EO-IU systems presented in the RS literature, 

almost exclusively limited to mapping accuracy. 

With regard to process quality indicators defined in the mDMI set of OP-Q2Is proposed 

in Section 2 of the Part 1, such as degree of automation and computation time, AutoCloud+ ran 

automatically (without human–machine interaction) upon the two test images, where Step 1 

to Step 5 in Figure 12 were computed in near real-time, specifically, in linear time complexity 

with image size, equal to around 2 minutes per Sentinel-2 image in a standard laptop 

computer. The bidirectional object-based cloud/cloud–shadow spatial modeler, shown as Step 

6 in Figure 12 and prototyped in the Trimble eCognition software, depends on the number of 

cloud and cloud–shadow candidate image-objects detected in the image-domain at Step 5. For 

each of the two Sentinel-2 images selected for testing, the eCognition software prototype at 

Step 6 ran in a reasonable time frame, around 5 minutes per input image. 

With regard to outcome quality indicators defined in the mDMI set of OP-Q2Is proposed 

in Section 2 of the Part 1, enhanced input images, either radiometrically calibrated into TOARF 

values or submitted to color constancy, and intermediate SIAM’s and RGBIAM’s output maps 

generated from the first Sentinel-2 test image are shown in Figure 14. Final cloud/cloud–

shadow output maps generated by the single-date AutoCloud+, single-date Sen2Cor and 

multi-temporal MAJA computer programs are shown in Figure 15, zoomed-in in Figure 16 and 

extra zoomed-in in Figure 17. Table 4 reports on the total area of clouds and cloud–shadows 

detected by the three algorithms of interest in the first test image. 

 

 
(a) (b) 
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(c) (d) 

Figure 14. (a) First test image of a Cambodia site. Sentinel-2 A Multi-Spectral Instrument (MSI) 

Level 1C image of Cambodia, radiometrically calibrated into TOARF values. Acquisition date: 

2018-06-16. Depicted in false-colors: monitor-typical RGB channels are selected as R = Medium 

InfraRed (MIR) channel, G = Near InfraRed (NIR) channel, B = Visible Blue channel. No 

histogram stretching is employed for visualization purposes. (b) SIAM map of the test S2 

image shown in (a). SIAM map legend: 96 color names, depicted in pseudocolors as follows 

(see Table 2):   (c) First test image, shown in (a), submitted to a 

self-organizing color constancy algorithm. Depicted in false-colors: monitor-typical RGB 

channels are selected as R = Medium InfraRed (MIR) channel, G = Near InfraRed (NIR) 

channel, B = Visible Blue channel. No histogram stretching is employed for visualization 

purposes. (d) RGBIAM map of the test S2 image shown in (c). RGBIAM map legend: 50 color 

names, depicted in pseudocolors as follows (see Table 3): . 

 

 

"Large" leaf area index (LAI) vegetation types (LAI  values decreasing left to right)

"Average" LAI vegetation types (LAI values decreasing left to right)

Shrub or herbaceous rangeland

Other types of vegetation (e .g., vegetation in shadow, dark vegetation, wetland) 

Bare soi l or built-up

Deep water, shallow water, turbid water or shadow

Thick cloud and thin cloud over vegetation, or water, or bare soil

Thick smoke plume and thin smoke plume over vegetation, or water, or bare soi l

Snow and shadow snow

Shadow

Flame

Unknowns
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Figure 15. First test image of a Cambodia site. Final 3-level cloud/cloud–shadow/others maps 

generated by the three algorithms under comparison, specifically, single-date AutoCloud+, 

single-date Sen2Cor and multi-date MAJA, where class “others” is overlaid with the input 

Sentinel-2 A Multi-Spectral Instrument (MSI) Level 1C image, radiometrically calibrated into 

TOARF values and depicted in false-colors: monitor-typical RGB channels are selected as R = 

Near InfraRed (NIR) channel, G = Visible Red channel, B = Visible Green channel. Histogram 

stretching is applied for visualization purposes. Output class cloud is shown in a green 

pseudocolor, class cloud–shadow in a yellow pseudocolor. 

 

 

Figure 16. First test image of a Cambodia site. Zoom-in of the final 3-level cloud/cloud–

shadow/others maps generated by the three algorithms under comparison, where class 

“others” is overlaid with the input Sentinel-2 A Multi-Spectral Instrument (MSI) Level 1C 

image, radiometrically calibrated into TOARF values and depicted in false-colors: monitor-

typical RGB channels are selected as R = Near InfraRed (NIR) channel, G = Visible Red channel, 

B = Visible Green channel. Histogram stretching is applied for visualization purposes. Output 

class cloud is shown in a green pseudocolor, class cloud–shadow in a yellow pseudocolor. 

Based on qualitative photointerpetation, Sen2Cor appears to underestimate cloud–shadows, 

although some water areas are misclassified as cloud–shadows. In addition, some river/river 

beds are misclassified as clouds. These two cases of cloud false positives and cloud–shadow 

false positives are highlighted in blue circles. MAJA overlooks some clouds small in size (in 

relative terms), as highlighted in red circles. 
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Figure 17. First test image of a Cambodia site. Extra zoom-in of the final 3-level cloud/cloud–

shadow/others maps generated by the three algorithms under comparison, where class 

“others” is overlaid with the input Sentinel-2 A Multi-Spectral Instrument (MSI) Level 1C 

image, radiometrically calibrated into TOARF values and depicted in false-colors: monitor-

typical RGB channels are selected as R = Near InfraRed (NIR) channel, G = Visible Red channel, 

B = Visible Green channel. Histogram stretching is applied for visualization purposes. Output 

class cloud is shown in a green pseudocolor, class cloud–shadow in a yellow pseudocolor. 

Based on qualitative photointerpetation, Sen2Cor appears to underestimate cloud–shadows, 

although some detected cloud–shadows are false positives because of misclassified water 

areas. In addition, some river/river beds are misclassified as clouds. To reduce false positives 

in cloud–shadow detection, MAJA adopts a multi-date approach. Nevertheless, MAJA misses 

some instances of cloud-over-water. Overall, MAJA cloud/cloud–shadow results look more 

“blocky” (affected by artifacts in localizing true boundaries of target image-objects). 

Table 4. First test image of a Cambodia site. Comparison of cloud/cloud–shadow total areas 

detected by the three tested algorithms. 

 Cloud area  (ha) Cloud–shadow (ha) 

AutoCloud+ 103811 49368 

Sen2Cor* 82589 20296 

MAJA 109373 25896 

*including all cloud probability classes  
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Final cloud/cloud–shadow output maps generated from the second Sentinel-2 test image 

by the single-date AutoCloud+ and single-date Sen2Cor computer programs are shown in 

Figure 18, zoomed-in in Figure 19. Table 5 reports on the total area of clouds and cloud–

shadows detected by the two algorithms of interest in the second test image. 

 

 

Figure 18. Second test image of an Alpine site. Final 3-level cloud/cloud–shadow/others maps 

generated by the two algorithms under comparison, specifically, single-date AutoCloud+ and 

single-date Sen2Cor, where class “others” is overlaid with the input Sentinel-2 B Multi-

Spectral Instrument (MSI) Level 1C image, radiometrically calibrated into TOARF values and 

depicted in false-colors: monitor-typical RGB channels are selected as R = Near InfraRed (NIR) 

channel, G = Visible Red channel, B = Visible Green channel. Histogram stretching is applied 

for visualization purposes. Output class cloud is shown in a green pseudocolor, class cloud–

shadow in a yellow pseudocolor. 
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Figure 19. Second test image of an Alpine site. Zoom-in of the final 3-level cloud/cloud–

shadow/others maps generated by the two algorithms under comparison, where class “others” 

is overlaid with the input Sentinel-2 A Multi-Spectral Instrument (MSI) Level 1C image, 

radiometrically calibrated into TOARF values and depicted in false-colors: monitor-typical 

RGB channels are selected as R = Near InfraRed (NIR) channel, G = Visible Red channel, B = 

Visible Green channel. Histogram stretching is applied for visualization purposes. Output 

class cloud is shown in a green pseudocolor, class cloud–shadow in a yellow pseudocolor. 

Based on qualitative photointerpetation, Sen2Cor appears to underestimate cloud–shadows, 

while some detected clouds are false positives because of misclassified water in river/river 

beds or misclassified snow/ice areas. AutoCloud+ avoids most of these cloud false positives 

and cloud–shadow false negatives by means of 2D spatial reasoning, specifically, by means of 

physical model-based modeling of cloud/cloud–shadow 2D shape properties and of 

bidirectional cloud/cloud–shadow 2D spatial relationships in the image-domain. 

Table 5. Second test image of an Alpine site. Comparison of cloud/cloud–shadow total areas 

detected by the two tested algorithms. 

 Cloud area  (ha) Cloud–shadow (ha) 

AutoCloud+ 106667  37905 

Sen2Cor* 75180 14526 

*including all cloud probability classes  

6. Discussion 
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For the first Sentinel-2 test image of a Cambodia site, qualitative photointerpretation of 

the AutoCloud+ intermediate output products shown in Figure 14, in combination with 

quantitative vector quantization (VQ) error maps automatically generated as output by both 

the SIAM and RGBIAM software toolboxes (not shown), confirmed the validity of the SIAM 

and RGBIAM software solutions for color space quantization into categorical color names, in 

line with the existing literature [11,83,84,121], where SIAM was validated at continental scale 

on multi-year annual Landsat image mosaics. At first glance, a qualitative photointerpretation 

of the output 3-level cloud/cloud–shadow/others thematic maps generated by the three 

AutoCloud+, Sen2Cor and MAJA algorithms under comparison, shown in Figure 15, appears 

satisfactory. No cloud, large in size (in relative terms), is missed by any algorithm of interest. 

Actually, detected clouds appear somehow overestimated rather than underestimated in 

AutoCloud+ and MAJA. On a second glance, differences between the three approaches become 

notable. Table 4 reports the total area of extracted clouds and cloud–shadows. AutoCloud+ and 

MAJA score similar values for the cloudy total area (~103 000 ha / 109 000 ha), but the former 

scores twice as much in the total amount of cloud–shadow areas (~50 000 ha). The Sen2Cor 

results reveal the lowest total area values (~ 82 500 ha / 20 000 ha) for both classes cloud and 

cloud–shadow respectively. These summary statistics are confirmed by visual analysis of 

zoomed-in subsets of Figure 15, as shown in Figure 16 and Figure 17. AutoCloud+ and MAJA 

appear to dilate (grow, on purpose) clouds at cloud boundaries to include an aura of thin cloud 

regions, if any, which are typically ignored by Sen2Cor. In this spatial neighboring analysis, 

MAJA results look more “blocky”, i.e., affected by artifacts in localizing perceptually true 

boundaries of target image-objects, whereas the AutoCloud+ approach “naturally” follows the 

shape of clouds as they are perceived by a human photo interpreter. Sen2Cor largely 

underestimates cloud–shadows, although some water areas are misclassified as cloud–

shadow, see Figure 16. In addition, some river/river beds are misclassified as clouds, see Figure 

16 and Figure 17. To avoid such false positives in cloud and cloud–shadow detection affecting 

Sen2Cor, MAJA adopts a multi-temporal approach. Nevertheless, MAJA misses some 

instances of clouds small in size (in relative terms), which are detected quite well by the other 

two algorithms, see Figure 16. In addition, MAJA misses some instances of cloud-over-water, 

see Figure 17. Overall, on closer inspection of the first test case, single-date AutoCloud+ scores 

qualitatively “high” in cloud and cloud–shadow mapping accuracy, both affected by few false 

positives and few false negatives. Hence, single-date AutoCloud+ is considered superior to 

single-date Sen2Cor in mapping accuracy and superior to multi-date MAJA in mapping 

accuracy as well as ease-of-use, timeliness (from EO data collection to EO data-derived VAPS 

generation) and costs in computer power, since the former requires less input data to run. 

For the second Sentinel-2 test image of an Alpine site, qualitative photointerpretation of 

the output 3-level cloud/cloud–shadow/others thematic maps generated by the two 

AutoCloud+ and Sen2Cor algorithms under comparison, shown in Figure 18 and zoomed-in 

Figure 19, confirm conclusions drawn from the first test case. Sen2Cor appears to 

underestimate cloud–shadows, while some detected clouds are false positives because of 

misclassified water in river/river beds or misclassified snow/ice areas. AutoCloud+ avoids 

most of these cloud false positives and cloud–shadow false negatives. Image-wide statistics 

collected in Table 5 confirm that AutoCloud+ tends to detect 30% to 40% more cloud-affected 

areas (in ha) and 50% more areas affected by cloud–shadow phenomena than Sen2Cor. 

To be validated in future works at large spatial scale and multiple time samples according 

to the GEO-CEOS Val guidelines [105], these preliminary results confirm the well-

groundedness of our working hypothesis (see Figure 4 and Equation (1) in the Part 1 of this 

paper; otherwise, refer to the further Section 7 in the present Part 2, where such a working 

hypothesis is reported for the sake of completeness) in the multi-disciplinary domain of 

cognitive science (see Figure 2 in the Part 1), starting from the AutoCloud+ project 

requirements specification, summarized in Section 3 at the levels of system understanding 
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known as information/knowledge representation, system architecture, algorithm and 

implementation (see Section 1). 

AutoCloud+ process quality indicators belonging to the mDMI set of EO OP-Q2Is 

proposed in Section 2 of the Part 1, but not investigated in this experimental session are 

robustness to changes in input data, at large spatial scale and time span in agreement with the 

GEO-CEOS Val guidelines [105], and scalability to changes in imaging sensor’s spatial and 

spectral resolutions. In agreement with theory (refer to Section 3), AutoCloud+ is expected to 

score “high” in all EO OP-Q2Is proposed in Section 2 of the Part 1.     

7. Conclusions 

The overarching goal of this research and technological development (RTD) study is to 

contribute toward filling an analytic and pragmatic information gap from multi-sensor, multi-

temporal and multi-angular Earth observation (EO) big image data cubes into timely, 

comprehensive and operational EO data-derived value-adding information products and 

services (VAPS), in compliance with the intergovernmental Group on Earth Observations 

(GEO)’s visionary goal of a Global EO System of Systems (GEOSS) [2,3], unaccomplished to 

date. Main contributions of this paper pertain to the multi-disciplinary domain of cognitive 

science [27–32] (see Figure 2 in the Part 1), encompassing artificial general intelligence (AI) as 

superset-of computer vision (CV), i.e., dependence relationship ‘[AI  CV  Earth observation 

(EO) image understanding (EO-IU)]  cognitive science’ holds in symbols of the standard 

Unified Modeling Language (UML) for graphical modeling of object-oriented software [33], 

where symbol ‘’ means part-of dependence, pointing from the supplier to the client, whereas 

symbol ‘’ means subset-of relationship (with inheritance), pointing from the superset to the 

subset.  

For the sake of readability this paper is divided in two. To highlight the importance of a 

“universal” AutoCloud+ CV software system for cloud and cloud–shadow quality layers 

detection in multi-source, multi-angular and multi-temporal EO multi-spectral (MS) big image 

data cubes, the Part 1 presents AutoCloud+ in a broad context of systematic ESA EO Level 2 

product generation at the ground segment [16,17], within a “seamless chain of innovation” 

needed for a new era of Space Economy 4.0 [4]. Provided with a relevant survey value, the Part 

1 critically reviews the open problem of systematic ESA EO Level 2 product generation at the 

three higher (more abstract) levels of understanding of an information processing system 

proposed by Marr, specifically, outcome and process requirements specification, 

information/knowledge representation and system design (architecture) [11–15,134,135]. 

Typically considered the linchpin of success of any information processing system [11–15], 

these abstract levels of understanding make the critical review proposed in the Part 1 not 

alternative, but complementary to surveys on EO-IU system solutions typically presented in 

the remote sensing (RS) literature, such as [136–138], focused exclusively on the Marr two 

lowest levels of understanding, specifically, algorithm and implementation. Subsequent to the 

Part 1, the present Part 2 (proposed as Supplementary Materials) presents and discusses an 

original “universal” AutoCloud+ CV software system instantiation at the Marr five levels of 

understanding of an information processing system.  

Original contributions and main conclusions of this two-part RTD study are summarized 

below. 

Conceptual in nature and pertaining to the interdisciplinary domain of cognitive science, 

see Figure 2 in the Part 1, the first original contribution of this work coincides with our working 

hypothesis, refer to Equation (1) and Figure 4 in the Part 1. In symbols of the standard UML 

for graphical modeling of object-oriented software [33], our working hypothesis is formulated 

as follows:  

‘Human vision  CV  EO-IU in operating mode  NASA EO Level 2 product  

ESA EO Level 2 product  [EO-SCBIR + SEIKD = AI4DIAS]  GEO-GEOSS’. 
(3) 
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Equation (3) is a dependence relationship, equivalent to a first principle (axiom, postulate). It 

postulates that necessary-but-not-sufficient pre-condition for multi-sensor EO big data cube 

analytics is systematic generation of ESA EO Level 2 product [16,17], encompassing cloud and 

cloud–shadow quality layer detection in an operating mode (for definition of operating mode 

of an EO big data processing system, refer to Section 2 in the Part 1). In more detail, systematic 

ESA EO Level 2 product generation is regarded as necessary-but-not-sufficient pre-condition 

for developing timely, comprehensive and operational EO data-derived VAPS, such as 

semantic content-based image retrieval (SCBIR) + semantics-enabled information/knowledge 

discovery (SEIKD) = AI for Data and Information Access Services at the ground segment 

(AI4DIAS), in multi-sensor, multi-temporal and multi-angular EO big data cubes, as part-of the 

GEO-CEOS visionary goal of a GEOSS, never accomplished to date by the RS community. The 

dependence relationship (3) implies that no solution to the dependent open problem of GEOSS, 

including its still-unsolved (open) sub-problems of SCBIR and SEIKD, can be found until the 

necessary-but-not-sufficient pre-condition of CV  EO-IU in operating mode, specifically, 

systematic ESA EO Level 2 product generation, is fulfilled in advance.  

As a corollary of working hypothesis (3), a dependence relationship ‘vision (encompassing 

both biological vision and computer vision, CV)  CV  ESA EO Level 2 product’ implies that 

generation of an ESA EO Level 2 product from a MS image is a CV  EO-IU task. Synonym 

for scene-from-image reconstruction and understanding [25], vision is a cognitive (information-

as-data-interpretation) problem [27] very difficult to solve because: (i) non-deterministic 

polynomial (NP)-hard in computational complexity [34,35], (ii) and inherently ill-posed in the 

Hadamard sense [25,26,36]. Vision is inherently ill-posed because affected by: (I) a 4D-to-2D 

data dimensionality reduction, from the 4D geospatial-temporal scene-domain to the (2D, 

planar) image-domain, and (II) a semantic information gap from ever-varying sub-symbolic 

sensory data (sensations) in the physical world to stable symbolic percepts in the mental 

model of the physical world (modeled world, world ontology, real-world model) 

[11,12,25,27,37–40], see Figure 6 in the Part 1. Since vision is an inherently ill-posed and NP-

hard cognitive (information-as-data-interpretation) problem [27] and the dependence 

relationship ‘vision  CV  ESA EO Level 2 product’ holds, then CV, in general, and ESA EO 

Level 2 product generation, in particular, are inherently ill-posed and NP-hard cognitive 

problems too. As such, they are very difficult to solve and require a priori knowledge in 

addition to sensory data to become better conditioned for numerical solution [41,42]. In 

addition, according to the working hypothesis where dependence ‘ESA EO Level 2 product 

 [EO-SCBIR + SEIKD = AI4DIAS]  GEOSS’ holds, the computational complexity of GEOSS 

 (not inferior to) computational complexity of [SCBIR + SEIKD]  computational complexity 

of ESA EO Level 2 product generation, which is inherently ill-posed and NP-hard. It means 

that ‘[EO-SCBIR + SEIKD = AI4DIAS]  GEOSS’ too are cognitive problems inherently ill-

posed and NP-hard [27], whose solution is not less difficult to reach than that of CV in 

operating mode, unaccomplished to date. This corollary highlights, first, the inherent 

complexity and relevance of ESA EO Level 2 product as information primitive (unit of 

information) necessary-but-not-sufficient for EO data-derived VAPS generation in a 

“seamless innovation chain” needed for a new era of Space 4.0 [4], see Figure 8 in the Part 1. 

Second, it justifies the present RTD work, whose specific goal is cloud and cloud–shadow 

quality layers detection in operating mode as necessary-but-not-sufficient pre-condition for 

systematic ESA EO Level 2 product generation at the ground segment [16,17] or space segment 

[139–141]. 

Our second original contribution is both conceptual and pragmatic in the definition of RS 

best practices (see Section 2 in the Part 1), which is the focus of efforts made by 

intergovernmental organizations such as GEO and the Committee on Earth Observation 

Satellites (CEOS). The ESA EO Level 2 information product definition is regarded as baseline 

information primitive (unit of information) suitable for an “augmented” EO Analysis Ready 
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Data (ARD) format specification, more restrictive (in terms of output product requirements 

specification) and more informative (in terms of physical and conceptual/semantic quality of 

numeric and categorical output products, respectively), but more difficult to be inferred from 

EO sensory data than existing U.S. Landsat ARD [5–9] and CEOS ARD for Land (CARD4L) 

[10] format definitions. 

Our final contribution in filling the gap from EO big data to EO data-derived VAPS stems 

from the present Part 2, focused on the RTD and the preliminary quality assessment of an 

innovative AutoCloud+ CV software system, eligible for “universal” cloud and cloud–shadow 

quality layer detection in multi-sensor multi-angular EO single-date MS imagery, either 

radiometrically uncalibrated, such as those typically acquired by lightweight imaging sensors 

mounted on small satellites [78] or small unmanned aerial vehicles (UAVs) [79], provided with 

no on-board radiometric calibration subsystem, or radiometrically calibrated into top-of-

atmosphere reflectance (TOARF), surface reflectance (SURF) or surface albedo values [130,142–

144], in agreement with the GEO-CEOS Quality Accuracy Framework for EO (QA4EO) 

Calibration/Validation (Cal/Val) requirements [2,105]. 

It is noteworthy that joint (combined, inter-dependent) detection of cloud and cloud–

shadow quality layers is a typical example of physical model-based cause–effect relationship, 

expected to be very difficult to solve by inductive machine learning-from-data algorithms, such 

as increasingly popular deep convolutional neural networks (DCNNs) [65], with special regard 

to DCNNs designed and trained end-to-end for semantic segmentation [70] and instance 

segmentation [71], rather than object detection [69], where image-objects are localized with 

bounding boxes and categorized into one-of-many categories. In general, inductive machine 

learning-from-data algorithms, including DCNNs [65,68–71], are suitable for learning complex 

correlations between input and output features [41,42], but capable of no inherent 

representation of causality [96,97], in agreement with the well-known dictum that correlation 

does not imply causation and vice versa [11,12,42,96–98]. 

In comparison with standard cloud/cloud–shadow software toolboxes available either 

open source or free of cost, such as the single-date multi-sensor Function of Mask (FMask) open 

source algorithm [66,67], the single-date single-sensor ESA Sentinel 2 (atmospheric, 

topographic and adjacency) Correction Prototype Processor (Sen2Cor), to be run free-of-cost 

on the user side [16,17,72], and the multi-date Multisensor Atmospheric Correction and Cloud 

Screening (MACCS)-Atmospheric/Topographic Correction (ATCOR) Joint Algorithm (MAJA), 

developed and run by CNES/ CESBIO/ DLR [18–20] (refer to Section 3 in the Part 1), 

AutoCloud+ features several degrees of novelty at the Marr five levels of understanding of an 

information processing system [11–15]. For example, at the levels of understanding of 

information/knowledge representation, system architecture and algorithm, in comparison 

with standard open source or free-of-cost approaches in operating mode (see Table 5 in the 

Part 1), AutoCloud+ is the sole hybrid (combined physical and statistical model-based) 2D 

image analysis (spatial context-sensitive and spatial topology-preserving, see Figure 16 in the 

Part 1) approach, provided with feedback loops in agreement with biological cognitive systems 

[11,29,35,47–52,55–57,145]. 

In a proof-of-concept conducted by qualitative photointerpretation of two Sentinel-2 test 

images, an AutoCloud+ prototypical software implementation outperformed the standard 

single-date sensor-specific ESA Sen2Cor and the multi-date multi-sensor CNES/ CESBIO/ DLR 

MAJA computer programs in terms of cloud and cloud–shadow mapping quality indicators, 

such as true positive, false positive, true negative and false negative occurrences.  

With regard to a minimally dependent and maximally informative (mDMI) set of EO 

outcome and process (OP) quantitative quality indicators (Q2Is), to be community-agreed upon 

for use by members of the RS community, proposed in Section 2 of the Part 1, potential 

advantages of the AutoCloud+ hybrid feedback 2D image analysis approach for cloud and 

cloud–shadow quality layers detection in operating mode are summarized below.  

(1) The AutoCloud+ computer program is “fully automated”. 
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i. It requires no system’s free-parameter to be user-defined based on heuristics, 

unlike mainstream CV and EO-IU algorithms, such as inductive DCNNs, where a 

priori knowledge is encoded by design based on empirical criteria, a.k.a. trial-and 

error. Hence, the AutoCloud+ ease of use cannot be surpassed by alternative 

algorithms. 

ii. It requires no supervised data set for inductive learning-from-data. Hence, its cost 

in manpower for collecting training data samples, typically expensive and difficult 

to gather, is zero. In addition, its timeliness from EO data collection to VAPS 

generation is reduced to computation time, because training time is zero. 

(2) It employs a known hybrid feedback CV system design (architecture, see Figure 2) whose 

low-level CV software units (modules) have been implemented to a large degree in 

operating mode and tested/validated in previous works. For example, refer to the Satellite 

Image Automatic Mapper™ (SIAM™) [13–15,80,83,84,111–116] and the RGB Image 

Automatic Mapper™ (RGBIAM™) [13,121,122], two lightweight computer programs for 

color (hyper)space (hyper)polyhedralization (partitioning) into a static vocabulary of color 

names, superpixel detection and vector quantization (VQ) quality assessment. Hence, the 

RTD costs in manpower of the AutoCloud+ software system have been reduced by a great 

deal, benefitting from the engineering principles of modularity, hierarchy and regularity 

considered mandatory by structured system design to guarantee scalability [104]. 

(3) In line with biological vision [11,13,35,47–63], the AutoCloud+ CV subsystem exploits 

dominant spatial topological and spatial non-topological information components in 

combination with secondary color information [25], discretized into color names, 

according to a convergence-of-evidence approach consistent with symbolic human 

reasoning, where potentially weak independent sources of evidence are typically 

combined to infer strong conjectures [11,12,25,39]. For example, in two Sentinel-2 test 

images selected for proof-of-concept, the single-date AutoCloud+ mapping accuracy, in 

both cloud and cloud–shadow detection and in terms of true positive, false positive, true 

negative and false negative estimates, scored better than that of standard software 

toolboxes, such as the single-date single-sensor ESA Sen2Cor and the multi-date multi-

sensor CNES/ CESBIO/ DLR MAJA. In addition to showing a superior mapping accuracy, 

supported by theory (refer to Section 3 in the present Part 2), AutoCloud+ is expected to 

score “high” also in terms of robustness to changes in input data acquired across space, 

time and sensors, and in terms of scalability to changes in MS imaging sensor’s spatial and 

spectral specifications, encompassing MS imagery either radiometrically uncalibrated or 

radiometrically calibrated into TOARF, SURF or surface albedo values.  

To underpin the operational readiness of the AutoCloud+ software toolbox in support of 

systematic ESA EO Level 2 product generation at the ground segment or space segment [139–

141], a complete AutoCloud+ software transcodification into the C/C++ programming 

language and a software integration phase are planned for efficiency reasons, together with a 

GEO-CEOS stage 3 and stage 4 Val campaign to be conducted by independent means at large 

spatial extent and time span with multiple MS imaging sensors, in compliance with the GEO-

CEOS Val guidelines [105] and the GEO-CEOS QA4EO Cal/Val requirements [2]. 
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Acronyms 

AI: Artificial general Intelligence 

AI4DIAS: Artificial Intelligence for Data and Information Access Services (at the ground 

segment) 

AI4Space: Artificial Intelligence for Space (segment) 

ARD: Analysis Ready Data (format) 

ATCOR: Atmospheric/Topographic Correction commercial 39oftware product 

AVHRR: Advanced Very High Resolution Radiometer 

BC: Basic Color 

BIVRFTAB: Bivariate Frequency Table 

Cal: Calibration 

Cal/Val: Calibration and Validation 

CBIR: Content-Based Image Retrieval 

CEOS: Committee on Earth Observation Satellites 

CESBIO: Centre d’Etudes Spatiales de la Biosphère  

CFMask: C (programming language version of) Function of Mask  

CLC: CORINE Land Cover (taxonomy) 

CNES: Centre national d’études spatiales 

CNN: Convolutional Neural Network 

CORINE: Coordination of Information on the Environment  

CV: Computer Vision 

DCNN: Deep Convolutional Neural Network 

DEM: Digital Elevation Model 

DIAS: Data and Information Access Services 

DLR: Deutsches Zentrum für Luft- und Raumfahrt (German Aerospace Center) 

DN: Digital Number 

DP: Dichotomous Phase (in the FAO LCCS taxonomy) 

DRIP: Data-Rich, Information-Poor (syndrome) 

EO: Earth Observation 

EO-IU: EO Image Understanding 

EO-IU4SQ: EO Image Understanding for Semantic Querying 

ESA: European Space Agency 

FAO: Food and Agriculture Organization 

FIEOS: Future Intelligent EO imaging Satellites  

Fmask: Function of Mask  

GEO: Intergovernmental Group on Earth Observations 

GEOSS: Global EO System of Systems 

GIGO: Garbage In, Garbage Out principle of error propagation 

GIS: Geographic Information System 

GIScience: Geographic Information Science 

GUI: Graphic User Interface 

IGBP: International Global Biosphere Programme 

IoU: Intersection over Union 

IU: Image Understanding  

LAI: Leaf Area Index 
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LC: Land Cover 

LCC: Land Cover Change 

LCCS: Land Cover Classification System (taxonomy) 

LCLU: Land Cover Land Use 

LEDAPS: Landsat Ecosystem Disturbance Adaptive Processing System 

MAACS: Multisensor Atmospheric Correction and Cloud Screening  

MAJA: Multisensor Atmospheric Correction and Cloud Screening (MACCS)-

Atmospheric/Topographic Correction (ATCOR) Joint Algorithm 

mDMI: Minimally Dependent and Maximally Informative (set of quality indicators) 

MHP: Modular Hierarchical Phase (in the FAO LCCS taxonomy) 

MIR: Medium InfraRed 

MODIS: Moderate Resolution Imaging Spectroradiometer  

MS: Multi-Spectral 

MSI: (Sentinel-2) Multi-Spectral Instrument  

NASA: National Aeronautics and Space Administration 

NIR: Near InfraRed 

NLCD: National Land Cover Data 

NOAA: National Oceanic and Atmospheric Administration 

NP: Non-Polynomial 

OBIA: Object-Based Image Analysis 

OGC: Open Geospatial Consortium 

OP: Outcome (product) and Process 

OP-Q2I: Outcome and Process Quantitative Quality Index 

QA4EO: Quality Accuracy Framework for Earth Observation 

Q2I: Quantitative Quality Indicator 

RGB: monitor-typical Red-Green-Blue data cube 

RMSE: Root Mean Square Error 

RS: Remote Sensing 

RTD: Research and Technological Development 

SCBIR: Semantic Content-Based Image Retrieval 

SCM: Scene Classification Map 

SEIKD: Semantics-Enabled Information/Knowledge Discovery 

Sen2Cor: Sentinel 2 (atmospheric, topographic and adjacency) Correction Prototype Processor 

SIAM™: Satellite Image Automatic Mapper™ 

STRATCOR: Stratified Topographic Correction 

SURF: Surface Reflectance 

TIR: Thermal InfraRed 

TM (superscript): (non-registered) Trademark 

Tmask: Temporal Function of Mask  

TOA: Top-Of-Atmosphere 

TOARD: TOA Radiance 

TOARF: TOA Reflectance 

UAV: Unmanned Aerial Vehicle 

UML: Unified Modeling Language 

USGS: US Geological Survey 

Val: Validation  

VAPS: Value-Adding information Products and Services  

VQ: Vector Quantization 

WGCV: Working Group on Calibration and Validation 
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