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Abstract: The upraise of autonomous driving technologies asks for maps characterized bya broad
range of features and quality parameters, in contrast to traditional navigation maps which in most
cases are enriched graph-based models. This paper tackles several uncertainties within the domain
of HD Maps. The authors give an overview about the current state in extracting road features
from aerial imagery for creating HD maps, before shifting the focus of the paper towards remote
sensing technology. Possible data sources and their relevant parameters are listed. A random forest
classifier is used, showing how these data can deliver HD Maps on a country-scale, meeting specific
quality parameters.
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1. Introduction

Within the last decade, the research on fully autonomous vehicles (AV) has progressed so much
that what started as a vision is quickly becoming a reality. Nowadays it is recognized that the increasing
usage of AV will have beneficial influence on a broad range of socio-economic and transportation
factors in our society, for instance energy consumption and air pollution, land use, and car ownership.
The increasing usage of AV will therefore be beneficial not just for the single owners of the cars,
but also for society as a whole [1]. A recent overview about challenges and opportunities concerning
AV is given in [2]. Besides of Mobility on Demand (MoD) and car-sharing, AVs are probably the key
challenge for future Intelligent Transportation Systems (ITS).

Nowadays cars, both Commercial-of-the-Shelf (COTS) and research platforms, are equipped
with a broad range of different sensors, e.g., camera-based systems, Lidar, Radar, Ultrasonic,
Infrared, Odometry sensors and Global Navigation Satellite System (GNSS) receivers. Advanced
Driver Assistance Systems (ADAS) make extensive use of the information acquired from these
sensors to accurately estimate the vehicles position and pose, and to actively map its surroundings.
The combination and harmonization of the permanently recorded heterogeneous data stream is a
key factor for achieving a reliable and consistent view of the vehicles in a close-range environment.
The perception of the environment remains the biggest challenge to solve, in order to achieve a reliable,
smooth and safe driving [1]. Weather conditions like rain and fog, rapidly changing illumination
caused by shadowing, or a corrupted GNSS positioning signal caused by multipath effects, are just
examples of what has to be taken into account for real world applications. In addition to hardware
components, algorithms play a key role for AVs. Publicly available benchmark datasets have therefore
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been published in the past to provide a reliable source to evaluate and compare algorithms performance
in environment perception [3].

1.1. HD Maps for Ego Positioning

A High Definion Map (HD Map) can contribute to this task by spanning an expectation horizon
of what should be seen and at which position objects should be located [4]. Concerning GNSS-based
positioning within an urban environment, especially if a car is traveling along an urban canyon,
signal reception is affected by strong biases caused by multipath effects and atmospheric propagation
delays. Obst et al. [5] therefore propose the usage of a 3D digital map to overcome these issues for
vehicle localization. Within this map, potential multipath situations can be predicted and identified
through a probabilistic ray-tracing model. Tao and Bonnifait [6] proved that both the tight and
loosely coupling of GNSS with 2D lane marking maps may increase the accuracy and integrity of
the positioning information, particularly when these are computed autonomously. The same authors
also implemented a road invariant Extended Kalman Filter which makes use of Lane Markings for
the enhanced estimation of GPS errors. Using images and HD Maps has been proven to be especially
reliable at reducing the lateral error in GNSS positioning [7]. A recent example is given in [8], based on
the data-set provided by the University Grand Challenge at ITS World Congress 2016 in Melbourne.
Bauer et al. [9] used a HD Map derived from georeferenced aerial orthophotos with a spatial resolution
of 10 cm, and digital elevation and surface models with resolutions of 2 m and precisions of 20 cm for
precise urban vehicle localization. The experiments showed a significant positioning improvement
pinpointing out the high potential of HD Maps.

In situations where no GNSS signal is available, the impact of HD Maps for positioning raises
significantly. Schreiber et al. [10] proposed an approach which is completely independent of GNSS
and solely based on highly accurate maps. This focuses on the precise localization relative to the given
map that is necessary for path following, with experiments showing that localization accuracy is in the
range of the map accuracy: therefore, they conclude that future work should focus on the mapping
process. Burgard et al. [11] pointed out that for an AV the localization requirements are in the order
of decimeters, which makes GNSS alone insufficient to meet these requirements. The experiments
reported therein using a HD Map resulted in a relative lateral localization error to the HD Map which
was mostly within 5 cm.

1.2. HD Maps for Scene Understanding

Besides the contribution to a highly accurate vehicle positioning with and without GNSS, HD
Maps can help in holistic 3D scene understanding. Wang et al. [12] generated 3D HD Maps using
volunteered geographic information from the OpenStreetMap project. Their 3D object detection
algorithm was validated on the KITTI dataset [3], outperforming the baseline in all metrics and tasks.

As a result of the unpredictable activity of pedestrians, bicyclists and traffic movement, travelling
urban environments with AVs is probably the most challenging scenario. The DARPA urban challenge
2007 can be marked as a key event addressing such a scenario. Several research groups from around the
world participated in this challenge, with the team AnnieWAY reporting about their experiences [13].
Whilst no prior HD Map was available, their system combined the spatial information from the sensors
to generate a 2D map of the environment on the fly. More specifically, this map was centered at the
vehicles position and moving with it. For environmental perception an occupancy grid with a spatial
resolution of 15 cm was generated.

1.3. Experiments on Public Roads Using HD Maps

Almost all car manufacturers are nowadays carrying out experiments with modified vehicles on
public roads demonstrating their current abilities. One of the most remarkable experiments was carried
out by Daimler in 2013, in which a modified Mercedes Benz S 500 traveled the so-called Bertha Benz
Memorial Route, a 103 km long route in the southwestern part of Germany connecting the cities of
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Mannheim and Pforzheim. Unlike the majority of other research vehicles, the car comes with no costly
LiDAR. The HD Map played an important role to ensure localization. The subsystem Localization
comprises the modules (a) Lane-Marking-Based Localization, (b) Feature-Based Localization and (c)
Localization Fusion, where (a) and (b) are complementary vision algorithms. The used HD Map
contained significantly more information than typical navigation maps. All static environmental
properties which are necessary for driving but cannot be reliably detected by sensors were stored, e.g.,
the layout of drivable lanes [14].

The BMW Group also reported about experiences, results and lessons learned from automated
driving on Germany’s Highways, where the main routes are around Munich and the highway between
Munich and Nuremberg, better known as DigitalesTestfeld Autobahn. The used HD Map was
generated from a small number of vehicles equipped with the same sensors as the later used AV. It was
pointed out that the data had to be harmonized and that the HD Map comprises two layers: a semantic
geometric layer and a localization layer. For more details concerning BMW’s experiences, we refer to
the prospective published in [15].

There is a broad agreement on HD Maps being a key technology for AVs [4]. Both commercial
players, Daimler and BMW, pointed out that the generation and provision of HD Maps is currently one
of the main challenges when it comes to autonomous driving. Aeberhard et al. [15] explicitly asked for
validation and certification of large-scale digital maps. Ziegler et al. [14] stated that for the generation
of digital maps not only the technical performance, but also the scalability of the chosen solutions in
terms of a commercial roll-out is pivotal.

1.4. Descriptive Parameters, Metrics and Content of HD Maps

Here, we introduce needed definitions and clarifications. Whilst all the aforementioned papers
and experiments deal with HD Maps, the content of such maps and the meanings of the given accuracy
statements are quite inhomogeneous. Concerning the contents, the lowest common denominator is
that all HD maps featured a lane markings detection step. Focusing on the term accuracy, there’s a
rich literature dealing with its specification for mapping products, and giving guidelines on how these
quantitative parameters should be derived, which perfectly works also nowadays. Macfarlane and
Stroila [16] from HERE addressed the wording Uncertainty in the domain of autonomous driving,
as from a mapper’s prospective especially (a) Uncertainties in Object Detection and Localization and
(b) Temporal Map Uncertainties are of interest. For (a) we have to distinguish between relative and
absolute accuracy, where both quantities can be given. In most papers it is stated that a relative
accuracy of 10 to 20 cm was used, whereas almost no statements are given concerning the absolute
accuracy. This may be reasonable from a practical point of view where the most important issue
is to ensure a stable relative positioning of the AV with respect to its surroundings. Nevertheless,
the absolute accuracy is the most meaningful quality measure when it comes to spatial applications,
therefore it should not be simply neglected. For (b) a mapping product relies always on a given date
of data acquisition. As the road network is recognized as a highly vital environment, where changes
can appear everywhere at any time, the update rate and the time stamp stating the time an object was
detected play an important role.

To the best of our knowledge, most map makers currently use data recorded by probes or a
fleet of vehicles. Massow et al. [17] presented an approach on how to handle, maintain and exploit
the big amount of data recorded by probes. Furthermore, three different data layers were identified:
(a) the road geometry, (b) the road furniture, and (c) dynamic data. The road geometry and its
surrounding furniture can be considered as base map where an absolute accuracy statement is useful,
whereas dynamic data such as information about accidents do not need to be included. The authors
furthermore developed a Map Evaluation Tool (AET), which performs a metric evaluation on the
absolute positioning accuracy of the map. Dabeer et al. [18] presented recent results concerning an
end-to-end system for crowdsourced 3D maps for autonomous driving. Their error metrics also
include absolute positioning accuracy.
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1.5. HD Maps and Aerial/Satellite Imagery, Literature Review

Aerial images have been used for a long time for the extraction and description of transportation
infrastructure. Kim et al. [19] proposed the extraction of road feature information by combining several
image processing algorithms into a sophisticated system. The authors proposed transfer learning
approach using fully convolutional neural networks (FCNNs) to extract the roads firstly and afterwards
with the segmentation of the lane marking in the masked image using the first step. This approach
has been common in the majority of the current methods to extract lane-markings in remote sensing.
The main contribution of the authors is the usage of FCNNs instead of the traditional methods.

In the algorithm proposed by Jin et al. [20] the roads are extracted firstly and afterwards
Gabor filters are applied in order to highlight for the lane markings. This step is followed by the
thresholding algorithm of Otsu to achieve binary segmentation. The outputs are then produced by
either morphological operations or support vector machines (SVMs).

Despite obtaining good results in highways, this approach yields some false positives in the
objects represented by white linear features, such as the boundaries of bridges over highways. Also
lines belonging to vehicles might be misclassified as they are inside the road regions. In addition,
lane-marking extraction was not investigated into detail and only one output image was provided. In
their work, objects like trees over highways and roads or not well-visible lane markings on the surface
of roads were mentioned to be a main reason leading to a perturbation of the final results. To address
the mentioned problem, Jin et al. [21] proposed a newer approach consisting of the centerline of
the road extraction step, the road surface detection and in the end pavement markings extraction.
However, this approach is also heavily dependent on the road-mask components. Despite having
superior performance over previous methods, this approach exhibits low accuracy with regards to
lane-marking detection without road mask.

Jin et al. [22] used hierarchical image analysis based on color component analysis and wavelet
transformation to detect the position of roads in a first step, then applied Gabor filtering to extract
road lane markings. The authors used an unsupervised algorithm to segment the road area in the
first. Afterwards, a contrast measurement was deployed in order to improve the quality of the
lane-marking extraction assuming that the difference between the pixel intensity of lane-markings
and the surface of road is noticeable. In the next step, morphological features were applied to smooth
the edges in the shadow areas. Finally, the extracted lane-markings were improved using a modified
Wang-Zangen algorithm as well as a line fitting step using least square regression. Despite an extension
of lane-marking to rural areas, without road area masking step, this method would suffer from a
considerable amount of false positives.

Unlike the two aforementioned works, Hinz and Baumgartner [23] proposed a methodology for
urban areas using multi-view imagery as well as the usage of context information. The author used
the detected thin lines as a sign for the existence of a road. Despite of having very good performance,
the proposed method requires several images from different view angles of an area of interest. Mnih
and Hinton [24] also focused on urban areas, but used unsupervised classification for feature extraction
and neural networks to finally detect roads in a reliable and robust manner. In addition to methods
relying only on aerial imagery, the usage of additional images collected by vehicles gave promising
results. Mattyus et al. [25] gave an example of the combined parsing of both ground and aerial images
to generate HD Maps and to extract road topology from aerial imagery [26]. Their methods is based
on Markov Random Fields as well as the combination of parsed aerial and ground imagery data in
order to produced detailed results. Even though, these road masks could be utilized for lane marking
localization, they can’t be deployed directly to improve the lane marking extraction. More complete
overviews about the extraction of roads and road features from aerial imagery are given in [27,28].

The main advantage of airborne remote sensing is its ability of covering large areas in short time
within a reasonable budget. This point addresses the need to provide a scalable map production tool
chain which Ziegler et al. [14] asked for. In the case of road networks, special advantages with respect
to ground based systems are; (a) the independence concerning actual traffic situations (e.g., traffic
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jams, acceleration/braking for following traffic participants), (b) the point of view where occlusions
caused by ground-based obstacles are minimized, and (c) the broader field of view where also features
not immediately in line-of-sight by vehicles can be detected. Aerial imagery has furthermore proven
its ability in serving as a reliable source for retrieving road related features (e.g., lane markings, land
marks) which can be used for the generation of HD Maps.

We propose to generate at least static basic HD Maps using aerial imagery giving the absolute
accuracy as spatial quality measure. A not yet outdated overview on how such quality measures are
generally given for mapping products is given by Greenwalt [29]. These basic HD Maps with a given
absolute accuracy can then act as reference point for further dynamic map contents, recorded by fleets
of probes. The content of such basic HD Maps are road markings, which are already earlier identified
as the smallest common denominator of the HD Maps used in the referenced works. They are easily
to identify in aerial imagery given a suitable spatial resolution and are the main describing features
of nowadays road networks, where most or even all further information of interest for AVs can be
derived from a complete lane marking HD Map.

Following the mentioned works, the approaches by Javanmardi et al. [30] and Huang et al. [31]
applied adaptive threshold in aerial imagery. Javanmardi et al. [30] approach consists of several steps
which include the processing of digital surface model (DSM), the removal of vehicles by multiple
images and finally the utilization of an adaptive thresholding in order to extract lane marking. As it
can be seen, lane markings are not extracted directly and the usage of third party data is necessary for
the removal of non-lane marking objects.

Tournaire and Paparoditis [32] proposed dashed-line and zebra crossing extraction by using
the obtained information of the primitives extracted from the images together with a reconstruction
process. They only addressed the rectangular shape lane markings and their geometric properties
were studied to extract them.

In order to grasp the hidden pattern in the features of the lane marking via an end-to-end feature
learning approach such as deep learning ones, Azimi et al. [33] proposed Aerial LaneNet approach to
extract lane marking by learning them. They introduced the first lane-marking segmentation dataset
in the remote sensing area called AerialLanes18. They utilized a modified fully convolutional neural
network and modified it to be able to extract tiny lane-markings from aerial images which are hard
to detect for convolutional neural network given the fact that these methods suffer to detect small
objects and the lane-markings appear to be very small. They enhanced the accuracy of their approach
by using wavelet transforms combined with convolutional neural network and used a custom loss
function to address the issue of unbalanced ratio between lane markings and non-lane markings in
their dataset. They cropped high-resolution aerial images into patches to be fed into their methods and
in the end; they are stitched together based on the specific policy. In our work, we did not compare our
results with the results of this method.

Lane marking extraction has also been studied in in-situ imagery. Lee et al. [34] proposed a
convolutional neural network (CNN) based with multi-task purpose for joint lane-marking extraction
and classification given the fact that their images contained different weather and lightning conditions.
Gurghian et al. [35] proposed a CNN-based method for lane-marking extraction on right and left sides
of a car. Even though, these methods achieve a very high accuracy, but their main focus is not on
the small size of lane-markings. As mentioned, lane-markings have a tiny size in aerial imagery and
should be given a special attention.

1.6. Aim of This Paper

This contribution tackles the overlapping topics of HD Maps, Computer Vision and Remote
Sensing. The whole process from orthorectified image data towards the final HD Map is described,
with a special focus on image segmentation and pattern recognition for identifying the relevant features
describing the transportation system and its nearby environment.
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The possibility of using aerial and very high resolution satellite imagery as data source for
generating HD Maps is discussed. Section two describes shortly the used data. A methodological view
by means of image classification is given in Section 3. The effectiveness of the proposed algorithm is
tested, results are presented and discussed in Section 4. We conclude in Section 5.

2. Materials/Image Data

In contrast to imagery collected by vehicles, orthorectified aerial and satellite imagery comes with
one or several descriptive parameters, easing the mapping process based on such images. The Ground
Sampling Distance (GSD) gives a strict connection between pixel spacing and real world distances.
Some camera systems offer the possibility of collecting imagery with a side-looking view, and the
viewing angle is given. Another interesting parameter given for most aerial imagery products is the
acquisition date/time. In combination with a surface model which is in most cases available for optical
flight campaigns, shadow masks which are extremely useful for several subsequent image processing
steps can be computed.

Some countries distribute aerial imagery acquired by their governmental institutions under a
free-and-open data policy. For instance, the United States Geological Survey (USGS) offers aerial
imagery of the whole United States with GSD’s down to the decimeter level. European entities, for
instance the German Federal Mapping Agencies, now tend to follow this trend: the federal states
of Hamburg, Berlin and North-Rhine Westfalia run open-data web portals were orthophotos with a
spatial resolution of 20 cm are available and distributed under a free-and-open data policy. We used
digital orthophotos with a GSD of 20 cm provided by the Bavarian Agency for Digitisation, High-Speed
Internet and Surveying. The data were derived from the Bavarian Flight Program with an image
overlap of 80% along track and 50% cross track. Since 2017, the actualization was decreased from a
3-year- to a 2-year-cycle. In the current Bavarian Flight Program 2018, the southern part of Bavaria
(appr. 40.000 sqkm) will be covered with a GSD of 20 cm. The contractors use common digital high
resolution sensors e.g., UC Eagle or DMC II/III. The parameters of the spectral resolution are 5 channels
(PAN, R, G, B, NIR) and a color bit depth of 16 bit.

In 2018 the generation of orthophotos will change to true-orthophoto [36]. The basis for the
generation of true-orthophotos is the orthogonal projection with a Digital Surface Model (DSM) from
aerial imagery in a grid spacing of 20 cm. True-orthophotos avoid occluded areas or displacements
from e.g., buildings—an important advantage in inner cities.

The imagery comes in a tiled fashion where the tile size is 5000 × 5000 pixels. In the experiments
seven tiles where used for training (train/validation equals 70%/30%) and three for testing. The total
length of the motorway depicted in the imagery is greater than 10 km. As the two driving directions
are divided into two roads, with both having a minimum of three lanes, the total lane is longer than
120 km. The imagery depicts a part of the motorway A9 between Ingolstadt and Munich, which
is publicly well known as Digital Motorway Test Bed, operated by the German Federal Ministry of
Transport and Digital Infrastructure.

3. Methodology

Most algorithms dealing with image segmentation and pattern recognition for HD Map creation
consist of two steps. On the first stage, a raw division between the road network and its surroundings
is done. By doing so, the search space for the second stage is in most cases shrinked by several order
of magnitudes. The second stage deals with the determination of lanes, road markings and other
descriptive parameters of the transportation systems.

3.1. Raw Image Segmentation

Depending on the environment, the road determination can be undertaken using simple or
sophisticated algorithms, with the latter integrating assumptions about the color and shape of roads.
Recent contributions show promising results concerning the extraction of road topology from aerial
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imagery [24]. Given the impact and completeness of volunteered geographic open data projects such
as OpenStreetMap (OSM), road network masks can also be generated by combining the georeferenced
images with such data bases. The creation of buffer nets based on the OSM road network where the
buffer size depends on the road classes, the rasterization of the result and their combination with the
aerial images leads in most cases to an accurate search space fitting.

Figure 1 depicts such a buffer net, on which we apply an algorithm for the classification of lane
markings, where the orientation angle θ of the road is an obligatory input parameter. As roads are
represented as polylines within the OSM data model, the approximated angle can be retrieved using
Equation (1), where x1, y1 and x2, y2 are the points between which the angle is computed.

θ = tan−1 y2 − y1

x2 − x1
(1)
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Figure 1. OpenStreetMap mask showing color-encoded road direction angle.

3.2. Image Classification—Lane Marking Determination

The determination of the lane model is achieved by classifying the lane markings. In our
experiments, we used a Random Forest classifier which is well-known for being robust to overfitting
due to its stochastic nature. All of the employed features highlight the unique radiometric and spatial
appearance of lane markings. Five features are used, namely the three components of the RGB image
converted to the HSV (Hue, Saturation, and Value) space, a special intensity-based image filter and a
Gabor filter.

The HSV representation is preferred, as unicolor pixels (low Saturation) with high intensity (high
Value) can be identified faster than in raw RGB color space, where the dependency between the three
channel values has to be taken into account. Figure 2 depicts the HSV transformation where Figure 2a
is the RGB input image and Figure 2b–d are the HSV components.
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The specific offset in color appearance between lane marking and road is emphasized by
introducing a fourth feature, which is described in Equation (2). This is computed as the brightness at
position z0 minus the mean brightness z in a circular surrounding (inner radius 0.5 m, outer radius
2 m), divided by the standard deviation within the circular surrounding. Figure 3 shows the behavior
of this filter.

f (x, y) =
z0 − z√

1
n−1 ∑n

i=1(zi − z)2
(2)
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The spatial characteristics of the road markings are given by a specific length, width and
orientation. A directed texture descriptor such as the Gabor filter, where certain parameters such as the
wavelength λ, the direction θ and the bandwidth must be set, can be used to highlight lane markings.
The angle θ is derived from the pre-introduced OSM mask, while the wavelength λ relates to the
specific width of lane markings in our images (here approximately four pixels). The result of the Gabor
filtered image consists of a real and imaginary part of a complex number. In our approach, we neglect
the imaginary part and use the real part, where the general formulation is given in Equations (3)–(5).
Figure 4 visualizes the Gabor filtering.

f (x, y, λ, θ, ψ, σ, γ) = exp(− x′2 + γ2y′2

2σ2 ) cos (2π
x′

λ
+ ψ) (3)

where
x′ = x cos(θ) + y sin(θ) (4)



ISPRS Int. J. Geo-Inf. 2018, 7, 458 9 of 14

y′ = −x sin(θ) + y cos(θ) (5)

ISPRS Int. J. Geo-Inf. 2018, 7, 458 9 of 14 

 

	 sin cos  (5) 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4. (a) RGB image showing motorway, (b) Result of Gabor Filtering of pre-masked aerial 
imagery, (c) subset of (a), (d) Result of Gabor Filtering of (c). 

Based on this features, a random forest classifier was trained and applied. During the training 
phase, experiments were carried out for hyper parameter tuning. The classifier consists of 300 trees 
having a maximum tree depth of 13 and minimum 700 samples per leaf. The used image patch size 
per sample is 7 × 7 pixels. As the ratio True Positives to True Negatives is quite unbalanced (most of 
the imagery is background), we used a synthetic ratio of 1:5 during the training for ensuring the 
classifier to get a good understanding of how a lane marking should look like. 

4. Results and Discussion 

4.1. Results 

Three images were used for evaluation of the trained classifier. As figures of merit we report 
Accuracy (Equation (6)), Sensitivity (Equation (7)) and Intersection over Union (IoU, Equation (8)). 
All of the three are ratios considering two or more of the following values: TruePositives, True 
Negatives, False Positives, and False Negatives. Due to the unbalanced nature of the problem 
(almost 100% true negatives), we consider accuracy as an inappropriate measure, but include it for 
completeness. Table 1 gives the metrics on each of the three test images and the ratio for the three 
test images. 	  (6) 

	  (7) 

	  (8) 

Table 1. Classification results for three test images. 

Scene Accuracy Sensitivity IoU 
1 0.99 0.54 0.5 
2 0.99 0.65 0.6 
3 0.99 0.62 0.59 
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(c) subset of (a), (d) Result of Gabor Filtering of (c).

Based on this features, a random forest classifier was trained and applied. During the training
phase, experiments were carried out for hyper parameter tuning. The classifier consists of 300 trees
having a maximum tree depth of 13 and minimum 700 samples per leaf. The used image patch size
per sample is 7 × 7 pixels. As the ratio True Positives to True Negatives is quite unbalanced (most
of the imagery is background), we used a synthetic ratio of 1:5 during the training for ensuring the
classifier to get a good understanding of how a lane marking should look like.

4. Results and Discussion

4.1. Results

Three images were used for evaluation of the trained classifier. As figures of merit we report
Accuracy (Equation (6)), Sensitivity (Equation (7)) and Intersection over Union (IoU, Equation (8)).
All of the three are ratios considering two or more of the following values: TruePositives, True
Negatives, False Positives, and False Negatives. Due to the unbalanced nature of the problem
(almost 100% true negatives), we consider accuracy as an inappropriate measure, but include it
for completeness. Table 1 gives the metrics on each of the three test images and the ratio for the three
test images.

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

Sensitivity =
TP
P

(7)

IoU =
TP

TP + FP + FN
(8)

Table 1. Classification results for three test images.

Scene Accuracy Sensitivity IoU

1 0.99 0.54 0.5
2 0.99 0.65 0.6
3 0.99 0.62 0.59

Mean 0.99 0.6 0.56
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4.2. Discussion

Several aspects can lead to false predictions. One of the more dominant error sources is represented
by man-made features sharing similar colors and shapes with lane markings. Figure 5 gives an example
about such a situation. Figure 5a depicts the used Ground Truth in cyan, whereas in 5b the prediction in
magenta is shown. Figure 5c gives the RGB input image, while Figure 5d represents the Ground Truth
(cyan) and prediction (magenta) overlaid on the grayscale version of the input image. Between the two
inner guardrails a long solid line is predicted, which is obviously wrong. The two roads are divided by
concrete barriers which look like bright lines (almost white) in the imagery (ref. Figure 5c); however,
these are no lane markings, and therefore this mis-prediction lowers the quality of the overall results.
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Figure 6 gives a closer look at another error source. Due to the harsh environment situation on
motorways, the colors and shapes of lane markings may differ. Furthermore, the concrete itself can
exhibit several disturbing features, such as small cracks, potholes or simply unbalanced stress on the
different lanes, which make spatially limited reparations necessary. Figure 6 illustrates such a situation,
where 6a is the RGB input image, 6b is showing the Ground Truth in cyan and 6c is showing an overlay
of Ground Truth (cyan) and prediction (magenta) on a grayscale version of the image. We observe that
the classifier seems to underpredict the lane markings in situations where the marking color is washed
out. The two directions of the road can easily be distinguished by defining them as the bright one
(lower one) and the dark one (upper one). In the second case, we observe that the road surface already
shows brighter areas bordering the single lanes, even if there is no road marking. This is caused by
heavy usage of the road, where the vehicles weight tends to deform the road surface, while areas
which are probably characterized by less traffic appear brighter.
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In previous works, shadows and changing illumination conditions have been identified as a
major error source. The employed algorithm is quite robust against such influences, due to the
usage of Gabor features. Figure 3 gives a good example about the strong influence of shadows on
intensity-based features. Figure 3c,d highlight how shadows destroy the relevant information as the
foreground/background intensity ratio decreases. Figure 4c,d shows the reliability of Gabor features,
which have a beneficial influence on the overall classification results.

In our experiments, occlusions by cars had no negative influence on the overall results as all
occluded lane markings were not part of the Ground Truth. However, having the goal of generating
country-scale HD maps in mind, a preprocessing of the imagery would be necessary. As the images
overlap, being the vehicles moving objects, a median filtering would probably be enough to remove
most cars from the input orthophoto mosaic.

Our experiments focused on motorways. The presented algorithm would deliver comparable
results in urban situations, as shape and color of lane markings would just change marginally. In urban
environments the aforementioned error sources, namely shadows and occlusions, will have a much
higher impact as a higher number of man-made objects close to the roads and a significantly higher
traffic participant intensity are expected.
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5. Conclusions

In this paper we analyzed the possibility of creating HD Maps for autonomous driving using
aerial imagery. Using a current test site in Germany, we derived a HD Map using a novel image
segmentation algorithm, which combines OSM data and aerial imagery from the Bavarian Agency
for Digitisation, High-Speed Internet and Surveying. The quality metrics prove that the proposed
algorithm is able to produce reliably and efficiently HD Maps for large areas.

The used imagery is available on a country scale (for all federal states of Germany) and it is
frequently updated, therefore the proposed algorithm could be used to produce a base map for all
motorways in Germany. Several other European countries (e.g., Austria, France) run comparable
programs with slightly differing spatial and temporal resolutions: however, by combining existing
image databases, it is possible to create a VHR orthophoto mosaic at a continental scale. The used OSM
data for masking and derivation of the road orientation angles could be replaced by more reliable data
sources, possibly provided by official national mapping agencies.

The usage of such a base map with its given high geometric stability may be useful for several
purposes, for instance: (a) to create an expectation horizon for classifying the objects within the
neighborhood of the car, (b) to validate the cars observations and the created live map, and (c) to raise
the absolute accuracy of the position estimation. In the future an in-depth analysis has to be done on
the possibility of merging aerial with probe-based imagery.

Nowadays car-makers ask for lightweight mapping formats such as OpenDRIVE or Navigation
Data Standard (NDS). Due to their shape, size and orientation, the raw binary lane markings can
be translated towards an object-specific description. The goal is to achieve a vectorized description
of the transportation network on a lane level, which is georeferenced and includes at least a basic
topology. The binary lane marking classification could serve as a starting point for the creation of more
sophisticated navigation maps.

The validation of existing maps by means of geometry is already an use-case [37] and should
be studied in depth in the future. The development of a reliable validation procedure of maps based
on aerial imagery may be of interest for a broad range of stakeholders within the domain of AD.
The German Aerospace Center recently released a new dataset in order to stimulate new contributions
and out-of-the-box solutions for the automotive industry [38].
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