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Abstract: In recent years, pluvial floods caused by extreme rainfall events have occurred frequently.
Especially in urban areas, they lead to serious damages and endanger the citizens’ safety. Therefore,
real-time information about such events is desirable. With the increasing popularity of social media
platforms, such as Twitter or Instagram, information provided by voluntary users becomes a valuable
source for emergency response. Many applications have been built for disaster detection and flood
mapping using crowdsourcing. Most of the applications so far have merely used keyword filtering
or classical language processing methods to identify disaster relevant documents based on user
generated texts. As the reliability of social media information is often under criticism, the precision of
information retrieval plays a significant role for further analyses. Thus, in this paper, high quality
eyewitnesses of rainfall and flooding events are retrieved from social media by applying deep
learning approaches on user generated texts and photos. Subsequently, events are detected through
spatiotemporal clustering and visualized together with these high quality eyewitnesses in a web
map application. Analyses and case studies are conducted during flooding events in Paris, London
and Berlin.

Keywords: social media; crowdsourcing; volunteered geographic information; multimedia information
retrieval; convolutional neural network; transfer learning; word embedding; flood mapping

1. Introduction

Flood, as one of the great disasters, endangers people’s safety and their property. Generally, it can
be categorized into three types, namely coastal flood, fluvial (river) flood and pluvial (rainfall) flood [1].
For the coastal and fluvial floods, tide and river gauges were built for monitoring water levels in
real time, e.g., online river gauge maps for the UK and Ireland [2], tides and currents maps for the
United States [3]. However, pluvial floods, which are normally caused by local, fast storm events with
very high rainfall rates, are hard to be monitored and observed. Pluvial floods in urban areas are
a great challenge for many cities. They are also expected to happen more frequently in the future [4].
These events may lead to failure of the drainage system of a city and have a high potential for damage,
as evidenced by the flooding events in Beijing in June, 2012 [5] and in Berlin on 29 June, 2017 [6].
Even though the weather forecast may predict the amount of rainfall and weather sensor networks [7]
may provide precipitation measurements in real time, the observation of the inundations or inlets
overflow on the ground in real time is still hard to achieve. It is even harder for regions that lack
meteorological infrastructure.

Crowdsourcing is a rapidly developing technique for event detection and is frequently used for
domains such as public health and emergency response. Google Flu Trends [8] was a web service
that tried to detect flu outbreaks based on users’ search queries about flu symptoms. It was said to
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provide predictions highly correlated with the actual flu outbreaks recorded by the US Centers for
Disease Control and Prevention (CDC) [9]. However, overestimation of such events may sometimes
happen [10]. Thus, accuracy and reliability are general issues for applications using crowdsourcing.
For natural disaster events, first hand information from the people in the affected area is desirable for
emergency management. Crowdsourcing is often used for collecting disaster relevant reports from
voluntary users in real time. Some of these reports may contain user provided geographic information,
thus they are regarded as Volunteered Geographic Information (VGI). Even though many applications
nowadays for VGI are focusing on mapping (e.g., OpenStreetMap), potential of VGI used for early
warning and emergency management has also been addressed by many researchers [11,12]. Lots of
applications were already built to detect or analyze various disaster events based on VGI, such as
earthquakes [13–15], floods [5,16,17], storms [18] and fires [19,20]. Since pluvial flood is one of the
disasters that severely affects people and is normally directly caused by heavy rainfall events, a system
is desirable to efficiently extract the voluntarily posted tweets relevant to rainfall and flooding and
detect such events in real time.

The quality of the information retrieval plays a key role for event detection or further
spatiotemporal analyses [21]. High quality topic relevant texts and photos can improve the situation
awareness during the event and provide the decision makers with more detailed information in
real time. The applications mentioned above have applied different kinds of approaches to retrieve
disaster relevant tweets, mostly based only on the user generated texts. Methods such as keyword
filtering [22,23] or classical Natural Language Processing (NLP) [24,25] were used to retrieve disaster
related information. However, using only the text information leads to the retrieval of a large amount
of false positive documents, which is due to the inherent ambiguities. Therefore, a retrieval based only
on textual information is unlikely to be accurate.

Nowadays, most of the social media platforms allow users to share their photos (e.g., flickr,
Instagram, Twitter). Photos can improve the situation awareness during a disaster event significantly.
Therefore, photos were also used for event detection, but they are normally not automatically
interpreted. For instance, the framework OEDIM [26] used keyword filtering to identify flood
relevant social media messages. Additionally, it offers analysts the possibility to manually assess
whether the retrieved photos are relevant to flood events or not, but has no automatic information
extraction from the photos. Only recently, some researchers have applied deep learning techniques
on 6600 Flickr images with metadata for multimedia flood relevant information retrieval [27,28],
which have shown great potential for detecting flooding events based on real-time social media data.
However, applications which include such techniques are not yet available as a service for cities.

In a similar spirit, the approach in this paper uses text processing techniques with deep learning.
In addition to the texts, rainfall and flood scenarios are also identified by image recognition using deep
learning as a separate independent source. Only with the confirmation from both texts and photos,
VGI is considered as high quality eyewitnesses for rainfall and flood events. They are subsequently
used as input for spatiotemporal clustering and hot spot detection to detect such events.

The information retrieved by our approach cannot only be used for detecting rainfall and flood
events to improve the situation awareness, but can also be used for documenting such events. On the
one hand it can be used to verify hydrological modelling results [29], on the other hand it can support
the risk and loss analyses after the disaster. Currently, the risk and loss analyses depends greatly
on telephone interviews. Tweets extracted by this approach could serve as a guidance for where the
affected people are. Large-scale remote sensing flood mapping could also be significantly improved
by only a small amount of VGI data [17]. In the near future, the functionalities offered in this paper
will be embedded in an early warning system together with the predictions from meteorological and
hydrological models. Furthermore, a similar framework can be established for other disaster events,
which have significant features in both text and image, such as fire or lightning strokes.

The framework of our approach is shown in Figure 1. In our case, only the social media posts
including both texts and photos are analyzed. Classifiers for both texts and images are trained and
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applied separately and the individual evidences are combined. In the end, events are detected by
spatiotemporal analysis. This paper is organized as follows. The next section is an introduction to social
media data acquisition and storage. In Section 3, we introduce the related methods for interpreting
flood relevant social media information. In Section 4, we describe the training of text classifiers and their
comparisons based on an automatically annotated social media text dataset. In Section 5, we discuss
the training of image classifiers and their comparison based on a manually annotated social media
image dataset using a transfer learning approach. With the confirmation from both the text and image
classifiers, high quality eyewitnesses of the rainfall and flood events are extracted, which used as
individual hints for a possible event. In Section 6, spatiotemporal clustering is used to detect events
and the daily hot spots are detected. In Section 7, the results of our application are described and
visualized using a web application. In Section 8, we compare the results with an independent data
source, namely precipitation and analyze the correlation between daily precipitation records and the
daily amount of high quality eyewitnesses within 45 days in Paris and 14 days in London. In the last
section, we conclude and give an outlook on future work.

Figure 1. Work flow for pluvial flood relevant VGI extraction.

2. Social Media Data Acquisition

Since the aim is to detect rainfall and flooding events in real time, after comparing multiple
social media platforms, Twitter was chosen for collecting pluvial flood relevant VGI. Currently,
Twitter has 328 million active users worldwide [30], which leads to a large amount of user generated
data. Because of its public Streaming API [31], we can access the real-time data streams of Twitter
users. However, the number of tweets that can be crawled is restricted by the request limit of
the Streaming API [32]. The API permits a pre-filtering according to geographical bounding box,
keywords or languages. Therefore, instead of collecting tweets globally, a study area was defined from
24◦32′47.4′′ W to 18◦30′ E in longitude and from 27◦38′10.68′′ N to 71◦11′7.8′′ N in latitude to collect
geotagged Twitter data (as shown in Figure 2). Our study area covers most of the big cities in Western
Europe. Additionally, we also filtered the data stream according to language and preserved only the
tweets in seven frequently used languages within the study area, namely English, French, German,
Italian, Spanish, Portuguese and Dutch. These are also the languages currently supported by the NLP
tools used in our framework. At this step, no keyword filtering was applied to the Streaming API.

By restricting the area and filtering with respect to languages, the limitation by the Streaming API
is greatly overcome, so that we achieve high completeness of the crowdsourcing data. Each tweet is
downloaded as a json file and subsequently stored in a MongoDB database [33] since 15 May 2016.
Many tweets may differ from each other with a different number of fields, therefore, the MongoDB
database, as a NoSQL database [34] is ideal for this kind of data, as it does not require all the documents
to have exactly the same fields.
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Figure 2. Study area for collecting Twitter data (Basemap: Google Maps).

In general, only about 2% of the tweets are geotagged [35]. The proportion of the geotagged
tweets with photos is shown in Figure 3. In this example, from 1 June 2016 to 30 June 2016, a total
of 3.6 millions geotagged tweets were collected from 473,004 users. 59.1% of the geotagged tweets
contain photos or references to photos on Instagram. The majority of these Tweet are shared Instagram
posts with shortened text and URL link. Therefore, an extension to download these Instagram posts
with full texts and images was also developed to improve the completeness of our collected VGI data.

Shared Instagram posts 
 (1,877,133 tweets from 403,111 users)

51.6%
Geotagged tweets containing photos 
 (274,592 tweets from 36,050 users)

7.5%

Geotagged tweets without photos 
 (1,487,465 tweets from 67,173 users)

40.9%

Figure 3. Proportion of geotagged tweets containing photos.

3. Related Methods for Interpreting Flood Relevant Social Media Information

With the rapid development of computer vision and NLP techniques in recent years, many studies
nowadays are focusing on interpreting disaster relevant information from social media messages,
especially using deep learning. Great achievements has been made for visual recognition ever since the
proposal of Convolutional Neural Networks (ConvNets) [36]. The success of AlexNet [37] during the
ImageNet challenge [38] in 2012 has also proved this method to be an efficient way to classify images.
Training typically involves large training data sets, consisting of labelled example data. Since the
features learned by a pre-trained model are transferable to other image recognition domains [39,40],
transfer learning [41] is a popular approach for image classification with less training examples.
As described in DECAF [39], it is possible to use a pre-trained ConvNet as feature generator and apply
classical machine learning such as Support Vector Machine (SVM) or logistic regression to train a model
with good performance. Transfer learning is utilized, such as classification of satellite images [42],
vehicles detection based on RGB images or LiDAR data [43,44], visual floor count determination [45]
or visual localization [46]. Only recently, this approach was used for retrieving flooding relevant social
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media photos [27,28]. Most of the researches has been tested with only single methods such as SVM
for transfer learning and no comparison with other alternatives methods are given.

Retrieval of flood relevant texts from social media has a much longer history than the retrieval of
flood relevant photos. In many studies, in which social media is used as an information source
for flood mapping or flood event detection, keyword filtering is frequently applied to extract
the relevant information. Flood relevant keywords are filtered based on the social media texts.
For instance, “hoch” and “wasser” were filtered for flood mapping in Germany, 2013 [22]. “Flood” and
“Joaquin” were filtered for the South Carolina floods in 2015 [23]. For building the systems to
detect various types of disasters, keyword lists were carefully collected for different disasters,
different stages of disasters [47], and also for different languages [35]. The terms which cover the type
of disaster (e.g., “flood”), its impact (e.g., “damage”), the perceptible triggers (e.g., heavy rain) were
searched in [26]. Keyword lists are typically collected based on personal knowledge about the events.
Simple keyword filtering to detect flood relevant information leads to the retrieval of a large amount
of false positive examples.

Machine learning approaches have been applied to extract disaster related documents. An SVM
trained on linguistic and statistical features was applied to detect earthquake relevant messages [13].
Latent Dirchlet allocation (LDA) was used to identify messages belonging to the topics relevant
to flooding. With these messages, an SVM classifier was trained to make predictions about new
messages [5]. With the idea similar to sentiment analysis, classical NLP methods using tf-idf (term
frequency-inverse document frequency) [48] features were also utilized for extracting topic relevant
documents. Text classification was applied for the analyses of disaster related tweets [24]. In our
previous work, these methods were also used for retrieving rainfall and flooding relevant tweets [25].

With the development of deep learning methods for NLP in recent years, these methods are also
being used for extracting disaster relevant messages. For tasks involving sentiment analysis over
textual contents, ConvNets were utilized on the sentences [49], which were represented by word
vectors generated by Word2Vec [50]. A similar approach was also applied on manually annotated
social media texts in Chinese, which were collected from the Twitter-like social media platform Sina
Weibo to extract earthquake relevant messages [51]. Their model was trained based on a balanced
dataset with 2847 sentences containing the keyword ”earthquake”, where half of them were relevant
to real earthquake events and the others not. For training this dataset, compared with SVM (85.4% in
accuracy), ConvNets could achieve an accuracy of 91.6%, which indicates a significant improvement
on classification accuracy.

Therefore, in this paper, we systematically tested both text and image classification methods from
the literature, we used novel methods for automatic labelling and found optimal models which were
embedded in our in our application for pluvial flood detection.

4. Interpretation of Social Media Texts

For the interpretation of social media texts, we first pre-processed raw texts collected by
crowdsourcing and then labeled the texts automatically using historical rainfall records. Five classical
NLP methods and one deep learning NLP method using word embedding are applied to train the
text classifiers. After a systematic comparison, the model, which performs the best, is selected and
embedded into our framework for further analyses.

4.1. Pre-Processing and Training Preparation

Since social media posts contain lots of noise, therefore, a pre-processing step is needed. Besides
the raw text as the most relevant information, also the fields creation time, coordinates, source, media,
user’s screen name, language and text were used for the analyses. During the text pre-processing,
the punctuation marks, numbers and URL were removed from the raw text. Since some of the
emoticons are also related to our topic, the emoticons were not removed.
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In NLP, reducing stop-words and stemming are standard techniques as pre-processing steps.
Stopwords are the most common words in a language, such as article, pronouns or prepositions.
Stemming is the process, which reduces each word to the root form, such as from “flooding” to
“flood”. For different languages, different lists of stop-words and stemming algorithms have to be
applied. However, not all languages are supported by both stop-word lists and stemming algorithms.
Therefore, a stop-word list [52], which supported all of the seven languages mentioned above, was used.
Subsequently, different stemming algorithms from Natural Language Toolkit (NLTK) library [53] were
applied on the sentences in different languages.

Many Twitter bots automatically send messages, such as weather reports, weather forecast or
advertisements (examples are shown in Table 1). These messages are regarded as noise information.
Most of them normally have similar contents or similar text structure after stemming and removing
stop-words. These tweets are often sent repeatedly, which is also a way to automatically detect them:
if text messages of one user had similar contents or structures for more than three times, this user
was added to a black list, the tweets sent by these users were then filtered out from the input data
stream. With this approach, for a collection of geotagged tweets in 30 days (as presented in Section 2),
3.6 million geotagged tweets (from 473,004 users) could be reduced to 2.9 million (from 468,051 users).
This means that these 4953 blocked users sent 149.0 tweets on average during 30 days, and this behaved
obviously different from ordinary social media users. In the pre-processing steps, we did not normalize
the texts or group synonyms.

Table 1. Examples of tweets with similar structure of texts.

No. Text

1 Wind 13.4 mph NW. Barometer 1023.6 hPa, Rising slowly. Temperature 10.2 ◦C.
Rain today 0.0 mm. Humidity 99%

2 Wind 3 kts NW. Barometer 1025.5 hPa, Rising slowly. Temperature 8.8 ◦C.
Rain today 0.0 mm. Humidity 81%

3 Wind 14.4mph NW. Barometer 1034.1hPa, Rising slowly. Temperature 9.3 ◦C.
Rain today 0.0mm. Forecast Settled fine

4 Wind 2.2 mph NW. Barometer 1032.5 mb, Rising slowly. Temperature 10.9 ◦C.
Rain today 7.2 mm. Humidity 99%

Labeling training data is a typical problem for most of the supervised learning approaches, as large
amounts of training data are required. In previous research using machine learning, tweets were
manually annotated [13,24]. For instance, in [24] the crowdsourcing service Amazon Mechanical Turk
was used to employ annotators for labeling texts. At the end, they could collect 5747 annotated tweets
for training their classifiers. Thus, the number of training datasets is limited by the annotation time
and budget.

Some recent studies are focusing on training of deep neural network models with noisy labels.
The result shows that, the performance of these models is not much affected when small parts of the
dataset were not precisely labeled [54]. Aiming at an automatic labelling procedure, we identified that
historical weather data are suitable indicators for identifying whether a tweet is relevant to rainfall
events, as pluvial floods are directly caused by heavy rainfalls and fast storms. An important data
source is Weather Underground [55], a platform that offers Weather API [56] to query historical weather
records based on the date and location on city level. In order to automatically label tweets into positive
and negative examples, we first filtered them according to pluvial flood relevant keywords and only
from these subsets weather data were inquired. Thus, keyword filtering was used to search for potential
candidates, which could be subsequently used as a training dataset for the text classification tasks.

The whole procedure is shown in Figure 4. First, the collection of tweets was pre-processed.
For the following keyword filtering, a keyword list (as shown in Table 2) which contains the concepts
such as “flood”, “inundation”, “rain” and “storm” in all the seven languages was used. All posts which
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contained the keywords were then looked up in the historical weather records via the Weather API.
When the weather API reported a rainfall, this tweet was assigned with a positive label. If not, it was
labeled as negative. By that, all the potential candidates for text classifier training were automatically
labelled based on the weather records.

Twitter Stream

Pre-processing

Labelling with  
Weather Records

Pre-processing
Keyword 
Filtering

Text 
Classification

Text Classifier

Potential 
Candidates

Eyewitnesses 
based on texts

Negative 
Examples

Figure 4. Work flow for training the text classifiers.

Table 2. Keywords used for generating training dataset.

Language Keywords

English flood, inundation, deluge, rain, storm
French inondation, inonder, crue, pluie, orage
German hochwasser, flut, überschwem, überflut, regen, starkregen, regnen, sturm, unwetter, gewitter
Italian inondazione, inondare, allagamento, pioggia, diluvio, borrasca, tempestad
Spanish inundar, inundación, diluvio, aguacero, lluvia, tormenta
Portuguese inundar, inundação, dilúvio, chuva, chover, tempestade
Dutch overstroming, zondvloed, stortvloed, regen, storm

From 1 July 2016 to 28 October 2016, about 14.4 million of geotagged tweets were collected within
the study area. After filtering, 51,732 tweets (from 36,002 users) were identified as potential training
examples. According to Weather API, 36,469 (70.5%) of them were labeled as positive. In order to
coarsely verify the automatic labelling, we manually checked 100 randomly selected tweets which
were labeled as positive by the weather API: 94 of them are correctly labeled. For such labels with not
much noise, text classifiers can be trained.

Training on an imbalanced dataset may lead to over-prediction of the presence of the majority
class [57]. For further binary text classifications, a balanced training dataset is required. Therefore,
21,206 randomly selected tweets without any keywords were used as a supplement of the negative
training examples to balance the training data. In this way, a balanced dataset was prepared for training
the text classifiers. The final training dataset contains totally 72,938 tweets with 65,772 unique words.
They were sent by 50,701 users. The average number of words for each document after pre-processing
is 6.5.

4.2. Training of Text Classifiers

Following the preparation of a balanced training dataset, text classifiers were trained with five
frequently used classical NLP methods, namely naive Bayes [58], random forest [59], SVM with linear
kernel [60], SVM with RBF kernel [61] and logistic regression [62]. All these methods are trained based
on tf-idf features. As additional method, deep learning using ConvNets for sentence classification
was used.

4.2.1. Classical NLP Methods

For the classical NLP methods, the text documents were first transformed into a sparse tf-idf
(term frequency - inverse document frequency) [48] matrix, also called the 1-V matrix, where V is the
number of unique words in the whole corpus. Term frequency is the raw count of each term in the
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sentence. Inverse document frequency indicates the rareness of the words. This value diminishes
when the term occurs frequently. The tf-idf matrix can be calculated as follows:

tf-idft,d = tft,d × idft (1)

idft = log
Nd
dft

(2)

where t stands for term index in the whole corpus, d for document index, Nd for total number
of documents and dft for document frequency of each word. This matrix, was calculated using the
methods offered by scikit-learn library [63]. With the normal classification methods in machine learning,
the classifiers could be trained based on this tf-idf matrix. Naive Bayes was firstly applied, which is
the most basic method for text classification in NLP. It was used as a baseline to demonstrate the
performance of the other methods. Random forest, logistic regression, SVM with linear kernel and
SVM with RBF kernel are also methods frequently used NLP methods for text classification and the
corresponding classifiers were trained separately.

4.2.2. ConvNets for Sentence Classification

Deep learning approaches have achieved an outstanding performance in computer vision, such as
ConvNets for image classification [37]. With the development of word embedding techniques, such as
word2vec, ConvNets can also be used for sentence classification [49]. Instead of calculating the
tf-idf matrix as the training input, each word in the sentences is represented by a word vector using
word embedding. These word vectors are learned from the co-occurrence words in a large corpus,
for instance, with the word2vec model [50]. Word2vec is a shallow neural network with a single
hidden layer. The input is a sparse vector, so called one-hot (1-of-V) vector representing the input
word. The output are the probability of the input word to be found nearby the rest of words in
the dictionary. These probabilities are calculated using skip-gram. For each input word, skip-gram
randomly selects a nearby word to create word pairs and then summarizes the occurrence of the word
pairs into probability. The concept nearby is defined by a given window size.

After learning with a large corpus, the weights in the hidden layer are the corresponding vector
representation for each word. Consequently, the words sharing similar meaning are located close
to each other in the vector space. The word embeddings used in this paper were generated based
on 20 million unfiltered tweets collected within our study area of Western Europe from 1 July 2016
to 15 December 2016. The total number of vocabulary is 934,063 and the average number of words
of each tweets is 6.01. In this case, the python implementations of word2vec in Gensim library
(version 0.13.4.1) [64] was used to train this model, which has a default vector dimension set as 300.

ConvNets were then applied on the word embedded sentences with a structure adopted from [49]
containing one convolutional layer, one max-pooling layer and one output layer (as illustrated in
Figure 5). The output layer has two nodes, which are the topics “relevant” and “irrelevant”, respectively.
Randomly initialized filters were created with different filter size. After the convolution on the input
matrix, feature maps are generated. Then max-pooling is applied on each feature map and a feature
vector with the same size as the number of filters is generated. Subsequently, predictions are generated
by the soft-max function. The implementation of this ConvNets was based on the Tensorflow [65]
(version 1.0.1) framework.
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Figure 5. Illustration of ConvNets architecture used for social media text classification (adapted based
on Figure 1 in [66]).

4.3. Results and Evaluation

We randomly selected 10% of the dataset (as described in Section 4.1) as test set and used it
only for methods comparison. Since most of the classification methods need hyperparameter tuning,
we used grid search with 5-fold cross validation on the remaining 90% of dataset to find the optimal
hyperparameters for each method (as summarized in Table 3).

Table 3. Parameters used for training the text classifiers.

Method Parameters

Random Forest max_depth = 60, n_estimators = 300
Logistic Regression C = 1.0, penalty = ‘l2’
SVM (Linear Kernel) C = 1.0, gamma = ‘auto’
SVM (RBF Kernel) C = 100.0, gamma = 0.01
ConvNets learning_rate=0.001

After training the models with the optimal hyperparameters, the performance of all methods
are compared and evaluations were given based on the test set with the metrics such as the accuracy,
precision, recall and f1-score. F1-score, precision and recall are the metrics calculated based on one
single class, the flood and rainfall relevant class. The results are shown in Figure 6 and Table 4.
The ROC (Receiver Operating Characteristic) curves (as shown in Figure 7) for each method and area
under the curve (AUC) were also calculated and used as criteria for comparing the text classifiers.
All experiments in this paper were performed on a PC with Intel Core i7-4790 CPU, 16 GB RAM and
one NVIDIA GeForce Titan X GPU. The runtime for training the models is also summarized in Table 4.

As shown in Figures 6 and 7, six text classification methods were compared. The deep learning
method using word2vec word embedding and the ConvNet outperformed the other methods and
achieved an accuracy of 78.68%. The AUC for ROC of this method is also larger than the others.
Except for the naive Bayes, the rest of classical NLP methods using tf-idf matrix as input perform
relatively similar. Due to its performance, the trained model using ConvNets was embedded into
our application. For the runtime, ConvNets need obvious significantly more time for training.
Naive Bayes and logistic regression are the methods which could be trained with less time. Therefore,
for an operational use, only the prediction time is relevant, which is similar for all classifiers.
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Figure 6. Comparison of text classification methods on test set.
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Naive Bayes (ROC-AUC 0.771)
Random Forest (ROC-AUC 0.821)
Logistic Regression (ROC-AUC 0.835)
SVM (RBF Kernel) (ROC-AUC 0.827)
SVM (Linear kernel) (ROC-AUC 0.828)
ConvNets (ROC-AUC 0.846)

Figure 7. ROC curves of text classification methods.

Table 4. Evaluation of text classification methods.

Method Accuracy Precision Recall F1-Score Runtime (s)

Naive Bayes 0.7109 0.6929 0.7769 0.7325 0.02
Random Forest 0.7582 0.7797 0.7324 0.7553 182.1

Logistic Regression 0.7705 0.7793 0.7666 0.7729 0.53
SVM (RBF Kernel) 0.7712 0.7687 0.7881 0.7783 286.0

SVM (Linear Kernel) 0.7739 0.7732 0.7871 0.7801 207.2
ConvNets 0.7868 0.7598 0.8503 0.8025 1124.8

5. Interpretation of Social Media Photos

In this section, we first manually annotated and collected photos for training the classifiers.
Transfer learning was then applied to the image data. We systematically tested five classical
classification methods for transfer learning, with the aim to find a suitable model to be combined with
the real-time pluvial flood detection system.

5.1. Input Training Dataset

The dataset for training the image classifiers has three subsets, which have been collected and
labelled by one annotator. Each of them contains 7600 images. Subset 1 contains images which can be
frequently seen in social media. They should be irrelevant to flooding or rainfall events. Photos in social
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media have their own distribution for each topic, such as artworks, selfies or photos of the surroundings
(as shown in Figure 8a); they all have their own proportions in the whole data stream. In order to
preserve their distribution, we filtered the tweets with photos from 1 July 2016 to 28 October 2016.
The annotator was given randomly selected photos from these tweets, among them 7600 images which
are irrelevant to flooding or rainfall events were collected.

“Sky” by HatM is licensed 
under CC BY-NC-SA 2.0

“small mixed media portrait 
SOLD” by Constanza is 
licensed under CC BY 2.0

“16:9 postcard” by grobery
is licensed under CC BY-NC-
SA 2.0

“Felder, fields” by Klaus 
Lechten is licensed under CC 
BY-NC-SA 2.0

“Venice” by Pedro Szekely is 
licensed under CC BY-NC-SA 
2.0

“Rathaus” by Mundus 
Gregorius is licensed under 
CC BY-NC-SA 2.0

“Early morning - to the pool” 
by Dave Gunn is licensed 
under CC BY-NC 2.0

“Sea” by Kalong Huang is 
licensed under CC BY-NC-SA 
2.0

“flood street” by Anthony is 
licensed under CC BY-NC 2.0

“Morpeth Floods” by johndal 
is licensed under CC BY 2.0

“Morpeth Floods” by johndal 
is licensed under CC BY 2.0

“Untitled” by Ryan Dickey 
is licensed under CC BY 2.0

(a) (b) (c)

Figure 8. Examples of training dataset: rainfall and flooding irrelevant images (a), relevant images (b)
and images of water surface (c).

Since the proportion of flooding and rainfall relevant photos is very small with respect to the whole
data stream, it is impractical and time consuming to generate many positive examples by filtering our
collected Twitter database. As photos in social media are not limited to device or time, images relevant
to flood and rainfall events were manually collected from the Internet using a search engine and search
tools provided by Twitter and Instagram. As we concentrated on extracting evidences for flood and
rainfall events, Subset 2 included scenarios such as people or vehicles standing beside or in the water,
raindrops on the windows or on objects as well as wet or flooded streets (as shown in Figure 8b).

Although in a first test the transfer learned model using these two data sets reached a good
performance on the test dataset, it was not capable to make correct predictions when the images
contain scenarios including lakes or rivers. Therefore, a second classifier was needed, which makes the
classifiers robust against such scenarios. In the end, only the images predicted by both classifiers as
positive were regarded as rain and flood relevant images. Therefore, Subset 3 was collected in the same
way as the second subset, which contains images of water surfaces, such as rivers, lakes, seaside or
swimming pools (as shown in Figure 8c). In this dataset, the flooding and rainfall relevant photos were
excluded. It is worth mentioning that the photos in the first subset also contain some photos of the
water surfaces, however, the amount of such photos is small and only with respect to the distribution
of normal social media images in the data stream.

5.2. Training of Image Classifiers

To interpret whether a user generated photo is relevant to rain and floods or not, we can build
a binary image classifier. For training such a model, large amounts of training examples are required,
which should contain both positive and negative annotated images. An usual approach to cope with the
problem of labelling large amount of training examples is to use transfer learning [41]. The pre-trained
ConvNets can serve as a feature generator by removing the output layer. The rest of the weights in the
pre-trained model stay unchanged, and the output for each image is then a fixed-size feature vector.
As described in the DECAF [39] framework, features could be classified with the classical machine
learning such as SVM or logistic regression.

The pre-trained ConvNets utilized in this paper is the GoogLeNet (Inception-V3 model) [67],
which was trained based on the ImageNet 2012 Challenge dataset [38]. This dataset contains
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1.2 million images categorized into 1000 classes. This pre-trained model is available at the Tensorflow
repository [68]. From the description of this model, it could achieve a top-5 error with 4.2% on
the test dataset [67]. After removing the output layer, the output for each image is a feature vector
with 2048 values. According to the principle of transfer learning, classification was conducted by
applying classical machine learning approaches. Since training on an imbalanced dataset may lead to
over-prediction of the presence of the majority class [57], the binary classification here was applied on
balanced training dataset.

Logistic regression was applied since it is a method frequently used for binary classification.
The ensemble methods, such as random forest [59] and gradient boosted trees [69], were also tested.
For the three methods above, the implementations in scikit-learn library [63] (version 0.18.1) were
used. Furthermore, the xgboost [70] (version 0.6) implementation of the gradient boosted tree was
used. Multilayer perceptron with one hidden layer using back propagation was also tested and the
implementation was based on the Tensorflow [65] framework.

5.3. Results and Evaluations

Similar to training the text classifiers, 90% of the dataset was used for training. Hyperparameters
for each method were tuned by 5-fold cross-validated grid-search. The evaluation was given based
on the rest 10%, namely the test set. The hyperparameters used for training the final model for each
method are summarized in Table 5.

Table 5. Parameters used for training the image classifiers.

Method Subset 1 and Subset 2 Subset 2 and Subset 3

Logistic Regression
C = 1000.0
penalty = ‘l1’

C = 10000.0
penalty = ‘l2’

Random Forest
max_depth = 60
n_estimators = 300

max_depth = 30
n_estimators = 300

Multilayer Perceptron
num_hidden_units = 8
learning_rate = 0.005

num_hidden_units = 8
learning_rate = 0.01

Gradient Boosted Trees
n_estimators = 300
learning_rate = 0.05

n_estimators = 150
learning_rate = 0.1

xgboost
eta = 0.32, gamma = 0.01
max_depth = 15

eta = 0.32, gamma = 0.05
max_depth = 15

The classification methods used for transfer learning were tested firstly on Subset 1 and Subset 2
(as introduced in Section 5.1) and the evaluations are given with accuracy, precision, recall and
f1-score on the test set. The ROC curves for each method and AUC were also used as a criteria for
evaluation. With the same computer as described in Section 4.3, the training time for each method was
also recorded.

As shown in Table 6 and Figure 9, the classifier which was trained based on transfer learning
achieved the best performance using the xgboost implementation of gradient boosted trees. Both the
accuracy and f1-score reached 92.8% and the AUC of ROC achieved the maximum compared with
other methods (as shown in Figure 10). It was followed by the random forest and gradient boosted
trees; even the worst case, a simple logistic regression, could also achieve an accuracy of about 88%,
which shows the transfer learning approach we applied can really distinguish raining or flooding
scenarios in normal daily social media images. When comparing the runtime of each classification
method, the gradient boosted trees from scikit-learn is much more time consuming than xgboost;
and multilayer perception is the method with the least training time.

Even though high accuracy and high f1-score were achieved on the test dataset, the classifier was
still found to be not optimal classifying the images containing water surfaces. Therefore, after the
training of the first classifier, a second classifier was trained only to distinguish the topic relevant
images from the scenarios containing water surfaces. The same transfer learning approach was utilized
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but only with different input data, which contained 7600 images relevant to raining and flooding and
another 7600 images containing only images of lakes, rivers or the seaside, as the second and third
subsets of dataset shown in Figure 8b,c.

Table 6. Accuracy and f1-score of image classification methods.

Method Accuracy Precision Recall F1-score Runtime (s)

Logistic Regression 0.8886 0.9004 0.8752 0.8876 138.8
Multilayer Perceptron 0.8907 0.9745 0.8036 0.8809 22.9

Random Forest 0.9133 0.9497 0.8738 0.9102 117.9
Gradient Boosted Trees 0.9252 0.9342 0.9158 0.9249 669.8

xgboost 0.9295 0.9436 0.9144 0.9288 121.2

Logistic Regression Multilayer Perceptron Random Forest Gradient Boosted Trees xgboost
0.7

0.8

0.9

Qu
al

ity

Accuracy
F1-score

Figure 9. Comparison of image classification methods on test set.
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Figure 10. ROC curves of image classification methods.

As shown is Table 7 and Figure 11, similar performance as the first classifier was observed,
however, with lower values. Xgboost outperforms the other methods and has a highest accuracy
and f1-score. It has also achieved the largest AUC for ROC (as shown in Figure 12). From the result,
accuracy of 87.38%, we were convinced that to distinguish the raining or flooding images from
images of lake or river is more complicated than from normal social media daily images. Therefore,
together with a pre-trained model used as a feature generator, the two trained xgboost models were
embedded in our application. Only the images predicted by both classifiers as positive were predicted
as rain and flood relevant images.



ISPRS Int. J. Geo-Inf. 2018, 7, 39 14 of 25

Table 7. Evaluation of image classification methods.

Method Accuracy Precision Recall F1-score Runtime (s)

Logistic Regression 0.8407 0.8453 0.8495 0.8474 221.3
Random Forest 0.8555 0.8763 0.8411 0.8584 158.1

Multilayer Perceptron 0.8625 0.8915 0.8378 0.8638 16.1
Gradient Boosted Trees 0.8695 0.8836 0.8629 0.8731 425.3

xgboost 0.8738 0.8872 0.8679 0.8774 134.2

Logistic Regression Random Forest Multilayer Perceptron Gradient Boosted Trees xgboost
0.7

0.8

0.9

Qu
al

ity

Accuracy
F1-score

Figure 11. Comparison of image classification methods on test set.

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

Logistic Regression (ROC-AUC 0.901)
Random Forest (ROC-AUC 0.936)
Multilayer Perceptron (ROC-AUC 0.936)
Gradient Boosted Trees (ROC-AUC 0.947)
xgboost (ROC-AUC 0.947)

Figure 12. ROC curves of image classification methods.

We conducted a visual inspection of the wrongly classified photos (false positives). They can be
generally grouped into three categories. Firstly, many photos with water surfaces in relative dark color
were wrongly classified. Secondly, the images containing reflecting area (e.g., windows), which was
similar to water reflection were sometimes not well classified. Lastly, photos containing fountains or
springs, which have contents like water drops, were also hard to be classified.

6. Detection of Heavy Rainfall and Flooding Events

In this section, only the geotagged tweets containing both texts and images were processed to
detect heavy rainfall and flooding events. Only the tweets with positive predictions from both filters
were regarded as high quality eyewitnesses for such events. Subsequently, events were detected with
spatiotemporal clustering and a hot spot map was generated using Getis-Ord Gi* [71] with respect to
the city administrative regions.

For this research, some assumptions are needed. An elementary prerequisite for our approach is
the availability of coordinates of the social media posts. They are given by social media platforms and
are of heterogeneous quality because of user privacy strategies or device differences. Since improving
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user location precision for VGI is not the focus of this research, the posted coordinates are regarded as
the location that is related to the contents of the corresponding post. This is also one of the limitations
of this work. The contents of some tweets may not be always associated with the posted coordinates.
Therefore, spatiotemporal clustering is used for event detection to eliminate this effect. However,
for regions strongly connected to each other, improvements are needed for the future works.

Moreover, the main focus of this paper lies on pluvial flood events, thus during the training of
classifiers, texts and images containing rainfall relevant information were taken into consideration.
However, this does not mean that our models are also designed for distinguishing the pluvial flood
events from fluvial or coastal flooding.

6.1. Event Detection with Spatiotemporal Clustering

Spatiotemporal clustering can be used to detect events based on spatiotemporal patterns among
data points. ST-DBSCAN [72] is an extension of the density-based clustering method DBSCAN [73]
into spatiotemporal space. Three parameters are needed for this method: the maximum spatial distance
ε1, the maximum time difference ε2 and the minimum number of points to form a cluster MinPts.
Since users may send several posts at the same place and same time with very similar contents,
posts from one single user may already be enough to create the spatiotemporal clusters without
confirming from others. Therefore, instead of using the minimum number of tweets, MinPts is
redefined in this case as the minimum number of different Twitter users.

For cities of different size, the spatial distribution of Twitter users varies significantly. Since the
estimation of such parameters is not the focus of this study, the parameters for spatiotemporal clustering
were set to be changeable by the end users. They can adjust them to find the optimal parameter
combinations for their own city. According to the literature, the cell size of intense rain is generally
less than 10 km in the UK [74] and rain with duration of 3 h contributes the most to total summer
precipitation [75]. With this guidance, different combinations were checked and visually compared.
At the end, an optimal setting used for the results in London (as shown in Figure 13) is ε1 = 8 km,
ε2 = 1.5 h and MinPts = 3 users.

Figure 13. Spatiotemporal cluster detected by ST-DBSCAN (pluvial flood in London on 26 June 2016,
individual tweet are represented as red marker, green markers are the aggregated tweets only
for visualization).
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6.2. Polygon Based Hot Spot Detection with Getis-Ord Gi*

Getis-Ord Gi* [71] is one of the frequently used geostatistics methods for hot spot detection.
This method also takes the local neighbourhood into account. In this case, we used administrative
polygon data for the cities to represent the local neighbouring relations. This method was applied
to find the statistical hot spots for the extracted rainfall and flood relevant tweets. The principle of
Getis-Ord Gi* is to compare local averages to global averages. The results after applying this method
are the z-scores, which represent the statistical significance. They indicate the particular value for
each polygon relative to the global average. Z-scores are frequently used to determine the confidence
threshold. A z-score greater than 1.65 represents for a 90% significance, greater than 1.96 for 95%,
greater than 2.58 for 99% and greater than 3.29 for 99.9% [76].

The number of tweets in each part of the city is different because of the difference in social media
users’ density. A simple hot spot detection directly based on the number of topic-relevant tweets
may frequently lead to the appearance of hot spots at the city center or somewhere more people are
living. To avoid this situation, we aggregated the total number of tweets in 90 days at the same city
and calculated an average number of daily collected tweets for each polygon. An example in Paris,
France was generated and shown in Figure 14. The polygons represent the 80 administrative districts
provided by Open Data Paris [77]. It is obvious to find that the areas including places of interests or
shopping zones in Paris are highlighted. This statistic was used as a basis for inspecting the places
where normally few tweets are sent, but suddenly a large number of tweets appears at that area.
This may indicate a more reasonable hot spot region.

Figure 14. Map of daily average number of tweets based on aggregation of 90 days’ tweets.

The coordinates of many tweets are only in city level, for instance, user may provide the single
point coordinate representing ‘Paris, France’ when they sent a social media post. Such imprecise
coordinates were also recorded. Thus, these Tweets representing the cities were filtered out before
the hot spot detection. After that, the ratios of the number of filtered Tweets and the daily average
number of Tweet were calculated for each polygon. Based on the tweets collected in Paris on 3 June
2016, a map of ratios (as shown in Figure 15) was generated. This ratio map is then used as the input
for Getis-Ord Gi* hot spot detection. From the result, a map of the z-scores (as shown in Figure 16),
a situation in Paris could be identified, showing that the regions along the river bank of the Seine were
highlighted during this fluvial (river) flood event. Comparing with Figure 15, it could achieve a better
neighbouring consistency.

For the highlighted region as shown in Figure 16, a z score of 3.1 indicates an over 99% confidence,
that a cluster of rainfall and flooding relevant tweets existed in that highlighted area. For the point
dataset with less than 30 points, the hot spots detection with Getis-Ord Gi* are considered to be not
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reliable [76]. Therefore, hot spot detection was only applied, when more than 30 event relevant tweets
were extracted by the text and image filters.

Figure 15. Ratio map on 3 June 2016 in Paris.

Figure 16. Hot spots detected by Getis-Ord Gi* on 3 June 2016 in Paris.

7. Visualization of the Pluvial Flood Relevant Information

A further test of our framework was applied during the pluvial flood in Berlin, Germany on
June 29 2017. A heavy rainfall stroke Berlin and led to severe inundation in the city and failure of
the drainage systems [6]. Our application could generate for each day a report with eyewitnesses
of the rainfall or flooding events. The eyewitnesses are then visualized as clustered point markers.
After clicking the marker clusters, the detailed information of each tweet can be accessed by opening
the links in pop-up window at the user given locations. By this approach, overlaps of data points
are avoided. Spatiotemporal clusters are visualized as a light blue circle and the radius is set as the
bigger eigenvalue calculated based on the data points belong to the same spatiotemporal cluster.
Hot spots are also detected based on the prediction from both text and image classifiers and visualized
as a choropleth map (as shown in Figure 17). The polygons represent the 138 regions defined by
Life-World Oriented Spaces (LOR) [78], which is a partition of the city of Berlin frequently used for
statistic and demography. It is also available under Berlin Open Data [79].
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Figure 17. Screen-shots of the web map application (pluvial flood in Berlin on 29 June 2017).

8. Analyses and Comparison with External Data Source

In the previous sections, user-generated texts and photos were used to identify flood and rainfall
relevant social media posts. As we aim to evaluate whether the extracted tweets are relevant for the
real world events, additional data can be used for a correlation analysis. Since the pluvial floods are
normally associated with heavy rainfall events, rainfall intensity can be additional information which
is latently related to the occurrence number of flooding relevant tweets. In this case, we accessed the
precipitation data recorded by Weather Underground [55]. As classifiers were trained separately for
images and texts, three strategies can be compared, namely image-based filtering, text-based filtering
and filtering based on both texts and images. Two case studies in Paris and London are given.

For the first case study, correlation analysis is conducted based on the tweets filtered during
45 days from 17 May 2016 to 30 June 2016 in Paris. In this time range, a fluvial flood event has
happened. 111,500 geotagged tweets containing both texts and images were collected. After filtering
by the text classifier, 2093 tweets are classified as flood relevant. 6431 tweets are classified as flood
relevant based on user generated photos. With the confirmation from both text and image classifiers,
690 flooding relevant tweets were extracted. Subsequently, we manually checked these extracted
tweets, 616 of them are correctly classified, thus a precision about 89.3% was achieved.

Since each day may have a different numbers of tweets in total, ratios between the topic relevant
tweets and total number of tweets on the same day are calculated for the three strategies. As shown in
Figure 18, proportions of tweets filtered by the three strategies are presented and the red solid line
indicates the precipitation data in millimeter. Correlations between the results from the three strategies
and precipitation were calculated and summarized in Table 8. From the results, only a relative small
correlation exists between the text-based filtering and the precipitation records, and the other two
strategies are almost uncorrelated with the precipitation data. A peak can be identified from the VGI
data on 3 June 2016, which is exactly the fluvial flood event on 3 June 2016 [80]. It should be noted,
that there was no rain on that day, as indicated by the very low precipitation value. The peak identified
by the VGI filter therefore identifies the peak in the fluvial flood and not in the rainfall.
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Figure 18. Comparison of the retrieval strategies (Paris, 17 May–30 June 2016).

Table 8. Correlations between the proportion of topic related tweets and rainfall intensity.

Prediction Correlation p-Value

Prediction based on images 0.0108 0.9439
Prediction based on texts 0.4927 0.0006

Prediction based on both images and texts 0.1063 0.4870

For the second case study, the correlation analysis is conducted based on the tweets filtered
from 17 June 2016 to 30 June 2016 in London. As shown in Figure 19 and Table 9, a much stronger
correlation can be identified compared to the previous case. On 23 June 2016, a pluvial flood happened
in London [81] and the peak on that day can also be identified. In this case, image-based filtering
has higher correlation than the others, which shows that the filtering by the image classifier is more
sensitive to the real rainfall events.
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Figure 19. Comparison of the retrieval strategies (London, 17–30 June 2016).

Table 9. Correlations between the proportion of topic related tweets and rainfall intensity (London,
17–30 June 2016).

Prediction Correlation p-Value

Prediction based on images 0.8360 0.0002
Prediction based on texts 0.7685 0.0013

Prediction based on both images and texts 0.7208 0.0036

In summary, from the two case studies above, we can identify a strong correlation for a time
range with pluvial flood, however, when a fluvial flood happens, the correlation becomes weaker.
The ground truth used for correlation cannot represent such flooding events properly. Instead of
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using precipitation, river gauge can be a potential dataset for calculating such correlation. Therefore,
the approach presented in this paper is able to detect pluvial flood events, but not able to distinguish
pluvial flood from fluvial and coastal floods.

Furthermore, we also noticed that, pluvial flood events are different from fluvial flood in the sense
of spatial distribution of the relevant tweets. As a matter of fact, to be seen clearly in Figure 20 right,
a fluvial flood event occurs close to a river, therefore most of the relevant information are accumulated
near the river. However, for a pluvial flood event (as shown in Figure 20, left), the extracted tweets
distribute much evenly in space. In this way, there is also great potential to distinguish different types
of flooding events from the spatial patterns of the extracted social media posts.

Figure 20. Comparison of pluvial flood event (Left) London, 23 June 2016) and fluvial flood event
(Right) Paris, 3 June 2016).

9. Conclusions

In summary, this article has described a framework to collect, process and analyze pluvial
flood relevant information from the social media platform Twitter. The extraction of relevant
information takes not only the textual information into consideration, but also user generated photos
as supplements to find high quality eyewitnesses for such events. These individual cues for events are
subsequently aggregated using spatiotemporal clustering to extract significant clusters in space and
time and ignore the outliers. Finally, a document in the form of a map was generated. It visualizes
the high quality topic relevant tweets, the spatiotemporal clusters and hot spots of the city for each
day. In this paper, we performed the evaluation on the fixed text and image training dataset and
filtered the real Twitter stream data. Different filtering strategies are compared with respect to the
precipitation data. The case study in London provide evidence that, the extracted number of flood
and rainfall relevant tweets are correlated with the precipitation record. The work demonstrated in
this paper will be part of a real-time pluvial flood prediction system and serve the city Hanover for
emergency response in the future [82]. The prediction will be based on the hydrological simulation.
The VGI extracted from social media will be used for real-time event detection and validation of the
hydrological models after the pluvial flood events.

Crowdsourcing has a huge potential for many relevant applications. At the same time, however,
there are also deficiencies, which should be tackled in future work. A first issue is the inherent
uncertainty of the data and also the fact that false information may be uploaded, intentionally or
unintentionally. Thus, better methods for detecting fake information are needed, which may improve
the information quality. A second issue relates to the location information. Since more and more
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social media platforms allow users to send only rough locations in order to protect their privacy,
further studies are desirable to improve the localization precision, e.g., based on their daily routes or
social network connections.

In this approach, we used a very simple way to combine the results of text and image classification.
In the future, we would like to develop a combined strategy which can also make reasonable predictions
for the tweets that only have texts or photos, e.g., using a probabilistic approach. Since the training
of the classifiers is currently based on a prior given training dataset, an online learning approach
which can take the recently collected labelled tweets into consideration is also desirable. For the
current text classifier, the model was trained based on a dataset with the mix of documents in seven
languages. In the next step, we will train languages specific classifiers to avoid a biased distribution of
different languages in the dataset. As the training examples were automatically labelled by weather
data, additional annotations are also needed to investigate the effect of label noise. Using neural
networks for NLP is currently an active area of research. Many recently proposed approaches are
using architectures related to Recurrent Neural Network [83]. We should also test these methods in
the future. Moreover, parallel processing architectures, such as Spark Streaming [84], can be applied to
make the processing procedure more efficient.

Acknowledgments: The authors would like to acknowledge the support from BMBF funded research project
“EVUS — Real-Time Prediction of Pluvial Floods and Induced Water Contamination in Urban Areas” (BMBF,
03G0846A). We also gratefully acknowledge the support of NVIDIA Corporation with the donation of a GeForce
Titan X GPU used for this research. The publication of this article was funded by the Open Access Fund of the
Leibniz Universität Hannover.

Author Contributions: Monika Sester and Yu Feng proposed the original idea of this paper; Yu Feng designed
and performed the experiments; Yu Feng wrote the paper; Both authors discussed the results and revised
the manuscript.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

The following abbreviations are used in this manuscript:

AUC Area Under the Curve
ConvNets Convolutional Neural Networks
LDA Latent Dirichlet allocation
NLP Natural Language Processing
NLTK Natural Language Toolkit
RBF Radial Basis Function
ROC Receiver Operating Characteristic
SVM Support Vector Machine
tf-idf Term Frequency - Inverse Document Frequency
VGI Volunteered Geographic Information
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