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Abstract: How can training performance data (e.g., running or walking routes) be collected,
measured, and published in a mobile program while preserving user privacy? This question is
becoming important in the context of the growing use of reward-based location-based service
(LBS) applications, which aim to promote employee training activities and to share such data with
insurance companies in order to reduce the healthcare insurance costs of an organization. One of
the main concerns of such applications is the privacy of user trajectories, because the applications
normally collect user locations over time with identities. The leak of the identified trajectories often
results in personal privacy breaches. For instance, a trajectory would expose user interest in places
and behaviors in time by inference and linking attacks. This information can be used for spam
advertisements or individual-based assaults. To the best of our knowledge, no existing studies can be
directly applied to solve the problem while keeping data utility. In this paper, we identify the personal
privacy problem in a reward-based LBS application and propose privacy architecture with a bounded
perturbation technique to protect user’s trajectory from the privacy breaches. Bounded perturbation
uses global location set (GLS) to anonymize the trajectory data. In addition, the bounded perturbation
will not generate any visiting points that are not possible to visit in real time. The experimental
results on real-world datasets demonstrate that the proposed bounded perturbation can effectively
anonymize location information while preserving data utility compared to the existing methods.

Keywords: privacy architecture; identified trajectory; anonymization; data utility; location-based service

1. Introduction

We are witnessing a proliferation of geo-positioning capabilities. Smartphones, navigation devices,
some tablets, and other mobile devices are equipped with Global Positioning System (GPS) receivers.
Other available positioning technologies exploit the communication infrastructures used by mobile
devices, such as Wi-Fi, 3G, and 2G. As a result of this development, user locations are used in a
wide range of location-based service (LBS) applications such as health and wellness programs where
walking or running trajectories are measured for training purposes. Recently, an increasing number of
companies are rewarding employees based on their training data. Such LBS applications are called
reward-based LBS applications. Notably, research shows that a healthy and fit employee is more
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productive and generates lower expenditure for healthcare costs [1]. Moreover, a company may save
$300, 000 on healthcare costs by providing data to the insurance company (www.businessinsider.
com/company-saved-money-with-fitbits-2014-7). Therefore, reward-based LBS applications are of
importance and becoming popular in real world situations due to the “healthy” functionalities they
offer, including rewarding and data-sharing. Users often use smart devices together with fitness
LBS applications. These smart devices continuously collect a variety of measurements concerning
physiological features such as acceleration, respiration, and electrocardiography (ECG) records [2,3],
including smartphones and wearable devices [4]. Moreover, they often have modules of GPS, Wi-Fi,
accelerometer, and different functional sensors that can keep track of user activities in real-time. With
this data, user behaviors including smoking, personal stress, and moving patterns can be learned
and reported by the applications [5,6]. By accumulating data from different sources and applying
sophisticated machine learning algorithms, LBS healthcare systems have been attracting attention [3,7].
Reward-based LBS applications constitute such systems for business use.

The data collected from reward-based LBS applications are of interest to both employers and
insurance companies with strong economic motivations. Employers store and analyse the data to
provide rewards and motivate employees for proper training; insurance companies purchase the data
from employers for product design. However, the data may pose a serious issue of personal privacy
breach because identified trajectories and other confidential information are easy to restore [8,9].
The USA Federal Trade Commission has shown that aspects of the data privacy of popular fitness
apps are easily breached including user names, emails, search histories, dietary habits, and activity
routes (i.e., trajectories) (www.smh.com.au/digital-life/digital-life-news/data-collection-wearable-
fitness-device-information-tracking-your-life-20150416-1mmzbq.html).

The data logs generated by a reward-based LBS application have trajectories with exact locations
and the corresponding user identities, which can be used for spam advertisements, individual-based
assaults, and linking attacks [8,10,11]. The breached user trajectories could be used to identify a user
and her points of interest (PoIs) in the other publicly available datasets. For instance, bike sharing
datasets are published publicly by removing user identity [12]. Reward-based LBS application data
might be used to identify the particular user by linking attacks in the bike sharing datasets. The breach
of identified trajectories thus brings serious security and privacy issues for implementing reward-based
LBS applications. However, traditional data privacy mechanisms [13–15] cannot be used for this
study, as they focus on preventing de-anonymization of identity data [16,17]. The privacy of the
reward-based LBS applications not only indicates user identity, but also the corresponding trajectories.
Therefore, it requires a client-server privacy setting to anonymize the user trajectory. Studies show
that the leak of trajectories may reveal the corresponding user identities [18]. This study proposes a
privacy setting that considers a user’s privacy requirements, the adversary’s background knowledge,
and the anonymized data utility. Data utility [8,19] refers to how effectively the anonymized dataset
acts compared to the original trajectory data. For instance, it can be used for billboard advertisements
or traffic analysis. The privacy architecture thus outputs privacy-preserved data without changing
the length and duration of trajectories for the corresponding user, which can be utilized to obtain
the points of interest and crowded spots for a particular area. However, physical activity logs with
trajectories pose challenges for the data anonymizer to protect personal privacy [8].

In this study, a client-server privacy architecture is introduced that protects identified trajectories
with higher data utility. The privacy architecture follows privacy design principles [20] to anonymize
trajectories at the user end with a fixed global location. We propose a bounded perturbation method
for anonymizing identified trajectories. Note that perturbation methods modify spatial coordinates by
adding random noises [15,21]. However, these methods may have problems in preserving data utility,
as the performance routes would be significantly changed. The proposed method can protect the data
privacy while keeping the data utility by global location set. The generated trajectory is able to avoid
user privacy breach and achieve approximately equal performance in terms of the original dataset.

www.businessinsider.com/company-saved-money-with-fitbits-2014-7
www.businessinsider.com/company-saved-money-with-fitbits-2014-7
www.smh.com.au/digital-life/digital-life-news/data-collection-wearable-fitness-device-information-tracking-your-life-20150416-1mmzbq.html
www.smh.com.au/digital-life/digital-life-news/data-collection-wearable-fitness-device-information-tracking-your-life-20150416-1mmzbq.html
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The remainder of this paper is structured as follows. The studies on the privacy and
anonymization of spatial data are reviewed in Section 2. In Section 3, we present the details of
the proposed privacy architecture. The experimental results are discussed in Section 4, and the paper
is concluded in Section 5.

2. Background and Related Work

Reward-based LBS applications leveraging identified spatial data are becoming popular.
Numerous privacy breaches have been proposed to illustrate how to breach the user privacy to
obtain trajectory data [18,22–24]. In this section, we briefly review the inference and linking attacks,
anonymization techniques, adversary, and background knowledge of trajectory data analysis.

2.1. Inference and Linking Attacks

An inference attack takes the input of LBS application data along with external information to gain
underlying knowledge about users that breaches their individual privacy. This knowledge could be
workplaces, home addresses, social networks, places of interest, mobility patterns, physical conditions,
and political views. For instance, recent studies [18,25,26] show that the movement patterns can be
predicted from visited places. In the study by Song et al. [26], the authors analysed 50,000 users’
anonymized trajectories obtained from a mobile phone company, and the results show that 93% of the
data could be used for mobility prediction.

Based on movement patterns, there are some mobility models such as semantic trajectories that can
be used to link places with semantic information [18]. A user’s mobility behavior can be easily obtained
from the user’s frequently visited routes [27]. An adversary might use the semantic information and
frequent routes to derive a clear understanding of user mobility behaviors. For example, a user leaves
home (PoI1) bringing their child to school (PoI2) before going to work (PoI3) on weekdays, which is
more in-depth knowledge than simply knowing the movement pattern PoI1 => PoI2 => PoI3.
A social relation shows that two users are in contact with a non-negligible amount of time and they
share some social links, which may lead to the inference attack on the trajectory dataset.

In reward-based LBS applications, we know that the location data has been submitted to the
organization with the user identity. From the inference attack, an adversary could gain knowledge
about mobility frequency for a user’s particular route. Therefore, inference attacks help an adversary
to link the user with the publicly available data sources (i.e., bike sharing transaction records [12]) to
identify the user’s corresponding sensitive information, which is called a linking attack [11].

The related work shows that trajectories are of importance to user privacy. In this paper, we are
focusing on hiding user visiting trajectories which are generated by reward-based LBS applications in
order to avoid inference and linking attacks.

2.2. Anonymization Techniques

In relational databases, although identifiers are removed, a set of quasi-identifiers can re-identify
a person in a published table [28]. To protect the re-identification of identity, k-anonymity [16]
and l-diversity [17], among other methods, have been proposed to publish relational data with
privacy preservation. Both k-anonymity and l-diversity use perturbation, suppression, and
generalization to anonymize data. In these methods, the authors focus on de-anonymization attack
protection. The privacy metrics and methods work well with relational data. However, the identified
trajectories pose challenges to the methods, especially considering the preservation of data utility [2].
Similarly, in the studies of References [13–15,19,29–31], data privacy is ensured while user trajectories
are published, so they cannot be used in a straightforward way in this work.

Spatial and temporal cloaking [30] is an extension of the k-anonymity for spatio-temporal data.
The primary idea is to guarantee that at each time-stamp a user is located in a location that is shared
by at least k-1 other users. A conceivable approach to achieve the property of spatial and temporal
clocking is to split the space into areas of different sizes until further splitting is necessary in order
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to violate k-anonymity. Swapping [31] refers to exchanging the trajectories of a period between
users. For example, by swapping trajectories of Alice and Bob for today, their behaviors become
unrecognizable and predictable. Both methods are of a relational nature, and for the studies, the data
privacy is ensured while user trajectories are published. Thus, they cannot be used to solve this
problem in a straightforward way.

An anonymization algorithm A gets an individual LBS application daily trajectory L as
input, introduces ambiguity by adding or removing some information from L, and generates
the output L′, an anonymized version of the original dataset L. The LBS application data for
the proposed problem does not follow the relational nature. Therefore, the trajectory data
needs to be anonymized with anonymization techniques such as perturbation, generalization,
and suppression, and it does not satisfy any privacy model (namely k-anonymity). After
anonymization, the trajectory data can ensure that the contributed user in the LBS application dataset
will be indistinguishable. Considering individual trajectory data, we discuss pseudonymization,
generalization, suppression, and perturbation anonymization techniques.

Pseudonymization [29] substitutes identifiers of mobility traces by creating an arbitrary
pseudonym or combining unknown values. Pseudonymization is often insufficient for privacy
protection because the trajectory data can identify the person. To limit the disclosure of a user
trajectory, we can apply generalization [32], suppression [16], and perturbation [15,21,33] techniques.

Generalization is a process that modifies a value to a more generalized one [32]. If the value
is numeric, this value may be changed to a range of values. For example, value 52 can be replaced
by range 51–55. If the value is a categorical value, it may be transferred to another categorical
value denoting a widespread concept of the original categorical value. For example, the country
Japan can be changed to region Asia and the country Canada can be changed to North America.
We can incorporate the generalization idea to anonymize the location data, but it will reduce the data
utility [11]. Suppression is a process that changes a particular value in an attribute to a suppressed
value, denoted by *, and it also reduces the data utility.

Conversely, perturbation modifies the location coordinates by adding some random noise.
For example, random noise can be generated by a Gaussian or uniform distribution. In perturbation,
if the surrounding area is not taken into consideration, the perturbed coordinates might have no
physical sense (e.g., in a middle of a lake or on a cliff), and this reduces the data utility. In the following
Table 1, we summarize the anonymization techniques which can be used to anonymize personal
trajectory data.

Table 1. Summary of the anonymization techniques.

Anonymization Methodology Privacy Breach Data Utility

Pseudonymization [29] Substitutes the identity of the individual
with arbitrary values. High High

Generalization [32] Generalizes the trajectory data. Medium Low

Suppression [16] Suppresses the trajectory data by a
suppressed value, namely (*). Low Low

Perturbation [15,21,33]
Appends random noise to the trajectory
data, and does not consider the
surroundings.

Low Medium

* denotes the suppressed value.

In this paper, we study the protection of identified trajectories from reward-based LBS applications.
As this requires the preservation of data utility, generalization and suppression are not applicable.
However, other methods based on pseudonymization have a higher privacy breach, and perturbation
does not provide higher data utility. We thus propose a bounded perturbation for this work, which is a
utility-preserving privacy technique for identified trajectories of reward-based LBS applications.
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2.3. Adversary and Background Knowledge

The characterization of an adversary is essentially done by specifying the actions he intends to
perform, the goal of his attack, and the way he can interact with the system. The adversary is an
attacker who aims to retrieve identified trajectories to discover user points of interest and frequent
routes which might breach the privacy of a user. In reward-based LBS applications, the data analyzer
might have the potential to become an adversary, and would use his data access authorization to
breach user points of interest and frequent routes.

Background knowledge can be described as an adversary’s experience which has been obtained
from life experience or discovered formally from prior rules coordinates in the data analysis. However,
for LBS applications, the user’s trajectory is be stored in the organization. We thus assume that
the adversary’s background knowledge is the collected trajectory data generated by the LBS users.
This background knowledge helps the adversary to determine an individual’s points of interest and
frequent routes, which may lead to inference and linking attacks.

3. A Client-Server-Based Privacy Methodology

In this section, we introduce the client-server privacy architecture, followed by the
proposed bounded perturbation technique to effectively anonymize identified trajectories with
utility preservation.

3.1. Client-Server Privacy Architecture

The fundamental functionality of the proposed privacy architecture lies in anonymizing the
user trajectory in a client-server privacy setting to ensure that the data contributors are safe in a
dataset. Figure 1 illustrates the overview of the proposed client-server privacy architecture. In the
privacy architecture, it has the following components: end-user (or employee), intermediary device
(client), central server, business organization (or employer), and data processing organization
(or insurance company).

Figure 1. Client-server privacy architecture.

An employee generates LBS application-specific data by health fitness devices that link with the
intermediary device (e.g., computer, cell-phone) for the trajectory anonymization. An intermediary
device could be a cell phone, a computer, or any suitable device that executes the procedure to complete
the anonymization processes. It anonymizes the trajectory at the user end by applying the bounded
perturbation technique. For anonymization, the intermediary device requests that the global location
is set to the central server and anonymizes the visiting locations of the user.
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The central server supports the anonymization process, which generates the global location set
and keeps the records from users. An employer is the facilitator to introduce a reward-based LBS
application. Moreover, an employer uses the application-specific data to give rewards to end-users for
being active in daily life and to negotiate with insurance companies to reduce insurance cost.

An insurance company is a third-party business organization that would use end-user data
for analysis.

3.2. Anonymization

Identified trajectories would breach user privacy, and we must anonymize such trajectories before
sharing them with the central server. To anonymize the trajectories, we introduce a global location set
to perform bounded perturbation.

Let u denote a user in the reward-based LBS system. A movement of user u updates a tuple
< id, (x, y, t) >, where id represents the identity of the user u, and the tuple describes that the user u
visited point (x, y) at time t. Here, x is the longitude, y is the latitude, and t is the detailed recording of
time. The user movement history can be used to draw the movement patterns of the user, and it is
defined as follows.

Definition 1 (Identified trajectory). An identified trajectory is a sequence of successive PoIs visited by an
identified user along time t, represented as

L = {id, (x1, y1, t1), (x2, y2, t2), . . . , (xn, yn, tn)},

where id is the identity of the user u, (xi, yi) represents the longitude and latitude of PoIi, and ti is the
corresponding time.

The strategy of reward-based LBS applications is to preserve the trajectory data L along with
other application-specific features. In the preserved trajectory L, any independent part of a user u
with a start and end point is called a route. In an urban area, a route is called a frequent route if a
route appears a number of times in the trajectory dataset. Because of the frequent nature, the route is
considered as an unsafe route for the user u [27]. In addition, a unique route might identify a user and
threaten his privacy.

For the reward-based LBS application, we consider that the trajectory data L might have frequent
and unique user routes. Therefore, identified trajectories would breach user privacy, and we must
anonymize user daily trajectories before sharing them with the business organization. To anonymize
the trajectories, a global location set is introduced to perform the anonymization operation.

Definition 2 (Global location set (GLS)). A GLS consists of all the points of interest (PoIs) in a region.
Every PoI has a location and a description for its semantic meaning, such as walkway, highway, residential house,
lake, mountain, and landmark. A GLS is represented as

(loc1, location1), (loc2, location2)...(loci, locationj),

where loci = (latitude, longitude) is a pair of coordinates of PoI i, and locationj represents its
semantic description.

GLS is generated by using OpenStreetMap API [34]. Figure 2 is an example of a global location
set, where nodes represent the PoIs. Generally, PoIs are connected with each other by the road networks.
Therefore, for the analysis, we consider that the PoIs are connected with each other by a distance d.
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Figure 2. Illustration of global location set.

The user’s visited trajectory is L, and we know that L would breach user privacy by revealing the
PoIs and frequent routes. For trajectory anonymization, we may append the random noise r = (rd, ra)
with the visited PoIs, which will result in new PoIs′ that are impossible to visit in reality (e.g., in the
middle of a lake or on a mountain cliff). Therefore, we propose bounded perturbation techniques with
the global location set GLS to anonymize the location trajectory L.

Definition 3 (Bounded perturbation). Unlike the perturbation methods in References [15,21],
bounded perturbation includes random noise r = (rd, ra) with the actual data points, but it takes the global
location set GLS into consideration to guarantee its availability. Therefore, the generated data points would not
include invalid places. This reduces the utility of the generated trajectories.

For instance, the new PoIs are generated by adding some random noise r;
i.e., (x′i = xi + rx, y′i = yi + ry), where rx is the random noise for xn and ry is the random noise
for yn. To calculate random noise for longitude and latitude points, we use the Earth’s radius; we assume
the Earth’s radius is R, random distance is rd in [l ≤ rd ≤ k], where l is the minimum and k is the
maximum distance in meters which depends on the area of the city, and random uniform direction ra over
[0, 2π], respectively. Then, the random noise rx, ry is

rx =
rd

R(cos(π × yn
ra ))
× ra

π
, (1)

ry =
rd
R
× ra

π
. (2)

We compare the generated point (x′i , y′i) with the global location set GLS by the map
matching techniques [35]. If it is in the GLS, we keep it as a newly generated anonymized point.
Otherwise, we recompute the point with new random noise until it is in the GLS.

Given an identified trajectory L and applying bounded perturbation technique to generate the
anonymized trajectory L′, represented by

L′ = {id, (x′1, y′1, t1), (x′2, y′2, t2), . . . , (x′n, y′n, tn)},

where id represents the identity of the user u, (x′i , y′i) represents the generated longitude and latitude
PoIi, and t represents the corresponding time.
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An anonymized trajectory L′ is the newly generated trajectory bounded by GLS with the visited
timing information, and it excludes original visited places from the identified trajectories, so that the
anonymized trajectory L′ will protect the user’s PoIs, unique routes, and frequent routes.

The primary goal for preserving user privacy is anonymizing the trajectory, and we must also
consider the data utility. Therefore, in the anonymized dataset, we measure the data utility by the
relative distortion.

Definition 4 (Relative distortion). The relative distortion measures the quality of the anonymized dataset
compared with the original dataset. Let the original count be O and the anonymized count be A, then the relative
distortion is

Relative Distortion =
|O− A|

O
. (3)

To calculate relative distortion, we consider the positive distortion (i.e., calculate the absolute difference of original
and anonymization count).

For instance, if a PoI is visited 10 times in the original dataset and 6 times in the anonymized
dataset then the relative distortion of the PoI is |10− 6|/10, which is 0.4.

3.3. Anonymization Algorithms

In this section, we present two algorithms to perform anonymization of identified trajectories.
We introduce the global location set to do the anonymization process effectively, and Algorithm 1
produces a global location set. Taking the daily identified trajectory L and the global location set as
arguments, the Algorithm 2 outputs the anonymized trajectory L′ for the corresponding L.

3.3.1. Generation of Global Location Set

The algorithm is introduced to complete the perturbation process for user-visited locations over a
particular time period. As a perturbation process may generate invalid PoIs, we introduce a global
location set GLS, and the generation of PoIs will be within the set in order to avoid problems. We thus
call the perturbation process a bounded perturbation. Algorithm 1 produces the GLS at the server side,
and an intermediary device requests it in order to complete the anonymization process. In addition,
Algorithm 1 helps to generate those locations that are valid. An employer specifies the possible areas
to analyze the employees’ data, and then the algorithm determines the bounding box of the global
location set. In line 1, we initialize a bounding box B and a global location set GLS. A global location
set GLS is generated in lines 1 to 4, and finally returns the GLS.

Algorithm 1 Generation of a global location set.
Input: A bounding box B in the OpenStreetMap [34] with four parameters (x1, y1, x2, y2) where
x1 and x2 are longitude coordinates and y1 and y2 are latitude coordinates;
Output: Generate the possible visited locations GLS ={all possible visited locations} in the
bounding box B;

1: Initialize B = {(x1, y1), (x2, y2)}, GLS = {}, VL = {highway, landmark, etc.};
2: for Each point {loci, locationj} in the bounding box B do
3: if (B(loci, locationj) == VL) then
4: GLS = {GLS} ∪ {loci, locationj};

return GLS

3.3.2. Anonymized Location Trajectory

The anonymized location trajectory algorithm is executed at the user end in a suitable device called
the intermediary device (e.g., a computer or smart-phone) to anonymize the user’s visited locations.
Please note that we assume that wearable devices only collect physiological features with locations
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and do not conduct any further processing, as the devices often have limited memory and processing
power to execute the anonymization algorithm.

The algorithm takes the global location set GLS and user-visited locations L as input, and it
produces the anonymized locations L′. We initialize the temporary global location set GLST ,
anonymized location trajectory L′, random distance rd in l ≤ rd ≤ k, and random direction ra
over [0, 2π] to calculate random noise r. To generate the anonymized trajectory L′, the original visited
locations in L are deducted from the global location set GLS to make sure the generated locations
do not have any original visited locations. In line 3, the algorithm generates the new anonymized
trajectory L′ by adding random noise r. In line 4, the timing information is added with the anonymized
trajectory, and the algorithm returns the anonymized trajectory L′ in line 5.

Algorithm 2 Anonymized location trajectory.
Input: Identified trajectory L, global location set GLS.
Output: Anonymized location trajectory L′ in the global location set GLS.

1: Initialize GLST = {}, L′ = {}, random noise r;
2: Deduct the real visited locations from the global location set GLST = GLS− L;
3: Generate new locations L′ in GLST for each visited point L with random noise rx and ry from

Equations (1) and (2).
4: Adding the timing information for each point in L′ as in the L;

return L′

3.4. Discussion on the Anonymization Technique

In the client-server privacy architecture, two algorithms are introduced to complete the
anonymization process. Figure 2 is an example of a global location set, and we extracted it from
OpenStreetMap data by using Algorithm 1. The visited path with timing information is called
the identified trajectory and routes, and from the problem definition, it is known that an identified
trajectory, unique, and frequent routes might breach the user’s privacy. Therefore, it is necessary to
anonymize identified trajectories to protect the user’s PoIs, unique routes, and frequent routes before
submitting them for further processing.

Suppose a user trajectory is 1 → 2 → 3 → 1, and Algorithm 2 is used to anonymize the
visited locations. For simplicity, we consider that the distance d is uniform between points of interest.
In anonymization, to add noise to the trajectory, distance rd and direction ra are selected randomly
to generate the new anonymized visited locations. In Algorithm 2 (line 2), the real visited path L is
excluded from the global location set GLS, and line 4 generates the new anonymized visited locations
in L′ for the user. The algorithm could generate 6→ 7→ 5→ 6 as the anonymized trajectory, which
could be submitted for publishing. Supposing another trajectory 5 → 7 → 3 → 5, the generated
anonymized visited trajectory could be 1 → 2 → 3 → 1. Both visited 1, 2, 3, 5, 7 in reality and
anonymized points of interest are 1, 2, 3, 5, 6, 7.

By the existing studies, we know that perturbation can be used to solve the user privacy issues,
but perturbation may generate some places that are practically impossible to visit, which reduces
the data utility. We thus proposed a bounded perturbation with the help of global location set GLS,
and this does not generate any locations that are not practically possible to visit. Therefore, our
proposed bounded perturbation method has more data utility than the classical perturbation method.

4. Experimental Evaluation

In this section, we demonstrate experiments on real-world datasets. The experiments are
divided into two parts: the first part was designed to present the personal privacy breach and
test the effectiveness of the proposed bounded perturbation algorithm for trajectory anonymization
in comparison with the perturbation methods. Our experimental results show that the bounded
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perturbation method can successfully anonymize the trajectory points at the intermediary device.
The results of this experiment are presented in Sections 4.2 and 4.3.

In the second part, we measure the effectiveness of bounded perturbation and perturbation
techniques in preserving data utility as compared with the original trajectory data. The experimental
results demonstrate that the bounded perturbation preserves more data utility than the perturbation
method. The results of this experiment are presented in Section 4.4.

4.1. Data Set

In the experiment, we use the Geolife [36,37] project dataset to simulate the reward-based LBS
application. This dataset was collected in the Geolife project from 182 users over three years, and it
contains 17,621 identified trajectories.

To assemble the experimental environment, we used OpenStreetMap API [34], R and several R
packages [38–40], QGIS [41], and Google Fusion Tables [42] for the analysis of trajectory data.

4.2. Privacy Breach

In this section, we present the significance of protecting the user privacy of identified trajectories
in a real-life setting. Figure 3 demonstrates user trajectories over a period of time, and it gives the
confidence to the adversary to learn about the particular user and can initiate an inference attack
or conduct a linking attack to an available dataset. From the trajectories for a period, the adversary
can find the user’s frequent routes and the points of interest. The moving path has the user identity,
timing, and latitude-longitude values. Therefore, the identified trajectories from a reward-based LBS
application might breach user privacy.

Figure 3. Identified user trajectories.

By analyzing particular user data from the dataset, it is possible to find a user’s points of interest
and frequent routes to exhibit the privacy breach. Figure 3 exposes the particular user’s visited
trajectory for a period of time. An adversary might use this particular user dataset to find the
user’s points of interest and frequent routes and apply this background knowledge to breach the
user’s privacy.

In terms of the Geolife [36,37] project dataset description, the location data were collected at
five-second intervals; i.e., the location’s latitudes and longitudes would be collected if the user’s
speed was at least 3.0 miles per hour. This means that if the user’s speed was below 3.0 miles per
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hour, the data collection was stopped (e.g., taking a tour in the garden, watching a movie in a theater,
exercising in the gym, or visiting a friend’s home). The recorded last location point signifies the user’s
point of interest. Suppose a user was riding a bike to the gym and parked her bike at the parking place
and the last location was recorded. Then, the adversary might conclude that the gym is one of the
user’s points of interest (considering that she is not running).

As a consequence, we can use the time interval properties of two consecutive location points to
determine a user’s visited points of interest. For instance, the time between two consecutive location
records may determine if the location is a given user PoI. By analyzing the user dataset, we divide
the time interval (in sec) into: time interval ≥ 300, time interval ≥ 600, 300 ≤ time interval ≤ 1800,
and 600 ≤ time interval ≤ 3600. By the intervals and location information, we can easily find the points
of interest of a particular user. In the experiment, we observe that a particular person visited 42 places
in 600 ≤time interval ≤ 3600. Therefore, we can conclude that the user was more interested in those
places.

4.3. Location Trajectory Anonymization

From the privacy breach section, it is observed that the user’s privacy was breached by revealing
points of interest and frequent routes, which may lead to an inference attack and a linking attack. In this
case, it is necessary to anonymize the identified trajectory before presenting it to the organization’s
central server or a third-party service provider. In the privacy setting, we anonymized the user’s daily
trajectory and submitted it to the central server. Figure 4 shows the anonymized locations of a user for
a period of time, and the figure demonstrates that it has no frequent routes which the adversary may
use to breach user privacy (i.e., inference and linking attacks).

In a reward-based LBS application, for instance, a health/wellness program’s primary objective is
to increase the productivity of the employees by keeping them healthy. In addition, the organization
may utilize the physiological features to reduce the increasing medical insurance cost. The numerous
demands for health/wellness programs and the data they produce might breach user privacy.
Therefore, we proposed bounded perturbation techniques to generate logical locations to ensure
users’ privacy.

Figure 4. Anonymized locations of a user.
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4.4. Data Utility

Data utility is of great importance to reward-based LBS applications. In this section, we evaluate
the data utility of the anonymized trajectories of the proposed bounded perturbation method.
Anonymization at the user end might reduce the data utility regarding traffic or other data mining
analysis because generated locations would be different locations. This can be true if the dataset
contains only one user, but reward-based LBS applications are often supposed to have more than one
user. By analyzing trajectory data, one can identify the points of interest and visiting users, which may
be used by the advertising company to place a billboard advertisement. To determine mass population
movements and points of interest, we need to consider the number of visitors, not the individuals
who visited.

To see the effectiveness of the generated trajectory, we conducted two data utility measurement
experiments on the anonymized and original datasets. In the first experiment, we identified the
point of interest, and for each point of interest, we calculated the relative distortion. In the second
experiment, the visiting users were counted for a particular area, and relative distortion was calculated.
These experimental results may determine the quality of the anonymized dataset, and could be used
to find the crowded spot in an area to place a billboard advertisement.

In the visited locations, not all points are considered as PoIs. To find the time-specific visited PoIs,
we grouped the places into time intervals between two consecutive visited points, and we have divided
the time intervals (in sec) into: time interval ≥ 300, time interval ≥ 600, 300 ≤ time interval ≤ 1800,
and 600 ≤ time interval ≤ 3600.

In Figure 5, on the Y-axis we plotted the PoIs in every 10,000 data points for the original data,
bounded perturbation-generated data, and perturbation-generated data. It shows that bounded
perturbation method had more PoIs than the perturbation methods [15] for the particular area.

Figure 5. Visited points of interest (PoIs) in different time intervals.

The use case of Definition 4 is as follows. The DBSCAN [43] algorithm was applied to the original
dataset to obtain the most visited PoIs in a region and rank them based on the number of times they
were visited [44–46]. For each PoI from the original dataset, the count was measured in the anonymized
datasets. After getting the anonymized visited count for individual PoIs, the relative distortion was
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calculated by Equation (3). Furthermore, we calculated all individual PoIs’ relative distortion and the
average distortion. Let the relative distortion of a PoI be D; then, the average distortion of all PoIs can
be determined by

Average Relative Distortion =
1
n
×

n

∑
i=1

D, (4)

where n is the number of PoIs.
The relative distortion on individual PoIs describes the quality of the anonymized dataset in

comparison with the original dataset. Table 2 demonstrates the average relative distortion for all PoIs.
Experimental results demonstrate that the bounded perturbation has lower relative distortion than the
perturbation method.

Table 2. Average relative distortion for PoIs.

Anonymization Technique Average Relative Distortion

Bounded Perturbation 0.206357345
Perturbation 0.48617868

We conducted the visiting users’ experiment to find the most crowded spot in an area.
To determine which visiting users were in a selected area, we used the following query based on the
criteria in the study [47]:

SELECT COUNT(∗) FROM Dataset WHERE Area ∈ PoI AND Date&Time ∈ Session, (5)

where Dataset is the original or the anonymized dataset. Area is based on individual PoIs, which was
obtained by the DBSCAN algorithm. From the individual PoIs, we obtained the longitude and latitude
values and appended a 100-m radius to select the particular area. For the Data&Time, 30 individual
days were selected with morning (07:00–10:00) and evening (17:00–20:00) sessions.

In the experiment, the individual query was made by using Equation (5), and a search was
conducted on the original and anonymized datasets. Suppose that we want to count the number of
users in Area 1, Day 1, and the Morning session. Then, the query returns the count for original and
anonymized datasets. From the results of the original and anonymized datasets for Area 1, Day 1,
and the Morning session, the relative distortion of the visiting users for the particular session was
calculated by Equation (3). In the experiment, we selected 30 individual days, morning and evening
sessions, and all possible areas to calculate the distortion. After that, the average distortion was
calculated by Equation (4). Table 3 presents the average relative distortion in the anonymized dataset.
Experimental results demonstrate that the bounded perturbation achieves better data quality.

Table 3. Average relative distortion.

Anonymization Technique Average Relative Distortion in the Morning Average Relative Distortion in the Evening

Bounded Perturbation 0.240973419 0.280139043
Perturbation 0.561570944 0.52706014

All of the users of the reward-based LBS applications followed the same anonymization method
and submitted their data to the central server. In the bounded perturbation process, all the users
from the same employer used the same global location set GLS to finish the anonymization process.
Therefore, the anonymized locations that were generated by the proposed bounded perturbation
model had more data utility than the perturbation method.

From the experimental results, an advertising company would know the most crowded spot to
post a billboard advertisement. Thus, the bounded perturbation-generated trajectory data could be
used by the advertising company in the same way as the original trajectory data. In summary, it is



ISPRS Int. J. Geo-Inf. 2018, 7, 53 14 of 16

possible to say that the generated trajectory data by the bounded perturbation has more data utility
compared with the perturbation method.

5. Conclusions and Future Work

In this study, we showed that location data might breach a user’s points of interest and frequent
routes, which would lead to inference and linking attacks. This research demonstrated the significance
of the anonymization of identified trajectories. In this paper, the proposed client-server privacy
architecture was able to preserve user privacy while keeping the data utility of the identified trajectories.
The global location set-based bounded perturbation techniques could anonymize the identified
trajectory to protect the user’s points of interest and frequent routes. Therefore, the anonymized
trajectory is defended from inference and linking attacks. Experimental findings showed that the
proposed privacy architecture was effective in terms of privacy concerns and data utility compared to
the conventional perturbation methods.

In the future, we aim to improve the bounded perturbation method by completing the
anonymization process locally. Moreover, the collected data from the reward-based LBS applications
may have other properties in addition to identified trajectories that may have issues of privacy.
We would thus extend the current work by supporting various data attributes in the setting.
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