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Abstract: Transportation is generally perceived as a catalyst for economic development. This has been
highlighted in previous studies. However, less attention has been paid to examine the relationship
between economy and transport demand by exploring spatially cross-sectional data, especially for
countries with significant regional economic imbalance, like China. In this article, we assess the
economic influence of intercity multimodal transport demand at the prefecture level in China. Spatial
autoregressive regression models are used to examine the impact of transport demand on economy
by deep analysis of transport modes (land, air, and water) and regions (eastern, central, and western).
Through contrasting results from spatial lag model and spatial error model with those from the
ordinary least square, this study finds that the estimation results can become more accurate by
controlling for spatial autocorrelation, especially at the national level. Through rigorous analysis it is
identified that except for water passenger traffic, all other intercity transport demand significantly
contribute to a city’s economic development level in gross domestic product. In particular, air
transport demands distribute more evenly and are estimated with the highest beta coefficients at both
national and regional levels. In addition, the beta coefficients for land, air and water transportation are
estimated with different magnitudes and significances at the national and regional levels. This study
contributes to the ongoing discussion on the relationship between intercity multimodal transport
demand and economic development level. Findings from this paper provide planning makers with
valid and efficient strategies to better develop the economy by leveraging the special “a” cluster
pattern of economic development and the benefits of air transportation.

Keywords: intercity multimodal transportation; economic development; spatial autocorrelation;
regional imbalance; air transportation; spatial analysis

1. Introduction

Transportation is widely acknowledged as an important catalyst for economic development, at
the regional, national, as well as international level [1–4]. Transportation provides a vital link in the
supply chain of passengers and goods. It enables the market to access to the resultant products [1,5].
In this perspective, it is obvious from a theoretical standpoint that there should be a linkage between
transport activity and economy [6].

A number of studies have explored the economic impacts of transport infrastructure investment
(e.g., [7–11]), but less attention has been paid to study the association of economy with transport
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demand [12]. The existing literature highlighted the causal relationship between transportation and
economy growth by investigating time series data (e.g., [13–15]), whilst less attention has been paid to
the association of economy with transport demand by looking into the spatially cross-sectional data.
Relatively few studies conducted to explore how the transportation-economy relationship depends on
spatial autocorrelation, regional imbalance or intercity transport modes, especially for the rapid and
unbalanced development contexts, such as China.

Therefore, researchers need to provide policy-makers with precise and sufficient information
to eliminate the relationship between economy and transportation. This study seeks to make up
this gap by providing a comprehensive description of spatial transportation-economy relationship
through investigating the intercity multimodal transportation data. By examining and comparing
passenger traffic and freight volume of land, air, and water independently, the spatial economic
impacts of intercity multimodal transportation will be analyzed explicitly. The scope of this study is on
China, using prefecture-level cities’ data rather than national/provincial data used in many previous
studies [16–19]. As China has long executed a biased development policy, the transportation and
economic development have continuously experienced cross-regional inequality. This case provides a
rare perspective to investigate the influence of spatial autocorrelation on the transportation-economy
relationship. In addition, using prefecture-level data and spatial autoregressive model, this study will
provide more accurate findings for policy-makers.

The remainder of the paper is organized as follows: Section 2 reviews the related literature on the
topic and provides a background for this research. Section 3 introduces the study context and data
source. Analytical methods are presented in Section 4. Section 5 presents the analysis results. Section 6
discusses the findings, concludes the paper, and provides potential directions for future research.

2. Literature Review

The relationship between transportation and economy has become a very critical topic, especially
in developing countries [20]. In less-developed countries, the transport activity generally acts as an
important complement to other conditions, whilst in developed countries, the role of transportation
in stimulating economic growth is not on its own or straightforward, as it can differ among regions
affected by the presence or absence of other drivers of economic growth [21]. While it is hard to
generalize the potential economic impacts of transport activity, some empirical studies have found
a strong association between transportation and economy, especially based upon time series data
exploration [22,23].

Examining a sample of thirty-three countries at different stages of development,
Bennathan et al. [24] found a strong relationship between freight transportation and GDP. Additionally,
the elasticity of road freight demand with regard to GDP for developing countries was 1.25 times
the counterpart of the high-income countries. Using annual time series data of 1970–1995 from India,
Kulshreshtha et al. [25] confirmed a long-run structural co-integrating relationship between railway
passenger transport and economy. Yao [26] examined the association between freight transportation
and industrial production and input inventory investment. Through rigorous analysis, it was
confirmed a significant feedback effect upon these entities.

Laplace and Latgé-Roucolle [14] examined the relationship between the economic development
and the air traffic in four ASEAN countries including Lao PDR, Myanmar, the Philippines and
Vietnam. Their findings pointed out that GDP was very sensible to air traffic growth, especially in the
regions which owns only one international airport. Marazzo et al. [15] and Hu et al. [13] explored the
relationship between economic growth and air passenger traffic in Brazil and China, respectively. Both
studies revealed the significance of air transport in economy development.

However, not all the previous studies found a significant impact of transport activity on economy.
For instance, by analyzing data from Brazil throughout the 1966 to 2006 period, Fernandes and
Pacheco [27] found that air transportation was affected significantly by economic growth, while the
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impact of air transport on economic growth was insignificant. Using the panel data of 42 years from
South Asia, Hakim and Merkert [12] found the similar result as Fernandes and Pacheco [27].

In addition, most of the existing studies examined the panel data by adopting Granger causal
framework rather than exploring cross-sectional data. Granger causality analysis is powerful in
examining whether one time series is useful in forecasting another [28], but is less powerful to conduct
the cross-sectional analysis horizontally [29]. In addition, most of the previous studies highlighted the
temporal correlation of independent variables but neglected the spatial autoregressive effects. From the
spatial perspective, the economic performance of an observation not only depends on itself contributors,
but may also depend on the contribution of on the neighboring units. Thus, in econometric
analysis, it is important to control for spatial autocorrelation especially for countries/regions with
regional inequality.

This study seeks to fill in some of the research gaps and shed light on the association of
economy with intercity multimodal transportation. Spatial autoregressive regression is used to
examine how the economic influence of transportation can become volatile depending on intercity
transportation modes and different regions. By exploring prefecture level data from China, findings
from this study can provide researchers with knowledge about the relationship between intercity
multimodal transportation and economic development level, as well as potential strategies for the
regionally-balanceable development.

3. Study Context and Data Source

3.1. Study Context: Regional Inequality in China

Following the reform and open trade policy enacted in 1978, China has experienced remarkable
economic development [30]. However, spatial concentration and inequality have also become more
severe since then [31,32]. In addition, since China is characterized by regional differentials, spatial
inequalities not only exist across regions and provinces, but are also even more evident across
cities [33,34]. The growing spatial inequality has drawn increasing scholarly interest and social
concern, but sources of spatial inequality in China are still under-studied [35]. Transportation related
variables tend to be at play in aggravating the regional inequality [17,18], but little is known about
how the economic development impacts of transportation vary depending on regions or intercity
transport modes.

Figure 1 illustrates the spatial density distributions of GDP and intercity multimodal transport
demand. As can be seen, except for air transportation, the spatial distributions of other economic
variables show a classic concentration pattern, with developed cities clustering along the eastern
coastal area, the Yangtze River Belt, and the Pearl River Belt, which present the “a” shape. The similar
spatial distribution of transportation and economy indicates that there may exist a relationship between
them. With the aggravation in regional inequality and the advancement of spatial econometric models,
it is necessary to examine the hypothesis and discuss the results.
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passenger traffic and (h) water freight volumes. 

The Moran’s I tests for the variables are shown in Table 1. The test results confirm that there is 
less than 1% likelihood that the clustered patterns of GDP, population, and foreign direct investment, 
land and water transportation could be the result of random chance, while the spatial pattern of air 
transportation is neither clustered nor dispersed. The tests highlight the potential spatial 
autocorrelation of many economic related variables in China. Thus, it is necessary to account for the 
interactions between them to better investigating the relationship between economy and 
transportation at both national and regional levels. 
  

Figure 1. (a) Three regions and main land transport network in China; density of (b) GDP; (c) land
passenger traffic; (d) land freight volume; (e) air passenger traffic; (f) air freight volume; (g) water
passenger traffic and (h) water freight volumes.

The Moran’s I tests for the variables are shown in Table 1. The test results confirm that there is less
than 1% likelihood that the clustered patterns of GDP, population, and foreign direct investment,
land and water transportation could be the result of random chance, while the spatial pattern
of air transportation is neither clustered nor dispersed. The tests highlight the potential spatial
autocorrelation of many economic related variables in China. Thus, it is necessary to account for the
interactions between them to better investigating the relationship between economy and transportation
at both national and regional levels.
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Table 1. Moran’s I test of the variables in China.

Moran’s I Test GDP Population Foreign Direct
Investment

Land Transportation Air Transportation Water Transportation

Passenger
Traffic

Freight
Volume

Passenger
Traffic

Freight
Volume

Passenger
Traffic

Freight
Volume

Moran’s I
index 0.06 0.06 0.09 0.03 0.09 −0.01 −0.01 0.04 0.11

Z-score 8.71 8.42 12.49 4.74 12.55 −0.25 −0.38 6.46 16.35

Significance
level 0.01 a 0.01 0.01 0.01 0.01 >0.10 b >0.10 0.01 0.01

Critical value (2.58) (2.58) (2.58) (2.58) (2.58) (1.65) (1.65) (2.58) (2.58)

Pattern Clustered Clustered Clustered Clustered Clustered Random Random Clustered Clustered

a There is less than 1% likelihood that this clustered pattern could be the result of random chance; b The pattern is
neither clustered nor dispersed.

3.2. Data Source

This study takes prefecture-level cities as the study objects. There are more than 330
prefecture-level cities in China. Due to data availability, this study analyzed the data from 277
cities (including four municipalities of Beijing, Shanghai, Tianjin, and Chongqing). The dependent
variable examined in this study is the gross domestic product (GDP), an important factor that reflects
the economic development levels of cities. For the independent variables, both passenger traffic and
freight volume of each transportation mode of land, air, and water are included and investigated.
One-year cumulative GDP and transportation data of 2012 were collected from China City Statistical
Yearbook. Since 2013, the National Bureau of Statistics of China (NBSC) required the local transport
agencies to use a new statistic method to report the transport related data to NBSC. Whilst some local
transport agencies used the new statistic method following NBSC’s requires, some others did not. As
Figure 2 shows, the multi-standard caused confusion to some extent and reduced the accuracy of data
especially for land passenger traffic in the following years. To keep consistent in statistic method for
each city and improve the data accuracy, we used 2012 data in this study. In addition to the variables
that reflect transport demand, two important independent variables—population and foreign direct
investment (FDI) that may significantly affect GDP are examined. Due to data availability from China
City Statistical Yearbook, other independent variables such as education and knowledge economy
that may also affect GDP were not included. In addition, as the municipalities generally enjoy more
specific development policies than other cities, one dummy variable of municipality (1) or not (0) is
included for examination. Table 2 shows the variable statistics.
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Table 2. Variable statistics.

Variable Unit Minimum Maximum Mean Standard
Deviation

Gross domestic product (GDP) Billion CNY 15.85 2018.17 199.47 257.13
Population (POP) Ten thousand 19.80 3343.40 444.66 317.15

Foreign direct investment (FDI) Million USD 0 1447.21 50.01 151.64
Total passenger traffic (TPT) Million 4.82 1818.48 130.24 198.05
Total freight volumes (TFV) Million ton 4.75 972.50 130.34 119.29
Land passenger traffic (LPT) Million 4.50 1786.85 127.59 193.65
Land freight volumes (LFV) Million ton 4.75 831.20 113.98 99.71
Air passenger traffic (APT) Million 0 65.43 1.85 7.39
Air freight volumes (AFV) Ten thousand ton 0 152.31 2.37 0.14

Water passenger traffic (WPT) Million 0 22.25 0.80 2.08
Water freight volumes (WFV) Million ton 0 503.02 15.56 41.21

Municipality of not (MUN) NA 0 1 0.01 0.12

Table 3 reports the estimation coefficients of correlation matrix. The results show a strong
correlation between GDP and the independent variables. The weakest correlation is observed between
GDP and water passenger traffic with estimated Pearson coefficient of only 0.202. The correlation
matrix also shows a strong correlation between some independent variables. Especially, the Pearson
coefficients between total and land passenger traffic, total, and land freight volume, as well as between
air passenger traffic and air freight volume, are much higher than the rule-of-thumb of co-linearity
threshold of 0.7 [36,37]. Thus, the pair variables mentioned above should not be included into the
models simultaneously. Indeed, we intend to examine the association of GDP with the total or each
transportation mode separately. Thus, Table 2 is mainly used to highlight the positive relationship
between the GDP and the independent variables.

Table 3. Correlation matrix.

GDP POP FDI TPT TFV LPT LFV APT AFV WPT WFV

GDP
1

POP
0.558 * 1.000

(0.000)

FDI
0.834 * 0.295 * 1.000

(0.000) (0.000)

TPT
0.700 * 0.527 * 0.504 * 1.000

(0.000) (0.000) (0.000)

TFV
0.713 * 0.668 * 0.511 * 0.503 * 1.000

(0.000) (0.000) (0.000) (0.000)

LPT
0.684 * 0.524 * 0.489 * 0.999 * 0.491 * 1.000

(0.000) (0.000) (0.000) (0.000) (0.000)

LFV
0.598 * 0.652 * 0.340 * 0.491 * 0.942 * 0.485 * 1.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

APT
0.780 * 0.343 * 0.641 * 0.537 * 0.556 * 0.509 * 0.431 * 1.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

AFV
0.699 * 0.273 * 0.625 * 0.485 * 0.428 * 0.463 * 0.282 * 0.824 * 1.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

WPT
0.202 * 0.229 * 0.185 * 0.264 * 0.206 * 0.253 * 0.093 0.158 * 0.132 ** 1.000

(0.001) (0.000) (0.002) (0.000) (0.001) (0.000) (0.121) (0.009) (0.028)

WFV
0.606 * 0.347 * 0.647 * 0.255 * 0.604 * 0.236 * 0.303 * 0.560 * 0.550 * 0.320 * 1.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

The Pearson coefficients higher than 0.7 are shaded in grayness. The estimated p-values are within parentheses.
* Significant at 1%. ** Significant at 5%.



ISPRS Int. J. Geo-Inf. 2018, 7, 56 7 of 18

4. Statistical Models

As mentioned above, the GDP of a city not only depends on the independent variables, but also
on the economic development of the surrounding cities. In other words, there may exist significantly
spatial interaction between the dependent variables. To examine this hypothesis, two main statistical
models, i.e., non-spatial model and spatial autoregressive (SAR) model, are performed in this study.

4.1. Non-Spatial Model

An initial non-spatial model of OLS without controlling for spatial autocorrelation is developed to
examine the impacts of population (POP), FDI and the city character (i.e., (municipality or not (MUN))
on GDP the. Accordingly, the basic OLS model is given as:

GDP = α0 + α1POP + α2FDI + α3MUN + βiXi + ε (1)

where GDP denotes the dependent variable of gross domestic product. POP represents population.
FDI is the foreign direct investment. MUN represents the dummy indicator of whether a city is
municipality or not. Xi denotes the independent variables of intercity multimodal transportation
of total, land, air or water. α0, α1, α2, α3, and βi are the constants to be estimated. ε represents the
error term.

4.2. Spatial Autoregressive (SAR) Model

A main debate on the non-spatial model is its ability in accounting for the spatial correlation
among observations. With the advancement of spatial econometric models, it is both necessary
and possible to perform spatial regression models to control for the interactions of cross-sectional
units. Various spatial autoregressive (SAR) models have been introduced and further developed by
Whittle’s [38], Anselin [39], Getis and Ord [40], Anselin [41], Fingleton [42], etc. Depending on where
the spatial interactions occur, two classic spatial models are considered in this paper: (1) SAR lag
model (SLM); and (2) SAR error model (SEM). The SLM accounts for the spatial autocorrelation in the
dependent variables and takes the form as:

GDP = ρWGDP + α0 + α1POP + α2FDI + α3MUN + βiXi + ε (2)

where WGDP denotes the spatially-lagged GDP for spatial weights matrix W. ρ is the coefficient to be
estimated. The row-standardized weight matrix is used to characterize the spatial weights matrix W
used here is (refer to Anselin [41] for details).

The SEM accounts for the spatial autocorrelation among residuals. It contains a spatial error term
and examines the impact of omitted variables on observations [43]. The SEM is expressed by:

GDP = α0 + α1POP + α2FDI + α3MUN + βiXi + ε

With:
ε = λWε + µ (3)

where λ is the autoregressive coefficient to be estimated, and µ denotes the error term.
In the SLM model, if ρ is significant, it indicates that there is spatial interaction among the

dependent variables. Similarly, when λ is significant, it indicates significant spatial correlation that
occurs at the error component [44].

State of the art of SLM and SEM is far more complex than the usage of GIS and GeoDa [45].
Developed by Anselin [41], this paper adopts a three-step spatial data analysis approach to facilitate
the usage of SAR model. First, establish the initial OLS model and test the validation of the model.
Second, perform the initial OLS model and obtain the spatial autocorrelation statistics such as Moran’s
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I (error), Lagrange multiplier (lag), and four other test statistics. Third, based on the statistics, we
estimate SLM and SEM, and examine and discuss the results.

5. Results

Table 4 represents the results of five non-spatial models that estimate the impacts of independent
variables on GDP at the national level. The results of Model 1 indicate that both passenger traffic
and freight volume are significantly and positively related to GDP. With estimated coefficients of
0.060 and 0.881, respectively, both population and FDI especially the FDI are strongly associated
with the economic development. This is consistent with the previous studies [46,47]. The estimated
coefficients for total passenger traffic and total freight volume are 0.308 and 0.469, respectively, both
of which are significant at the 1% level. In addition, estimated with the positive coefficient of 257.04,
the dummy variable of municipality or not is highly related to GDP. This result indicates that there
are other factors that affect the economic development level. Such as the municipality of Shanghai, it
is clear that the current levels of economic development and transportation demand are very high.
However, other determinants that are not examined in this study, such as development strategies
and knowledge economy may also be at play. The readers are referred to existing studies for more
details (e.g., [48–51]). Models 2–5 examine the relationship between GDP and intercity transport
demand by modes of land, air and water. Table 3 shows the correlation matrix which indicates that the
degree of co-linearity between air passenger traffic and freight volume is higher than the threshold of
0.7. Thus, the APT-GDP and AFV-GDP relationship is estimated separately, as models 3 and 4 show.
The estimation results show that only water passenger is not significantly associated with GDP at
the national level. In all estimated models, the dummy variable denoting a city is municipality or
not is significant and contributes to GDP positively. The estimated coefficients for land passenger
traffic and freight volume are 0.54 and 0.65, respectively, and both are significant at the 1% level. The
highest estimated coefficients are obtained for the air transportation, indicating air transportation have
the strongest potentials in improving the economic development level. However, this may also be
due to the fact that air transportation in China only accounts for a very small percentage of the total
transportation. For instance, the air passenger traffic of China at the end of 2012 was 529.9 million,
accounting for only 1.28% of the total passenger traffic [52]. These initial findings indicate that air
transportation is an important indicator for the level of economic development of a city, and also have
a strong growth potential in China in the future.

Table 4. Non-spatial estimation results.

Model 1 Model 2 Model 3 Model 4 Model 5

Coeffi. p Coeffi. p Coeffi. p Coeffi. p Coeffi. p

Constant 23.767 0.026 45.051 0.002 151.231 0.000 167.610 0.000 148.710 0.000
POP 0.060 0.023 / / / / / / / /
FDI 0.881 0.000 / / / / / / / /
TPT 0.308 0.000 / / / / / / / /
TFV 0.469 0.000 / / / / / / / /
LPT / / 0.540 0.000 / / / / / /
LFV / / 0.650 0.000 / / / / / /
APT / / / / 21.431 0.000 / / / /
AFV / / / / / / 9.250 0.000 / /
WPT / / / / / / / / −0.695 0.899
WFV / / / / / / / / 2.395 0.000
MUN 257.041 0.000 793.031 0.000 593.813 0.000 687.590 0.000 973.097 0.000

R2 0.872 0.665 0.657 0.546 0.521
F 370.02 180.76 262.63 164.53 99.16

Breusch-Pagan
test

Value 459.46 1426.31 9.73 6.29 42.90
p 0.000 0.000 0.008 0.043 0.000

“/” Indicates this variable is not included into estimation. Note: Coefficients with p-values less than 0.1 are shown
in bold.
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Table 5 shows the modeling results of SLM and SEM for the association of GDP with transport
demand at the national level. As can be seen, only ρ in the SLM Model 1 is not statistically significant.
After excluding population and FDI, significantly spatial autocorrelation is at play in models 2–5. In
recognition of the significance of spatial autocorrelation, the estimators from the SLM or SEM can
characterize the association of economy with intercity multimodal transport demand more accurately.
For the case of the dependent variable (GDP) with spatial autocorrelation and independent variable
without spatial autocorrelation, the robustness of SLM/SEM models, especially the SLM models are
better than that of OLS as verified by the Breusch-Pagan test result. For instance, the Breusch-Pagan
test for OLS in Model 3 in Table 3 is 9.73, compared to the counterparts of 18.24 for SLM and 14.84 for
SEM, respectively. In addition, compared to the non-spatial models, the spatial model fitness improved.
For instance, the R2 for land transportation is 0.665 in the initial OLS model in Table 4, but increases to
0.706 in the SEM model in Table 5.

Table 5. SLM/SEM estimation results at the national level.

Model 1 Model 2 Model 3 Model 4 Model 5

Coeffi. p Coeffi. p Coeffi. p Coeffi. p Coeffi. p

W_GDP 0.018 0.635 0.267 0.000 0.331 0.000 0.277 0.000 0.217 0.000

Constant 20.332 0.107 −5.843 0.722 85.353 0.000 112.860 0.000 107.771 0.000

(18.402) (0.101) (48.949) (0.003) (145.282) (0.000) (164.034) (0.000) (149.509) (0.000)

POP 0.060 0.020 / / / / / / / /

(0.073) (0.007) / / / / / / / /

FDI 0.872 0.000 / / / / / / / /

(0.895) (0.000) / / / / / / / /

TPT 0.308 0.000 / / / / / / / /

(0.311) (0.000) / / / / / / / /

TFV 0.469 0.000 / / / / / / / /

(0.464) (0.000) / / / / / / / /

LPT / / 0.507 0.000 / / / / / /

/ / (0.503) (0.000) / / / / / /

LFV / / 0.660 0.000 / / / / / /

/ / (0.677) (0.000) / / / / / /

APT / / / / 21.249 0.000 / / / /

/ / / / (19.808) (0.000) / / / /

AFV / / / / 8.852 0.000 / /

/ / / / (8.315) (0.000) / /

WPT / / / / / / / / 0.485 0.927

/ / / / / / / / (1.062) (0.849)

WFV / / / / / / / / 2.143 0.000

/ / / / / / / / (2.141) (0.000)

MUN 257.717 0.000 744.116 0.000 516.095 0.000 646.566 0.000 956.571 0.000

(227.775) (0.000) (738.427) (0.000) (571.257) (0.000) (698.437) (0.000) (973.578) (0.000)

LAMBDA (0.231) (0.004) (0.383) (0.000) (0.414) (0.000) (0.311) (0.000) (0.166) (0.046)

R2 0.872 0.698 0.709 0.586 0.546

(0.877) (0.706) (0.708) (0.581) (0.530)

Breusch-Pagan
test

Value 453.93 1126.99 18.24 8.30 35.24

(536.82) (1259.30) (14.84) (6.36) (40.62)

p 0.000 0.000 0.000 0.016 0.000

(0.000) (0.000) (0.000) (0.041) (0.000)

“/” Indicates this variable is not included into estimation. Note: Estimators from the SEM are shown in parenthesis.
Coefficients with p-values less than 0.1 re shown in bold.
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The beta coefficients of independent variables are relatively stable. The marginal coefficients for
total passenger traffic and freight volume range between 0.308 and 0.311, 0.464 and 0.469, respectively.
Only water passenger traffic is statistically insignificant in estimating a city’s GDP, even after controlling
for spatial autocorrelation. Additionally, air transportation of APT and AFV are again estimated with
the highest marginal coefficients in both SLM and SEM.

Tables 6–8 show the SLM and SEM modeling results for the eastern, central, and western regions,
respectively (please refer to Appendix A for the non-spatial modeling results for the three regions). We
firstly noted that the spatial autocorrelation between GDP, as well as between hidden independent
variables become less significant or even absent at the regional level. For instance, the estimated
ρ of W_GDP for land and water transportation are significant at the 0.01 level in models 2 and 5,
respectively, in Table 5, but become statistically insignificant in Table 6.

Table 6. SLM/SEM estimation results for the eastern region.

Model 1 Model 2 Model 3 Model 4 Model 5

Coeffi. p Coeffi. p Coeffi. p Coeffi. p Coeffi. p

W_GDP −0.056 0.282 0.070 0.368 0.251 0.003 0.181 0.082 0.114 0.304

Constant 5.56 0.838 3.062 0.930 156.884 0.000 201.591 0.000 195.317 0.000

(−11.685) (0.599) (7.271) (0.822) (233.756) (0.000) (257.066) (0.000) (230.251) (0.000)

POP 0.147 0.002 / / / / / / / /

(0.152) (0.001) / / / / / / / /

FDI 0.620 0.000 / / / / / / / /

(0.606) (0.000) / / / / / / / /

TPT 0.417 0.000 / / / / / / / /

(0.417) (0.000) / / / / / / / /

TFV 0.599 0.000 / / / / / / / /

(0.589) (0.000) / / / / / / / /

LPT / / 0.602 0.000 / / / / / /

/ / (0.590) (0.000) / / / / / /

LFV / / 1.238 0.000 / / / / / /

/ / (1.398) (0.000) / / / / / /

APT / / / / 20.639 0.000 / / / /

/ / / / (19.642) (0.000) / / / /

AFV / / / / / / 8.584 0.000 / /

/ / / / / / (8.263) (0.000) / /

WPT / / / / / / / / 3.883 0.666

/ / / / / / / / (1.347) (0.88)

WFV / / / / / / / / 1.758 0.000

/ / / / / / / / (1.976) (0.000)

MUN 438.152 0.000 927.609 0.000 437.291 0.002 555.285 0.004 1077.818 0.000

(435.344) (0.000) (906.206) (0.000) (476.930) (0.000) (498.72) (0.002) (1084.48) (0.000)

LAMBDA (−0.019) (0.894) (0.301) (0.007) (0.321) (0.007) (0.166) (0.203) (−0.079) (0.575)

R2 0.927 0.801 0.743 0.624 0.569

(0.926) (0.818) (0.742) (0.617) (0.564)

“/” Indicates this variable is not included into estimation. Note: Estimators from the SEM are shown in parenthesis.
Coefficients with p-values less than 0.1 are shown in bold.
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Table 7. SLM/SEM estimation results for the central region.

Model 1 Model 2 Model 3 Model 4 Model 5

Coeffi. p Coeffi. p Coeffi. p Coeffi. p Coeffi. p

W_GDP 0.083 0.402 0.059 0.629 0.255 0.012 0.258 0.005 0.098 0.473

Constant 13.183 0.521 15.919 0.525 69.93 0.000 72.366 0.000 106.434 0.000

(13.023) (0.43) (4.546) (0.837) (108.446) (0.000) (109.076) (0.000) (114.968) (0.000)

POP 0.076 0.038 / / / / / / / /

(0.069) (0.062) / / / / / / / /

FDI 2.950 0.000 / / / / / / / /

(2.824) (0.000) / / / / / / / /

TPT 0.434 0.003 / / / / / / / /

(0.503) (0.000) / / / / / / / /

TFV 0.029 0.830 / / / / / / / /

(0.103) (0.462) / / / / / / / /

LPT / / 0.918 0.000 / / / / / /

/ / (0.938) (0.000) / / / / / /

LFV / / 0.267 0.135 / / / / / /

/ / (0.417) (0.025) / / / / / /

APT / / / / 69.555 0.000 / / / /

/ / / / (67.254) 0.000 / / / /

AFV / / / / / / 84.224 0.000 / /

/ / / / / / (81.865) (0.000) / /

WPT / / / / / / / / −6.579 0.660

/ / / / / / / / (−4.772) (0.750)

WFV / / / / / / / / 2.621 0.000

/ / / / / / / / (2.986) (0.000)

LAMBDA (0.363) (0.003) (0.318) (0.012) (0.285) (0.028) (0.357) (0.004) (0.227) (0.093)

R2 0.713 0.402 0.749 0.747 0.148

(0.741) (0.445) (0.755) (0.753) (0.172)

“/” Indicates this variable is not included into estimation. Note: Estimators from the SEM are shown in parenthesis.
Coefficients with p-values less than 0.1 are shown in bold.

For the eastern region, the estimated beta coefficients for land passenger traffic and freight volume
from SLM are 0.602 and 1.238, respectively, are larger than the counterparts of 0.507 and 0.660 from
the national models. This finding indicates that the marginal effect of land transport demand is much
stronger in the eastern region. However, the marginal impact of water freight volume on GDP is
weaker, as its estimated coefficient decreases from 2.143 in the national model to 1.758 in eastern
model. In the eastern region, a city’s GDP tends to be more significantly depended on the intercity
multimodal transportation, as the model fitness of R2 for the eastern region are higher than those in
the national model.

Table 7 shows that in the central region of China, the impact of total freight volume on GDP is
insignificant in both SLM and SEM. Even without controlling for the influence of population and FDI,
the relationship between GDP and land freight volume is statistically insignificant in the SLM model.
However, the association of GDP with land freight volume is significant at the 0.05 level in the SEM
model. While the total/land freight volume becomes less significant, the association of GDP with
total/land passenger traffic becomes stronger. In addition, the marginal effects of air transportation
and water freight volume on the GDP in the central region also become stronger. For instance, the
estimated coefficients of air passenger traffic and water freight volume in the SLM models for the
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central region are 69.555 and 2.621, respectively, compared to the counterparts of 21.249 and 2.143 in
the national models. These results indicate that in the central region, air and water transportation are
more strongly associated with GDP. From the geographic point of view, these results are reasonable as
many cities with higher GDP such as Wuhan, Changsha, Hefei, Nanchang, etc., are located along the
Yangtze River, with more water cargos than other cities in the central region.

Table 8. SLM/SEM estimation results for the western region.

Model 1 Model 2 Model 3 Model 4 Model 5

Coeffi. p Coeffi. p Coeffi. p Coeffi. p Coeffi. p

W_GDP 0.016 0.709 0.013 0.784 0.074 0.471 0.018 0.845 −0.005 0.968

Constant 5.030 0.626 8.802 0.384 73.834 0.000 91.816 0.000 109.249 0.000

(5.051) (0.617) (12.198) (0.115) (80.567) (0.000) (93.393) (0.000) (107.869) (0.000)

POP 0.052 0.064 / / / / / / / /

(0.094) (0.001) / / / / / / / /

FDI 2.083 0.000 / / / / / / / /

(2.092) (0.000) / / / / / / / /

TPT 0.181 0.001 / / / / / / / /

(0.174) (0.001) / / / / / / / /

TFV 0.538 0.000 / / / / / / / /

(0.473) (0.000) / / / / / / / /

LPT / / 0.403 0.000 / / / / / /

/ / (0.409) (0.000) / / / / / /

LFV / / 0.688 0.000 / / / / / /

/ / (0.670) (0.000) / / / / / /

APT / / / / 18.752 0.000 / / / /

/ / / / (18.391) (0.000) / / / /

AFV / / / / / / 12.646 0.000 / /

/ / / / / / (12.556) (0.000) / /

WPT / / / / / / / / −1.822 0.848

/ / / / / / / / (−1.911) (0.826)

WFV / / / / / / / / −0.281 0.814

/ / / / / / / / (−0.226) (0.853)

MUN −233.428 0.005 −56.216 0.482 827.468 0.000 897.120 0.000 1091.225 0.000

(−272.05) (0.000) (−51.094) (0.520) (830.130) (0.000) (901.821) (0.000) (1089.783) (0.000)

LAMBDA (0.436) (0.000) (0.104) (0.466) (0.099) (0.483) (0.095) (0.505) (0.065) (0.653)

R2 0.931 0.903 0.739 0.583 0.502

(0.941) (0.904) 0.741 (0.586) (0.504)

“/” Indicates this variable is not included into estimation. Note: Estimators from the SEM are shown in parenthesis.
Coefficients with p-values less than 0.1 are shown in bold.

Table 8 presents the SLM and SEM estimation results for the western region. As can be seen, except
for water transportation, the other intercity transportation modes including land and air transportation
are all statistically significant in the estimated models. In particular, the total freight volume and LFV
play a stronger role in a city’s GDP in the western region compared to their impact at the national level.
Air cargo significantly associates with GDP, and its impact on GDP in the western region is stronger
than that in the national models. However, both water passenger traffic and freight volume are absent
in the estimated model in the western region. In addition, the dummy variable of municipality or not
is significant but the estimated coefficient is negative in explaining GDP in Model 1. This requires
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careful interpretation. In the western region of China, Chongqing is the only municipality. With a
population of 29.45 million, its GDP in 2012 was 1141 billion [52]. Compared to the western cities
of Chengdu (with population of 14.17 million and GDP of 814 billion in) and Xi’an (population of
8.55 million and GDP of 437 billion) in the same year, the municipality of Chongqing has no advantage
in GDP per capita. Thus, the dummy variable of municipality (Chongqing) is estimated with negative
coefficient especially by including population for estimation.

At the national level as well as for the three regions of eastern, central, and western, both
population and FDI are significantly associated with GDP. In particular, the population is estimated
with the highest coefficient of 0.147 (SLM estimation results) in the eastern region, while FDI has the
strongest marginal effect (estimated with beta coefficient of 2.950 in the SLM) on GDP in the central
region. While we did not focus on the economic impact of FDI, the results from the current study shed
light on the association of GDP with FDI by controlling for spatial autocorrelation.

6. Discussion and Conclusions

This study seeks to analyze the relationship between GDP and intercity multimodal transport
demand at both national and regional levels in China. Data from 277 prefecture-level cities (including
four municipalities) are used to explore the relationship. Three main intercity transportation modes
are examined including land transportation, air transportation, and water transportation. The 277
cities is categorized into three regions according to their geographical locations: the eastern, the central,
and Western China. Spatial autoregressive regression is performed to examine the relationship. The
estimation result is also compared with those from the ordinary least square. Both regression analysis
and contrastive analysis are conducted to examine how economic effects of intercity transport demand
vary depending on modes, regions, and spatial interaction.

Findings from this study indicate that at the nation level in China, many economic related
variables demonstrate significantly spatial cluster pattern. Most of the cities with high GDP, intercity
transportation, and population and FDI are densely located along the coastal area and the Yangtze River
belt. There are also some exceptions, such as the air transportation, which generally distribute neither
clustered nor dispersed. However, the economic cluster pattern is a visible sign of regional disparity
and is considered to be an unsustainable and inefficient economic development strategy [53,54]. The
“a” cluster pattern presents a potential by utilizing the spatial spillover effect of the cities with higher
economic or transportation levels, but how to implement this strategy in China with vast territory is
still a great challenge.

Based on the results from this study, two strategies could be recommended to mitigate the regional
disparity. The first strategy relates to the spillover effect of megacities with high level of economy and
transportation. Most of megacities at this stage are mainly distributed in the three economic circles
located in the Eastern China, such as Shanghai in the Yangtze River Delta, Shenzhen and Guangzhou
in the Pearl River Delta, and Beijing and Tianjin in the Bohai Economic Rim. Whilst cities in the both
central and western region such as Wuhan, Changsha, Chongqing and Chengdu have also enjoyed
rapid development in recent years, there is still a large gap in the economic development level between
the megacities in the eastern region and central/western region. As the megacities tend to play a
significant role in promoting development of economy, it is necessary to accelerate the development of
core cities to boost the development of surrounding regions.

On the other hand, the modeling results reveal that the air transportation is estimated with the
highest coefficients at both national and regional levels. Some previous studies also suggested that
growth in GDP was very sensible to growth in air traffic for time dimension [13,14], findings from this
study further indicate that air transportation is strongly associated with GDP across cities in China.
Indeed, results from this study identified that only the intercity air transportation (in terms of both
air passenger traffic and freight volume) have noticeable influence on GDP at the national level and
in all the three regions. Additionally, unlike land and water transportation, air transportation does
not show a clustered pattern at the national level, which tends to be a more sustainable and efficient
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development pattern. Further, considering the fact that air transportation still accounts for a very
small percentage of the total transportation in China, it is possible and necessary to promote the air
transportation development to enhance the development of GDP.

At the regional level, the spatial autocorrelation becomes less significant or even absent. This
is reasonable since cluster pattern generally becomes less obvious at a smaller geographical scale.
The magnitudes of the estimated coefficients indicate that in the eastern region, the impact of water
transportation on GDP is not significant, while the land transportation tend to be more strongly
associated with GDP. However, for the central region, the estimation results are just opposite to those
for the eastern region. These findings indicate that geography is an important factor to account for the
relationship between GDP and intercity transport demand. In addition, air transportation plays the
strongest role in affecting GDP in the central region.

By controlling for spatial autocorrelation, this paper has established a sound foundation for the
association of GDP with intercity multimodal transport demand at both national and regional levels in
China. Considering the gaps of economic development in different regions of China keeps expanding,
an efficient development strategies is needed to reduce the spatial inequalities at both national and
regional levels. Our research has important implications for transport planning and development
in this context. First, transport planning needs to reconsider the spatial inequality of transport
development in China. Except for air transportation, both land and water transportation show a
significantly cluster pattern at the national level. In recognition of the contribution of transportation to
economy, it is necessary to develop effective transport development strategy in the western and central
regions to promote economic development. In addition, only air transportation show a relatively
balanced development pattern and are strongly associated with GDP. Thus, findings from this study
highlight the potential of promoting the development of air transportation in the vast China to enhance
the economic development in China.

This study has a few limitations, which provide potential directions for future research. First,
this study focused on the spatial econometric analysis on the association of intercity multimodal
transport demand with the levels of GDP at the both national and regional level in China. Future
studies may need to explore the panel data to examine the causal link between intercity transportation
and economic growth rates. Furthermore, the estimated models neglect the impact of transport
development polices as the logistics hub planning at prefectural level is not available. With the
advancement of econometric models and data availability, more interesting and new findings of the
economic impacts of transportation are expected.
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Appendix

Table A1. Non-spatial model estimation results.

Model 1 Model 2 Model 3 Model 4 Model 5

Coeffi. p Coeffi. p Coeffi. p Coeffi. p Coeffi. p

Constant
−12.902 0.577 22.843 0.439 238.197 0.000 259.546 0.000 231.259 0.000

(26.911) (0.075) (25.700) (0.195) (109.772) (0.000) (112.420) (0.000) (120.792) (0.000)

[6.630] [0.499] [10.592] [0.169] [81.188] [0.000] [94.267] [0.000] [108.750] [0.000]

POP
0.155 0.002 / / / / / / / /

(0.077) (0.043) / / / / / / / /

[0.054] [0.061] / / / / / / / /

FDI
0.606 0.000 / / / / / / / /

(2.951) (0.000) / / / / / / / /

[2.069] [0.000] / / / / / / / /

TPT
0.418 0.000 / / / / / / / /

(0.456) (0.002) / / / / / / / /

[0.181] [0.003] / / / / / / / /

TFV
0.588 0.000 / / / / / / / /

(0.000) (0.999) / / / / / / / /

[0.538] [0.000] / / / / / / / /

LPT
/ / 0.608 0.000 / / / / / /

/ / (0.932) (0.000) / / / / / /

/ / [0.403] [0.000] / / / / / /

LFV
/ / 1.249 0.000 / / / / / /

/ / (0.250) (0.169) / / / / / /

/ / [0.687] [0.000] / / / / / /

APT
/ / / / 20.178 0.000 / / / /

/ / / / (68.285) (0.000) / / / /

/ / / / [18.595] [0.000] / / / /

AFV
/ / / / / / 8.559 0.000 / /

/ / / / / / (82.978) (0.000) / /

/ / / / / / [12.594] [0.000] / /

WPT
/ / / / / / / / 2.029 0.825

/ / / / / / / / (−6.440) (0.672)

/ / / / / / / / [−1.982] [0.820]

WFV
/ / / / / / / / 1.861 0.000

/ / / / / / / / (2.615) (0.000)

/ / / / / / / / [−0.280] [0.820]

MUN
433.229 0.000 940.989 0.000 522.618 0.001 604.514 0.003 1088.708 0.000

/ / / / / / / / / /

[−226.725]0.007 [−56.600] [0.492] [826.776] [0.000] [896.867] [0.000] [1093.180] [0.000]

R2
0.926 0.799 0.716 0.608 0.563

(0.713) (0.405) (0.634) (0.723) (0.144)

[0.931] [0.903] [0.738] [0.582] [0.502]

No. of observations
97

(95)

[85]

“/” Indicates this variable is not included into estimation. Note: Estimators for the central are shown in parenthesis.
Estimators for the central are shown in brackets. Coefficients with p-value less than 0.1 are shown in bold.
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