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Abstract: The Equality-Generalized Travelling Salesman Problem (E-GTSP), which is an extension
of the Travelling Salesman Problem (TSP), is stated as follows: given groups of points within a city,
like banks, supermarkets, etc., find a minimum cost Hamiltonian cycle that visits each group exactly
once. It can model many real-life combinatorial optimization scenarios more efficiently than TSP.
This study presents five spatially driven search-algorithms for possible transformation of E-GTSP to
TSP by considering the spatial spread of points in a given urban city. Presented algorithms are tested
over 15 different cities, classified by their street-network’s fractal-dimension. Obtained results denote
that the R-Search algorithm, which selects the points from each group based on their radial separation
with respect to the start–end point, is the best search criterion for any E-GTSP to TSP conversion
modelled for a city street network. An 8.8% length error has been reported for this algorithm.

Keywords: generalized travelling salesman problem; shortest route; combinatorial optimization;
OpenStreetMap

1. Introduction

The Travelling Salesman Problem (TSP) is one of the most well-known and extensively studied
combinatorial optimization problems by far. It has been used as a benchmark problem for new urban
and navigation developments for decades. It asks to find the shortest (in terms of length, time, or
custom cost) route that visits each vertex in a given set exactly once before returning to the starting
vertex. Formally, it could be stated as follows: given a directed/undirected graph G = (V, E) with set
of vertices V and set of weighted edges E, find the shortest path between start vertex s and end vertex e
(e could be same as s for closed path) that visits each vertex of a given set V′ ⊆ V − {s, e} exactly once.
It is equivalent to finding the minimum-cost Hamiltonian cycle in G [1]. It has many applications in
ranging areas of geo-spatial sciences and GIS, like in vehicle routing, urban communication networking,
public transport sequencing and scheduling, to name a few (please read [2]). It has always been a great
source of attraction from various other disciplines too, especially during the last three decades [3].

The Generalized-TSP (GTSP) or Set-TSP or Travelling Politician Problem is one useful exemplary of
the Travelling Purchaser Problem. It is one practical extension of the TSP, first introduced by [4], where
the set of vertices V is further segmented into n number of groups and it asks to find a minimum-cost
route visting at least one vertex from each group before reaching the destination. For almost all
inherently hierarchical real-world urban and navigation problems, it offers a more precise model
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than TSP. GTSP could mathematically be defined as follows: Let G = (V, E) be a graph where
V = {v1, v2, ..., vn} is the set of vertices, E =

{
(vi, vj) | i 6= j; vi, vj ∈ V

}
is the edge set, and W =

{
wij
}

is the non-negative cost or weightage defined on E. If E is undirected, then directions become irrelevant,
i.e., (vi, vj) = (vj, vi). Furthermore, V is partitioned into x mutually exclusive and exhaustive groups
such that Vg = {V1, V2, ...., Vx} and V = V1 ∪ V2 ∪ ... ∪ Vx with Vα ∩ Vβ = for all α, β = 1, 2, ..., x
and α 6= β. It asks to determine the shortest Hamiltonian route that passes through each group
at least once (introduced independently by [4–6]) or exactly once (introduced by [7,8]). If the
matrix W is symmetrical, i.e., wij = wji for all i, j = 1, 2, ..., n and i 6= j, the problem is prefixed
as symmetric; otherwise, it is asymmetric. This results in many vertices from each group left to be
visited. The exactly once variant of the GTSP is also known as the Equality-GTSP or E-GTSP [9], where
the shortest route contains exactly one vertex, i.e., station, from each group in Vg. The E-GTSP is
an NP-hard problem [10] as it reduces down to the famous TSP (also NP-hard) whenever individual
groups become singleton, i.e., (|Vα| = 1 ∀ α = 1, 2, ..., x). Figure 1a represents one possible closed
Hamiltonian cycle, also known as g-tour, that visits exactly one vertex from each group before returning
to the starting vertex. In Figure 1b, the cycle is open as the start and end groups are discrete.

Figure 1. Representation of one possible (a) closed and (b) open Hamiltonian cycle in a given symmetric
E-GTSP instance. Here, the group-counts are equal to 5, and the total number of vertices are equal
to 16; in other words, x = 5 and n = 16, respectively.

A discussion on how the GTSP can be used as one versatile and elegant tool to model different
classes of combinatorial optimization problems like the covering tour problem, the material flow
system design, the post-box collection problem, the stochastic vehicle routing problem, and the arc
routing problem has been provided by [11]. All these different use-cases show the importance of GTSP
and E-GTSP in advanced GIS and city infrastructure planning and development. They have prime
relevance in location-based problems, urban planning, postal routing problem, logistics problems,
telecommunication problems, and railway track optimization problems. [8,12] have also discussed
similar applications in detail.
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Problem Encountered

In this study, the authors are primarily interested in the E-GTSP to TSP transformation, taking
the location based services, vehicle routing and urban planning aspects into account. It should be
noted that there already exists a large variety of exact and heuristic methods to solve a TSP [13–15] like
the state-of-the-art Lin–Kernighan–Helsgaun TSP solver [9]. Since the underlying model represents
an urban street setup, the authors have tried to think of this transformation from a spatial perspective.
Five different possible search algorithms, motivated by the nearest neighbour search model [16] and
Voronoi model [17], are suggested and tested on a real-world OpenStreetMap (OSM) street-network
dataset to find the optimal search criterion for fast E-GTSP to TSP transformation. The idea is
an extension of the authors’ previous work [18]. This conversion is especially important for cases
where the network or graph or cost-matrix of an urban street-network is generated on the fly (cases
where cost is a function of time, like function of traffic congestion on the road). Different group-counts
(i.e., |Vg| = 1, 2, 3, 4, 5) are employed to test all proposed algorithms for different complexity levels.
Generated results are presented in graphical form and discussed in depth in the Results and Discussion
section, Section 5.

To the best of authors’ knowledge, this kind of spatial transformation of a given E-GTSP to TSP is
the first of its kind and no related work is available in peer-reviewed literature online. It is believed
that this study will further open research paradigms to improve existing search algorithms or to derive
a better one for complex urban development and navigation problems. In the following sections,
the proposed search algorithms are explained and tested on OSM derived road network data-set.
Finally, a commentary on the results is provided in the Conclusions section.

2. Transformation of the E-GTSP to TSP

The GTSP was first introduced by [4–6] through a record balancing problem that was aroused
in the computer design. It is one of the few optimization problems that has extensively been studied
in the past [8,19]. Researchers [8,20–24] have attempted to transform this into some efficient TSPs
by exploiting the dynamic programming techniques [25,26], disintegrating a complex problem into
a few simpler sub-problems). The shortcoming of this transformation, however, is that it dramatically
increases the dimension of the problem, i.e., the dimension of the matrix representing the GTSP,
thereby affecting the time and space consumption. Therefore, although theoretically it is possible to
solve a given GTSP by converting it into corresponding TSP, the new increased problem size makes it
computationally expensive to solve.

An E-GTSP solution of a vehicle-routing model is dependent upon the following two decisions
in written order:

1 Selection of a subset of vertices (Vs), also termed as stations, such that Vs ⊆ V and Vs ∩Vα = 1
for all α = 1, 2, ..., x. Note that |Vs| = |Vg|.

2 Calculation of the minimum-cost Hamiltonian cycle in subgraph Gs = (Vs, Es).

Since in our E-GTSP model the start and end vertices are different, the calculated g-tour is going
to be an open one (Figure 1b). Presented search algorithms do not increase the size of the problem by
increasing the number of vertices or edges. Considering a vertex’s spatial distribution with respect to
the start and end vertex, it is easier to filter-out distant and possibly sub-optimal vertices from each
group. In this article, points represent all possible vertices of V including the start and end vertex,
group represents each set of vertex from V exhibiting one particular attribute, and station represents
all selected points from each group (Figure 1). Points could be assumed as all supermarket, bank, etc.
locations within a city, group could be assumed as a set of certain attribute like group of supermarket,
group of bank, etc., and station could be assumed as those supermarket, bank, etc. locations that users
should visit for least costly routes.
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3. Methodology

The main objective of this article is to answer decision 1 (Section 2) for an E-GTSP model that asks
to find the shortest route from start to end points that visits each group exactly once. In urban planning
and navigation scenarios, these groups could represent all locations of the bank, pharmacy, cafeteria,
etc. Five different search criteria to select the exactly one point from each group depending upon the
start and end point are discussed in this section (Figure 2). Although a number of such algorithms are
possible with little tweaks, the authors believe that the selected ones are mutually absolute and cover
a whole breadth of different search possibilities. Since this kind of spatial transformation is the first of
its kind, no other spatial approach for E-GTSP to TSP transformation has been discussed elsewhere.
Primarily, all five algorithms consider here the spatial spread of points in a given urban set-up in order
to select the optimal one from each group for the shortest route estimation.

Figure 2. Diagrammatic representation of five different proposed search algorithms. Three groups of
different points, marked by oval, triangular, and rectangular markers, are used to show an E-GTSP
instance. It should be noted that, for R-Search, RE-Search, and RD-Search, there are two stations from
each group after decision 1 (Section 2), thus generating eight (2× 2× 2) different TSPs for decision 2.
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3.1. E-Search and D-Search

Euclidean-Search (E-Search) is the first search criterion that is based upon the Euclidean separation
of start and end points in an instance. As shown in Figure 2, the basic approach here is to connect both
the start and end points by a straight line and select the closest point from each group with respect to
this line. It involves two stages before reducing the E-GTSP to TSP. It is O(n), where n = |V|.

Dijkstra-Search (D-Search) on the other hand, involves the calculation of Dijkstra route, instead of
the Euclidean line, between given start and end points before selecting the closest one from each group
with respect to this route (Figure 2). Computationally, it is more expensive than the E-Search, with
O(n2). Algorithm1 is a pseudo-code of the two search algorithms above.

Algorithm 1 E-Search and D-Search pseudo-code

Require: Terminal points S and F, G = (V, E) representing urban street-network, & Vg = {V1, V2, ..., Vx},

i.e., points’ groups set, where Vi ⊆ V & Vi ∩Vj = ∀ i, j = 1, 2, ..., x & i 6= j.
1: procedure E-GTSP⇒ TSP
2: if Algorithm 1 =̂ E-Search then Draw SF Euclidean Line
3: end if . =̂ means corresponds to
4: if Algorithm 1 =̂ D-Search then Calculate SF Dijkstra Route
5: end if
6: Initialize an empty container C1
7: for Vi ∈ Vg ∀ i = 1, 2, .., x do
8: Initialize an empty container C2.
9: for vm ∈ Vi ∀ m = 1, 2, .., |Vi| do

10: C2← vm − SF shortest Euclidean distance .←means append
11: end for
12: return C2
13: C1← v =̂ vm − SF ∈ C2, with the smallest Euclidean distance
14: end for
15: return C1
16: end procedure
17: procedure TSP
18: Calculate the minimum-cost Hamiltonian cycle induced by C1. Note: C1 = Vs.
19: end procedure

3.2. R-Search

Radial-Search (R-Search) is the third way to select the stations based upon their radial distance
from both the start and end points. The closest point from each group is selected twice, making
|Vs| = 2× x (Section 2), generating a total 2x different TSPs. This makes decision 2 computationally
expensive (Figure 2). There is only one stage in decision 1. It involves an O-complexity of O(n)
and the Algorithm 2 represents its pseudo-code. It should be noted that, unlike the E-Search and
D-Search, it also evaluates the points lying outside the proximity of the start–end region (white region
in Figure 6).



ISPRS Int. J. Geo-Inf. 2018, 7, 115 6 of 16

Algorithm 2 R-Search pseudo-code

Require: Terminal points S and F, G = (V, E) representing urban street-network, & Vg = {V1, V2, ..., Vx},

i.e., points groups set, where Vi ⊆ V & Vi ∩Vj = ∀ i, j = 1, 2, ..., x & i 6= j.
1: procedure E-GTSP⇒ TSP
2: Initialize an empty container C1
3: for Vi ∈ Vg ∀ i = 1, 2, .., x do
4: Initialize an empty container C2.
5: for vm ∈ Vi ∀ m = 1, 2, .., |Vi| do
6: C2← vm − S Euclidean distance
7: C2← vm − F Euclidean distance
8: end for
9: return C2

10: C1← v =̂ vm − S & vm − F ∈ C2, with the smallest Euclidean distance
11: end for
12: return C1
13: end procedure
14: procedure TSP
15: Calculate the minimum-cost Hamiltonian cycle for all pairs (i.e., 2x) induced by C1.
16: Select the pair with shortest minimum-cost cycle.
17: end procedure

3.3. RE-Search and RD-Search

Finally, the last two search algorithms are the hybrid of R-Search and E-Search (RE-Search),
and R-Search and D-Search (RD-Search). They first ask to find the radially closest two points from
each group with respect to both the start and end points independently, making |Vs| = 2× 2× x. Then,
they reduce the size of the Vs to half by selecting the closest stations from both ends with respect to the
Euclidean line (for RE-Search) or Dijskstra route (for RD-Search), respectively (Figure 2). They have
the complexities of O(n) and O(n2), respectively. The second stage, thus, leads to a total of 2x number
of TSPs, similar to the R-Search. Algorithm 3 represents their pseudo-codes.

Once all desirable stations are selected, i.e., optimal Vs, from each group for minimum-cost open
Hamiltonian route, it is solved by the Simulated Annealing [27] TSP Solver. Although in this study the
authors have used this algorithm to solve the reduced TSP instance (decision 2), one is free to use any
solver, as it will equally affect all five of the search algorithms. The presented results in the Results and
Discussion section, Section 5, are more relative in nature.
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Algorithm 3 RE-Search and RD-Search pseudo-code

Require: Terminal points S and F, G = (V, E) representing urban street-network, & Vg = {V1, V2, ..., Vx},

i.e., points groups set, where Vi ⊆ V & Vi ∩Vj = ∀ i, j = 1, 2, ..., x & i 6= j.
1: procedure E-GTSP⇒ TSP
2: Initialize an empty container C1
3: for Vi ∈ Vg ∀ i = 1, 2, .., x do
4: Initialize an empty container C2.
5: for vm ∈ Vi ∀ m = 1, 2, .., |Vi| do
6: C2← vm − S Euclidean distance
7: C2← vm − F Euclidean distance
8: end for
9: return C2

10: C1← Two v =̂ vm − S & vm − F ∈ C2, with least Euclidean distances
11: end for
12: return C1
13: if Algorithm 3 =̂ RE-Search then Run E-Search (Algorithm 1), treating C1 ≡ Vg

14: end if
15: if Algorithm 3 =̂ RD-Search then Run D-Search (Algorithm 1), treating C1 ≡ Vg

16: end if
17: Estimate C1 f (Filtered C1 after E-Search or D-Search)
18: end procedure
19: procedure TSP
20: Calculate the minimum-cost Hamiltonian cycle for all pairs (i.e., 2x) induced by C1 f .
21: Select the pair with shortest minimum-cost cycle.
22: end procedure

4. Study Area and Data-Set Used

In order to test all five proposed search algorithms, a real-world OSM street-network dataset
is used. Fifteen cities belonging to the five different fractal dimension (frac-D) bins are selected for
analysis out of the total 210 number of cities worldwide [28] (Figure 3). An increasing frac-D of
an urban set-up represents its increasing road density, with 1D representing regions with only one
road segment and 2D representing regions completely filled-up with road segments. Bin size in Figure
3 has intentionally been kept small, i.e., 0.1, for finer fractally resolved classes. The Fractal Dimension
Calculator is used to calculate the dimension of a city [29]. Table 1 contains all analyzed cities, sorted
with increasing value of frac-D, along with corresponding decisive attributes derived from the OSM
vector dataset.

OSM dataset is downloaded from its Overpass API [30] covering the bounding box of each
selected city [31]. All 105 start–end pairs are selected on the basis of the most visited locations
by people, i.e., business center, tourist spot, and residential area. Five different groups of points
representing bank, supermarket, cafe, pharmacy, and petrol-pump are taken from the OSM dataset to
picture a near real-world E-GTSP routing instance. In total, only five such groups are selected from the
OSM dataset for this study in order not to increase the brute-force processing time to find the optimal
route. The whole processing is done in Python language. Instead of using the sample instances from
existing GTSP libraries, like the GTSPLIB [32], the authors have created their own E-GTSP instances
from downloaded OSM vector data. This provides an opportunity to test the presented algorithms on
specific urban planning and navigation scenarios. The authors have also provided the data/meta-data
of all tested instances along with an optimal Vs set to encourage other researchers to carry out similar
studies on OSM [33]. Five E-GTSP instances with different |Vg| values are used for each selected city in
order to run the discussed algorithms for various complexities. Key observations of the best algorithm
and its behavior are discussed in Section 5.
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Figure 3. Histogram showing the frequency of cities (marked on the world map right) for each
Fractal-Dimension bin. Increase in the dimension represents an increase in the road-density. Three cities
are selected from each of the top five bins to test all proposed search algorithms. Each city-polygon’s
bounding box is used to download the corresponding XML data from OSM Overpass API.

5. Results and Discussion

In order to test the five proposed search algorithms above for efficient E-GTSP to TSP
transformation, 15 cities are selected based on their different level of street-network patterns and
density (quantified by frac-D, Table 1), for which the data was obtained from the OSM API. For each
city, five different instances, i.e., |Vs|, modeling various levels of E-GTSP complexity, are created and
tested. Figure 4a is a 3D-plot between the different search algorithms used, the different numbers
of stations to be visited, i.e., |Vg|, and the different types of street-networks. Here, each colored
circle represents the average fractional error (average of the fractional errors coming out from all 105
analyzed start–end pairs) in the E-GTSP route-length estimated with respect to the optimal route
(by brute-force). There are, in total, 375 (15 cities × 5 group-counts × 5 algorithms) colored circles,
with black circles representing errors of more than 20%. It is clear that, irrespective of the choice of
a given search algorithm, the percentage error in route length increases with higher |Vs| instances
(marked by a big white arrow Figure 4a). It is an expected behavior in a combinatorial optimization
problem. Figure 4b represents five graphs between different search algorithms and different type of
street-networks, belonging to different |Vs| values. Black-boxes represent the lowest fractional error for
that row. It can be seen that, for lower |Vs| values, the D-Search algorithm gives the lowest percentage
error for the most number of cities, irrespective of their frac-Ds. However, this performance drifts
away towards the R-Search algorithm for higher group-counts. It is an interesting observation that
suggests that, for complex E-GTSP scenarios, it is better to select the optimal points that are radially
close with respect to the start and end points. Another important observation is that, in spite of being
hybrid, the performance of RE-Search and RD-Search was quite low. It should be noted that high
computational complexity does not always mean better precision. Quantitatively, D-Search is the best
one for all analyzed instances. However, it is important to understand how different algorithms have
performed qualitatively (Figure 5).

Figure 5a contains five different plots displaying the average fractional error for each city on
the y-axis, ordered according to Table 1, for different |Vs|. Each colored circle represents one distinct
search algorithm. In order to make the plots comparable, the red (D-Search) and green (R-Search)
circles are connected. It can be seen that, for |Vs| = 1, the red line is almost always below the green
one (Figure 5a), showing its out-performance. However, for a higher |Vs| count, this observation is
reversed. We have also already mentioned this observation in Figure 4b. Figure 5a allows us to compare
them absolutely. Figure 5b is a summation of the average fractional errors for all |Vs| instances for each
city. It is clear that the green line lies below the red one for most of the cities. This makes R-Search,
accuracy-wise, the best possible overall search-algorithm for any given E-GTSP to TSP transformation,
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particularly for urban planning and navigation use-cases. In vehicle routing problems, absolute route
length acts as one vital attribute for any route selection process and, therefore, the R-Search approach
should be considered. Figure 9 gives the percentage route-length error for different search-algorithms.
R-Search gives the lowest average error of 8.8% when tested on a real-world dataset. It would be
interesting to compare the performance of it with other approaches that are developed by [25,26] on
a similar data-set.

Figure 4. 3D-graph between Different Search Algorithms, Number of Stations to be visited, i.e., |Vs|,
and City’s Fractal-Dimension bin. Each bin represents three cities taken from Figure 3. Color represents
the average fractional error in route-length coming out from each algorithm with respect to the optimal
one (estimated by brute-force), with the color black having errors of more than 20%. (a) It should
be noted that, with an increase in the |Vs| for a given E-GTSP instance, the error also gets increased
irrespective of the choice of the algorithm (marked by big arrow). (b) The graph is sliced-down for
each group-count, individually. For each city, the algorithm with the least errors is marked by black
box. It is clear that, for small |Vs| values, the D-Search is better, and, as one increases the number of
stations, the R-Search outperforms the other, marked by solid-arrows. Overall, the R-Search is advised
for any urban based E-GTSP to TSP conversion (Section 5).

Figure 6 gives one possible explanation of the performance of R-Search for higher |Vs| instances.
The grey area is the proximity region of a given start–end points pair, while the white area is the region
outside it. D-Search is quite efficient in selecting points lying close to the underlying Dijskstra route.
Since this route terminates at the start–end points, points that lie behind them (white region, Figure 6)
do not get considered for stage 2 (decision 1) (Figure 2). On the other hand, R-Search remains unbiased
towards points for their regions (white/grey) (Figure 2). Although this leads to the total 2x number of
TSP routes, the R-Search approach is better for white-regioned points. The y-axis in Figure 6 represents
the average fraction of the total number of optimal stations for each |Vs| instance for white and grey
regions. It should be noted that the number of optimal stations that fall within the grey-area gets lower
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with increase in complexity (|Vs|). This shows that, with increase in the number of group-counts,
the more and more optimal stations come out from the white-region. This makes the performance
of R-Search better. This is an interesting observation, which shows that different features/building
functions in an urban city generally spread-out homogeneously. A continuous drop of the curve in
Figure 6 right helps us generalize the performance of R-Search for complex instances too.

Figure 5. (a) scatter plot between the Average Fractional Error and the City Number (representing city,
Table 1) for all |Vs| instances. Nodes belonging to the D-Search and R-Search are joined together to
allow comparison. It can be seen that, for lower |Vs| instances, the D-Search is better than the R-Search,
and vice-versa for higher |Vs| instances, as also reported in Figure 4; (b) the y-axis represents the
summation of Average Fractional Error from all |Vs| instances. It is said that the R-Search is overall the
best search criterion to perform a geospatial E-GTSP to TSP conversion.

Figure 6. Possible explanation of the out-performance of R-Search for increased complexity. It can be
seen that the total number of optimal stations within the white region increases with increase in the
complexity of the model (left plot). Since R-Search also selects optimal stations from the white region,
it performs better for higher |Vs| instances (right plot).

In order to observe the D-Search and R-Search performance for increasing start–end points’
separation, a plot is generated between their estimated route length and optimal length (Figure 7).
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The graph represents all 105 tested routes from all 15 cities for different complexities. The key
observation here is the fanning-out behavior of all data points with increase in optimal route length.
As one increases the best route length, the estimated value by both the algorithms gets farther
away from the mean-line (solid) (Figure 7). Although only the |Vs| = 5 scenario is presented here,
a similar observation has been done for other instances too. This behavior is expected, as almost all
routing algorithms get error-prone for distant start–end point pairs. Furthermore, in a given city’s
road-network, the optimal route length of a complex E-GTSP instance might reach the order of a few
couple of tens of kilometers. This shows the necessity to find the best possible solution in a timely
fashion of a given TSP problem, as it will directly affect the time and money of the user.

Figure 7. Graph comparing the absolute route lengths for brute-force and D-Search/R-Search
approaches. It can be seen that the intensity of the error increases with increase in the length of
the trip. Although only |Vs| = 5 instance is plotted here, a similar fanning-out behavior (dashed- and
solid-line) is observed for other cases too. Severe errors are expected for long trips irrespective of the
choice of algorithm or complexity of model.

Finally, a plot between the start–end points’ separation and their optimal route length value for
different instances are created (Figure 8). Instead of plotting the individual data-points on a graph,
the authors have sketched their regions with differently styled lines for better visualization and
explanation. With increase in the complexity of an instance (|Vs|) for a given city’s E-GTSP model,
Brussels (Belgium) in this case, corresponding polygons drift away (marked by a solid arrow) from the
mean-line towards some higher y-value. On the right side of Figure 8, there are two plots showing
the slope of the trendline and R2 value with respect to the |Vs|. The trendline here belongs to
each data-set that is sketched by the polygon. Each curve exemplifies one city model in Figure 8.
Decreasing slope of the trendline with increasing complexity shows the saturation of optimal route
length value. It means that, for larger group-counts for the given E-GTSP model, the optimal route
length becomes more independent from its start–end point geo-location. This observation is quite
novel and shows that once an optimal route length of a given start–end pair for a complex instance
is calculated, it could be extrapolated for other pairs too. Similar to the trendline, its R2 value also
decreases with complexity. Furthermore, the decreased R2 value shows the complex street-networks
of real-world cities. For complex instances, therefore, an amalgamation with heuristic approaches
is advised, which is also necessary because a new route estimation for each scenario every time is
computationally expensive.
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Figure 8. Graph (left) between the start–end points’ geo-separation and corresponding optimal route
length for all five group-counts (for Brussels). Note that a polygon is sketched to show the spread
of each data point. It should be noted how polygons drift away from the mean-line for increased
complexity. On the right, we have slope and R2 values of trendlines induced by each |Vs| instance for
all 15 cities, where there are decreases with increases in complexity. The decreasing R2 and slope value
along the x-axis depicts the complex networking of urban street-roads, and shows how optimal route
length gets similar irrespective of the start–end points’ spatial separation.

Table 1. General statistics of all selected cities (Figure 3).

ID City Fractal Area OSM OSM OSM OSM ∑Edge
(Country) Dimension (km2) # Vertex ρ Vertex # Edge ρ Edge (km)

1 Hargeisa 1.400 42,332 7267 0.17 10,839 0.26 7782
(Somalia)

2 Antananarivo 1.413 42,291 26,955 0.64 33,188 0.78 10,455
(Madagascar)

3 La Paz 1.432 14,454 55,239 3.82 83,209 5.76 11,012
(Bolivia)

4 Nairobi 1.511 84 3,386 40.3 4469 53.2 482
(Kenya)

5 Mexico City 1.517 1153 6839 5.93 7,819 6.78 1241
(Mexico)

6 Las Vegas 1.537 81,440 154,289 1.89 205,164 2.52 40,971
(USA)

7 Seoul 1.609 226 11,764 52.0 16,301 72.1 1394
(S-Korea)

8 Edmonton 1.627 181,262 95,083 0.52 127,203 0.70 56,965
(Canada)

9 Calgary 1.630 96,779 130,982 1.35 185,201 1.91 49,842
(Canada)

10 Amsterdam 1.730 1152 62,630 54.4 88,977 77.2 8048
(Holland)

11 Brussels 1.745 943 54,941 58.3 75,833 80.4 7273
(Belgium)

12 Delhi 1.779 5078 198,972 39.2 270,302 53.2 27,063
(India)
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Table 1. Cont.

ID City Fractal Area OSM OSM OSM OSM ∑Edge
(Country) Dimension (km2) # Vertex ρ Vertex # Edge ρ Edge (km)

13 Dallas 1.800 4688 116,034 24.7 166,882 35.6 26,376
(USA)

14 Milan 1.802 8043 265,604 33.0 356,506 44.3 36,666
(Italy)

15 Munich 1.811 1817 188,387 103.7 253,015 139.2 17,380
(Germany)

6. Conclusions

The E-GTSP, which is an extension of the famous TSP, is proven by researchers to model
a more realistic real-life combinatorial optimization problem, where the task is to find a close/open
Hamiltonian cycle that visits exactly one vertex from each group in a given city. A recommended
approach to solve this involves its reduction to the corresponding TSP before solving it to optimality.
However, this transformation increases the dimension of the problem, thus making it computationally
exhaustive (consuming time and RAM space) to solve for cases where the cost is a function of time.
In this study, the authors have presented five different search algorithms for an E-GTSP to TSP
transformation that operate spatially. They do not increase the count of the vertices or edges at any
stage. They are tested on 15 selected cities, taken from the OSM dataset and classified into different
road-networks, with five different |Vs| instances each.

It is observed that, with increase in the complexity of a problem, all algorithms become erroneous,
thereby making longer routes independent of the city’s street-pattern (Figure 4a). For |Vs| = 1
instances, the D-Search is better among all discussed approaches; however, as one increases the value
of |Vs|, i.e., instance complexity, R-Search gets better (Figure 4b). Figures 5b and 9 further support this
observation by showing the minimum route-length value for R-Search. The performance of R-Search
in this study could be attributed to its ability to consider stations belonging to regions lying outside
the start–end proximity region (Figure 6). It has also been observed that with increase in the optimal
route length, its corresponding length error from D-Search or R-Search also gets bigger irrespective of
the complexity of the instance (Figure 7). One final observation, which proves the convoluted road
networks of cities worldwide, is done in Figure 8, where a deviation of data points away from the
mean value line towards some saturation value is observed. It shows that, for a higher number of
groups, i.e., increased complexity, the optimal route length of different start–end pairs becomes almost
similar in value irrespective of their spatial separation.

This study, thus, brings forth a search criterion of point/vertex selection from each group for
an E-GTSP to TSP transformation by testing many real-road networks. This search criterion, i.e.,
R-Search, considers the radial/spatial spread of points from each group with respect to the start and
end point for the best possible selection. Readers can download the used dataset/meta-data from [33].
A few other observations have also been documented regarding urban networks, which is believed to
be helpful for urban planners.

Future research might involve the comparison of the R-Search criterion with other algorithms, like
the state-of-the-art Lin–Kernighan–Helsgaun TSP solver, for E-GTSP to TSP conversion. Additional
work might involve the development of a heuristic-R-Search (argued in this study) or ANN-R-Search
algorithm. It is believed that this study will help geospatial and urban developers to solve location
based problems that can be modelled into GTSP or E-GTSP by taking the spatial spread of points of
interest into account.
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Figure 9. Percentage error of all proposed search algorithms. R-Search is better among all other
searches. The authors do believe that this spatial approach for E-GTSP to TSP transformation could be
improved by further incorporating heuristic concepts, which is beyond the scope of the current study.
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The following abbreviations are used in this manuscript:

E-GTSP Equality-Generalized Traveling Salesman Problem
GTSP Generalized Traveling Salesman Problem
TSP Traveling Salesman Problem
OSM OpenStreetMap
GTSPLIB Generalized Traveling Salesman Problem Library
E-Search Euclidean Search
D-Search Dijkstra Search
R-Search Radial Search
RE-Search Radial Euclidean Search
RD-Search Radial Dijkstra Search
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