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Abstract: The goal of this paper was to investigate poverty and inequities that are associated with
vegetation. First, we performed a pixel-level linear regression on time-series and Normalized
Difference Vegetation Index (NDVI) for 72 United States (U.S.) cities with a population ≥250,000 for
16 years (1990, 1991, 1995, 1996, 1997, 1998, and 2001 to 2010) using Advanced Very High Resolution
Radiometer 1-kilometer (1-km). Second, from the pixel-level regression, we selected five U.S. cities
(Shrinking: Chicago, Detroit, Philadelphia, and Growing: Dallas and Tucson) that were one standard
deviation above the overall r-squared mean and one standard deviation below the overall r-squared
mean to show cities that were different from the typical cities. Finally, we used spatial statistics
to investigate the relationship between census tract level data (i.e., poverty, population, and race)
and vegetation for 2010, based on the 1-km grid cells using Ordinary Least Squares Regression and
Geographically Weighted Regression. Our results revealed poverty related areas were significantly
correlated with positive high and/or negative high vegetation in both shrinking and growing cities.
This paper makes a contribution to the academic body of knowledge on U.S. urban shrinking and
growing cities by using a comparative analysis with global and local spatial statistics to understand
the relationship between vegetation and socioeconomic inequality.

Keywords: geographically weighted regression; Normalized Difference Vegetation Index; poverty;
spatial statistics; cities

1. Introduction

The relationship between poverty and the spatial distribution of vegetation, particularly within
shrinking and growing cities in the United States (U.S.), has not been adequately examined in the
academic literature. Changing vegetation increasing over time is hypothesized to occur unevenly
across the urban landscape, thereby requiring an integrated spatiotemporal approach. Vegetation
change analysis is very important to urban studies for both creating a comfortable living environment
and mitigating urban heat island effects under climate change. Although greening strategies are
prominent in urban discussions, the link between shrinkage, its consequences, and the quality of
urban ecosystems in shrinking cities has only been addressed marginally [1]. The goal of this study
was to fill a gap in the academic literature to examine poverty differences and inequities that are
associated with vegetation in five cities for 2010 by using spatial statistics and integrating remote
sensing-derived land cover data with socioeconomic data. Global Ordinary Least Squares (OLS)
regression and local level Geographically Weighted Regression (GWR) was used in this research to
capture local variation and spatial relationships [2]. However, few studies have investigated ways in
which this relationship may become complicated in the context of shrinking cities where low-income
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neighborhoods in crisis undergo abandonment and vacancy, all of which has the positive potential to
drive an increase in vegetation due to clearance and natural ecosystem changes. This study addressed
the following research question. What is the relationship between poverty and vegetation? Building on
previous research on vegetation, our paper makes original and significant contributions to the corpus
of literature on U.S. shrinking and growing cities [3,4]. First, we used a comparative analysis to study
three shrinking and two growing cities that were one standard deviation above the overall r-squared
mean and one standard deviation below the overall r-squared mean to show cities that were different
from the typical city. Second, we used global and local spatial statistics to study the spatial relationship
between vegetation and socioeconomic inequality. Finally, we employed a novel methodology to study
this relationship by using 1-km grids, rather than U.S. census tracts. The findings from this research
provide much needed insight on the difference between shrinking and growing cities.

1.1. Background

1.1.1. Environmental Justice–Poverty–Vegetation

Over the past two decades, the uneven accessibility of vegetation has become recognized as
an Environmental justice issue as awareness of its importance to public health has been increased [5–7].
Environmental justice has a pivotal role in supporting sustainable communities [8]. Environmental
justice is defined as the fair treatment and meaningful involvement of all people, regardless of race,
color, national origin, or income with respect to the development, implementation, and enforcement of
environmental laws, regulations, and policies [9].

In other words, your health should not suffer because of the environment where you live, work,
play, or learn. Environmental justice scholarship in the U.S. has traditionally focused on the inequitable
distribution of disamenities—vegetation and undesirable land uses, etc.—with respect to racial/ethnic
minorities and economically disadvantaged groups [10,11].

There has been previous research on the relationship between distribution of urban vegetation
and poverty. Within cities, vegetation is not always equitably distributed. Access is often highly
stratified based on income, ethno-racial characteristics, age, gender, (dis)ability, and other axes of
difference [12,13]. A variety of other studies show that racial/ethnic minorities and low-income people
have less access to green space, parks, or recreational programs than those who are White or more
affluent [6,14–19].

A body of research documented the positive relationship between income and vegetation [20–22].
A common finding is that income and level of education are positively correlated with a greater
abundance [23] and a greater diversity of urban vegetation [20]. Several studies have assessed the
role of social economic status (SES) in the distribution of green spaces and consistently reported that
neighborhoods with higher SES levels enjoy greater accessibility to green spaces [24].

Green space at all scales—from small neighborhood parks to greenways to forests and
wetlands—provides health, social, and environmental benefits for low-income and overburdened
communities. Parks, community gardens, playing fields, riverfront shorelines, and wildlife refuges
offer opportunities for physical activity, social engagement, and mental respite [25].

1.1.2. Previous Research

Research has shown that one of the characteristics of shrinking cities is an increase in vacant
lands and abandoned properties [26]. Deng and Ma [27] recommended further research on different
shrinking cities for a better understanding of how socioeconomic and ecological drivers collectively
affect the emergence/dynamics of vacant land, within the urban context of population decrease
and economic decline. As cities undergo political and economic transformation, opportunities for
“green” urban renewal abound, especially when considering the abundance of vacant lots ripe for
“greening” [28]. The most notable urban shrinking cities are Buffalo, New York; Detroit, Michigan;
Cleveland, Ohio; and, Pittsburgh, Pennsylvania (industrial powerhouses in the middle of the twentieth
century), which have all lost around half of their population since the year 2000.
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A research study by [29] recommended using spatial statistics to analyze vegetation for shrinking
cities because research is lacking on comparing shrinking and growing cities. Spatial statistics addresses
spatial patterns of shrinking and growing cities [29]. To fill the gap, we experimented with a pixel
level regression tool to perform trend analysis for 72 cities, analyzing correlation coefficient, standard
error, and r-squared metrics against changes in vegetation phenology. This approach is similar
to GWR [30,31]. However, whereas the purpose of GWR is to determine how the coefficients of
explanatory variables vary in space, this approach explored how the prediction itself (e.g., some
property of the landscape) changes with a single explanatory variable (e.g., time).

Remote sensing offers a practical and economical means to study vegetation cover changes,
especially over large areas [32,33]. We used remote sensing data to understand and quantify the rate of
change occurring in the study sites. We integrated remote sensing and census data [34] based on 1-km
grid cells [35] using OLS regression and local level GWR statistical methods, which offered a richer
framework for understanding detailed trends of urban growth [36–38].

The Normalized Difference Vegetation Index (NDVI) was developed on the fact that healthy
vegetation has a low reflectance in the red wavelength portion of the electromagnetic spectrum due to
absorption by chlorophyll and other pigments, and high reflectance in the Near Infrared Red (NIR)
because of the internal reflectance by the mesophyll spongy tissue of a green leaf [39]. We know
that vegetation can be derived from high-resolution imagery and combined with digital parcel data,
which includes property boundaries for each parcel, to distinguish among vegetation [23,40]. However,
high-resolution imagery is limited by cloud cover and longer re-visit time. Therefore, we used Advanced
Very High Resolution Radiometer (AVHRR), which provides a time series of mostly cloud free data.

The objective of this paper was to investigate and extend analysis of the relationship between
poverty and vegetation in the five selected cities, by using spatial statistics to investigate the relationship
between U.S. Census Tract level data (i.e., poverty, population, and race) and vegetation from year 2010,
based on the 1-km grid cells using OLS regression and GWR [35].

2. Study Area and Data

2.1. Study Area

2.1.1. Shrinking Cities

(1) Chicago, the city is navigated by the Chicago and Calumet waterways. Chicago’s broad
parklands, including 3000 hectares of city parks, draw in an expected 86 million guests every year.
The atmosphere of Chicago is delegated muggy mainland, with each of the four seasons particularly
spoke to: wet, cool springs; to some degree sweltering, and frequently moist, summers; agreeably
gentle falls; and, icy winters. Average annual precipitation in Chicago is 35.82 inches. Chicago’s
climate is affected by the adjacent nearness of Lake Michigan amid each of the four seasons. According
to the 2010 American Community Survey (ACS), 31.6% of the population was White (non-Hispanic
white), 33.2% was Black or African American, and the poverty rate was 21% [41].

(2) Detroit is in Southeast Michigan arranged in the Midwestern U.S. also, the Great Lake locale.
As for the climate, the winters are cold, with moderate snowfall and temperatures not rising above
freezing on an average 44 days annually. The warm season runs from May to September. According
to the 2010 American Community Survey (ACS), 7.8% of the population was White (non-Hispanic
white), 82.6% was Black or African American, and the poverty rate was 34.5% [41].

(3) Philadelphia is the biggest city in the Commonwealth of Pennsylvania and the sixth most
crowded city in the U.S. Regular waterways incorporate the Delaware and Schuylkill streams, the lakes
in Franklin Delano Roosevelt Park, and Cobbs, Wissahickon, and Pennypack brooks. The biggest
simulated waterway is the East Park Reservoir in Fairmount Park. Concerning the atmosphere,
summers are regularly sweltering and moist, fall and spring are by and large gentle, and winter is
respectably icy. According to the 2010 American Community Survey (ACS), 36.9% of the population
was White (non-Hispanic white), 42.4% was Black or African American, and the poverty rate was
25.1% [41].
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Figure 1 represents the U.S. map of cities with population greater than or equal to 250,000 in 2010.
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2.1.2. Growing cities

(1) Dallas is in north Texas; it is a business and social center point of the district. It is the most
crowded city in the Dallas–Fort Worth metroplex. The topography of Dallas and its surrounding area
are mostly flat; the city itself lies at heights running from 450 to 550 feet (137 to 168 m). The summers
in Dallas are extremely sweltering and damp. According to the 2010 American Community Survey
(ACS), 28.4% of the population was White (non-Hispanic white), 24.5% was Black or African American,
and the poverty rate was 22.3% [41].

(2) Tucson is located southeast of Phoenix and north of the U.S.–Mexico outskirt. Tucson
positioned as the 32nd biggest city in the U.S. A noteworthy city in the Arizona Sun Corridor, Tucson is
the biggest city in southern Arizona, the second biggest in the state after Phoenix. It is additionally the
biggest city in the zone of the Gadsden Purchase. The atmosphere in Tucson is sweltering summers and
calm winters, and is generally cooler and wetter than Phoenix on account of its higher rise. According
to the 2010 American Community Survey (ACS), 48.3% of the population was White (non-Hispanic
white), 4.5% was Black or African American, and the poverty rate was 21.3% [41].

2.2. Data

2.2.1. Land Cover Data

AVHRR instruments measures the reflectance of the Earth surface in five relatively wide spectral
bands. We utilized AVHRR 1-km image data downloaded from USGS remote sensing phenology
(RSP) [42]. This provided a phenological metric, an annual time series Maximum Normalized
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Difference Vegetation Index (MAXN): the highest (or peak) value in NDVI observed (clear and
not contaminated by cloud or cloud shadows) in a growing season (unit less based on NDVI units).
The start and end date is typically January 1 and January 3, with weekly data gaps. The MAXN
metric identified the value of maximum NDVI observed in an annual growing season at each
1-km × 1-km pixel.

Temporal smoothing of NDVI data was adopted to extract phenological metrics. It does not
over-generalize the time-series profile, but eliminates spurious spikes in the NDVI, while retaining
sustained changes in NDVI that are representative of vegetation phenological dynamics. The weighted
least-square approach for temporal smoothing [43] was adopted for the conterminous U.S. NDVI
time series to eliminate anomalously low vegetation index values and reduce time shifts caused by
overgeneralization of the NDVI signal.

2.2.2. Socioeconomic Data

Socioeconomic data (i.e., population, poverty, and race) were obtained from the U.S. Census
Bureau, using Social Explorer [41]. We joined U.S. Census TIGER Products and shapefiles with
socioeconomic data.

3. Methods

The variables used in the analysis were MAXN, poverty rate, white poverty rate, black poverty
rate, percent white, and percent black from 2010 (Table 1).

Table 1. Descriptive Variables and Definitions.

Variables Description

Dependent

NDVI

The Normalized Difference Vegetation Index (NDVI) is an index of plant “greenness” or
photosynthetic activity, and is one of the most commonly used vegetation indices.
Vegetation indices are based on the observation that different surfaces reflect different types of
light differently. Photosynthetically active vegetation, in particular, absorbs most of the red
light that hits it while reflecting much of the near infrared light. Vegetation that is dead or
stressed reflects more red light and less near infrared light. Likewise, non-vegetated surfaces
have a much more even reflectance across the light spectrum.

MAXN The highest (or peak) value in NDVI observed (clear and not contaminated by cloud or cloud
shadows) in a growing season (unit less based on NDVI units).

Independent

Poverty Living in a household with a total cash income below 50 percent of its poverty threshold.
White Poverty Percent White Alone Population for whom poverty status is determined.
Black Poverty Percent Black or African American Alone Population for whom poverty status is determined.

White Population Percent White Alone Population for whom poverty status is determined.
Black Population Percent Black or African American Alone Population for whom poverty status is determined.

We used the pixel level regression Curve Fit tool [44–46] an extension in ArcMap (ArcGIS) [31].
This allowed us to run regression trend analysis on 72 cities using AVHRR raster datasets for temporal
analysis (1990, 1991, 1995, 1996, 1997, 1998, and 2001 to 2010).

Y = aX + b (1)

where

Y = MAXN
a = Coe f f icient
X = Time
b = Intercept



ISPRS Int. J. Geo-Inf. 2018, 7, 83 6 of 26

The output produced r-squared, which showed overall performance of the model (Tables 2 and 3).
For the shrinking cities annotated in bold blue, the overall r-squared mean value was (0.28) and
the standard deviation value was (0.08). For the growing cities annotated in bold blue, the overall
r-squared mean value was (0.24), and standard deviation value was (0.09). We selected five cities
(Shrinking: Chicago, Detroit, Philadelphia, and Growing: Dallas and Tucson), that were one standard
deviation above the overall r-squared mean and one standard deviation below the overall r-squared
mean, and to show cities that were different from the typical cities. The five cities had a low, typical,
and high, 16-year series r-squared mean.

Table 2. Regression relations of time series 16 year Maximum Normalized Difference Vegetation Index,
MAXN Delta (regression coefficient for the time variable showing trend in NDVI), and descriptive
statistics of r-squared for 14 Shrinking Cities. We selected three cities Chicago, Detroit, and Philadelphia
that were one standard deviation above the overall r-squared mean and one standard deviation below
the overall r-squared mean, to show cities that were different from the typical cities. The cities had
a low, typical, and high, 16-year series r-squared mean.

Cities 1990 Pop 2010 Pop Pop Change 16 Year Series
MAXN Mean

MAXN Delta
(2010–1990)

r-Squared
Mean

Detroit, MI 1,027,974 713,777 −314,197 171.6875 7 0.4019
Cincinnati, OH 364,040 296,943 −67,097 182.625 4 0.3731

Toledo, OH 332,943 287,208 −45,735 174.1875 5 0.3718
Milwaukee, WI 628,088 594,833 −33,255 174.5625 11 0.3701

St. Louis City, MO 396,685 319,294 −77,391 169.1875 7 0.3181
Baltimore, MD 736,014 620,961 −115,053 180.6875 11 0.3143
Pittsburgh, PA 369,897 305,704 −64,193 179.0625 5 0.2668

Washington, DC 606,900 601,723 −5177 183.125 4 0.2564
Cleveland, OH 505,616 396,815 −108,801 174.25 −2 0.2516

Philadelphia, PA 1,585,577 1,526,006 −59,571 182.4375 4 0.2397
Chicago, IL 2,783,726 2,695,598 −88,128 175 12 0.2139

Oakland, CA 505,616 390,724 −114,892 173.6875 2 0.2042
Buffalo, NY 328,123 261,310 −66,813 167.9375 5 0.1962

New Orleans, LA 496,938 343,829 −153,109 184.0625 9 0.1309

Mean: (0.28), STD: (0.08)).

Table 3. Regression relations of time series 16 year MAXN, MAXN Delta (regression coefficient for the
time variable showing trend in NDVI), and descriptive statistics of r-squared for 58 Growing Cities.
We selected two cities Dallas and Tucson that were one standard deviation above the overall r-squared
mean and one standard deviation below the overall r-squared mean, to show cities that were different
from the typical cities. The cities had a low, typical, and high, 16-year series r-squared mean.

Cities 1990 Pop 2010 Pop Pop Change 16 Year Series
MAXN Mean

MAXN Delta
(2010–1990)

r-Squared
Mean

Lexington, KY 225,366 295,803 70,437 183.8125 5 0.4275
Indianapolis, IN 731,327 820,445 89,118 183.4375 6 0.3954

Nashville, TN 510,784 601,222 90,438 188 3 0.3845
Kansas City, MO 435,146 459,787 24,641 184.1875 6 0.3788

Portland, OR 437,319 583,776 146,457 188.4375 7 0.3742
St. Paul, MN 272,235 285,068 12,833 173.5 10 0.3720
Wichita, KS 304,011 382,368 78,357 175.875 5 0.3545

Greensboro, NC 183,894 269,666 85,772 181.6875 3 0.3524
Oklahoma City, OK 444,719 579,999 135,280 178.9375 10 0.3449

Arlington, TX 261,721 365,438 103,717 171.8125 14 0.3409
Louisville, KY 269,063 597,337 328,274 187.625 7 0.3395
Memphis, TN 610,337 646,889 36,552 183.75 0 0.3258

Jacksonville, FL 635,230 821,784 186,554 185.8125 12 0.3257
Omaha, NE 335,795 408,958 73,163 181.0625 7 0.3256
Seattle, WA 516,259 608,660 92,401 172.75 13 0.3234
Dallas, TX 1,006,877 1,197,816 190,939 180.75 11 0.3219
Tulsa, OK 367,302 391,906 24,604 180.8125 5 0.3200

Atlanta, GA 394,017 420,003 25,986 179.6875 4 0.3114
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Table 3. Cont.

Cities 1990 Pop 2010 Pop Pop Change 16 Year Series
MAXN Mean

MAXN Delta
(2010–1990)

r-Squared
Mean

Raleigh, NC 212,092 403,892 191,800 185 3 0.3103
Charlotte, NC 395,934 731,424 335,490 182.4375 3 0.3056

Virginia Beach, VA 393,069 437,994 44,925 183.8125 3 0.3014
Minneapolis, MN 368,383 382,578 14,195 172.5 7 0.2997

Fort Wayne, IN 173,072 253,691 80,619 178.4375 5 0.2970
Columbus, OH 632,910 787,033 154,123 182.0625 12 0.2953
Stockton, CA 210,943 285,068 74,125 179.1875 3 0.2951

Sacramento, CA 369,365 466,488 97,123 176.625 12 0.2836
Austin, TX 465,622 790,390 324,768 175.375 9 0.2470

Fort Worth, TX 447,619 741,206 293,587 177.625 10 0.2440
Plano, TX 128,713 259,841 131,128 167.75 4 0.2371

Lincoln, NE 191,972 258,379 66,407 176.6875 11 0.2353
New York, NY 7,322,564 8,175,133 852,569 182.5 9 0.2291
Houston, TX 1,630,553 2,099,451 468,898 182.625 3 0.2245
Boston, MA 574,283 617,594 43,311 178.25 1 0.2198
Tampa, FL 280,015 335,709 55,694 181.0625 3 0.2150

Los Angeles, CA 3,485,398 3,792,621 307,223 175.0625 14 0.2058
Fresno, CA 354,202 494,665 140,463 167.6875 9 0.2013

San Jose, CA 782,248 945,942 163,694 179.4375 9 0.1936
Bakersfield, CA 174,820 347,483 172,663 175.625 4 0.1921

Miami, FL 358,548 399,457 40,909 160.9375 4 0.1758
Las Vegas, NV 258,295 583,756 325,461 143.3125 −1 0.1748

Henderson, NV 64,942 257,729 192,787 141.8125 10 0.1723
San Antonio, TX 935,933 1,327,407 391,474 178.1875 2 0.1694

Albuquerque, NM 384,736 545,852 161,116 165.0625 −3 0.1610
Long Beach, CA 429,433 462,257 32,824 153.9375 11 0.1578

Phoenix, AZ 983,403 1,445,632 462,229 172.4375 5 0.1550
Newark, NJ 275,221 277,140 1919 166.625 7 0.1518

Corpus Christi, TX 257,453 305,215 47,762 173.3125 8 0.1508
San Francisco, CA 723,959 805,235 81,276 167.5 2 0.1504

San Diego, CA 1,110,549 1,307,402 196,853 171.9375 10 0.1428
Santa Ana, CA 293,742 324,528 30,786 149.9375 10 0.1376

Aurora, CO 222,103 325,078 102,975 169.8125 18 0.1352
Denver, CO 467,610 600,158 132,548 166.5625 8 0.1271
Mesa, AZ 288,091 439,041 150,950 164.375 −13 0.1249

Tucson, AZ 405,371 520,116 114,745 150.4375 −12 0.1124
Anaheim, CA 266,406 336,265 69,859 165 9 0.0971

Colorado Springs, CO 281,140 416,427 135,287 171.8125 5 0.0964
Riverside, CA 226,505 303,871 77,366 167.6875 16 0.0877

El Paso, TX 515,342 649,121 133,779 161.9375 −5 0.0740

Mean: (0.24), STD: (0.09).

3.1. Grid Cell Approach

We obtained census tract level socioeconomic data tables from Social Explorer [41] and then we
joined the data to U.S. Census TIGER shapefiles. We converted the census tract scale socioeconomic
data to 1-km scale grid cell using spatial interpolation by converting census tract data for the five
selected cities into 1-km grids [35]. We created blank vector polygon area(s) of the five selected cities.
To make the kilometer square grid cells, we used ArcGIS 10.4.1 software. We clipped the grids to the
study area. Then, we assigned our variables to the grid cell and used the intersect function to intersect
the grids with the census tracts scale socioeconomic data with 1-km grid cell shapefile. Equations
(2)–(4) provide the formulas we used for the interpolation.

Aw = Ai/At (2)

Aw = Partial census tract area weight
Ai = Individual area of each census tract
At = Total area of the census tract parts
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Tv =
n

∑
i=1

Ct × Aw (3)

Tv = Census tract population
Ct = Census tract total population
Aw = Partial census tract area weight

Gv =
n

∑
i=1

Ct × Aw (4)

Gv = Grid population
Ct = Census tract total population
Aw = Partial census tract area weight

The area of each piece within one grid cell was multiplied by the Aw. being gridded. Then,
the sum of all the values for all of the tract pieces was aggregated in the grid cell. Advantages of the
grid index: (1) converting the socioeconomic data to grid cells enabled us to aggregate each variable
inputted and to calculate their proportions in basis grid cells; (2) we were able to synthesis social and
economic data with raster images; and (3) we avoided some potential pitfalls in bias with our statistics
test related to sample size and neighbors.

3.2. Analytic Plan

To study the relationship between vegetation and poverty we will first conduct spatial
autocorrelation of our key variables, we will then proceed with a LISA analysis. Our next step
will be to run OLS and GWR models to evaluate distribution and variance between the dependent
variable MAXN and the random socioeconomic variables (white poverty, black poverty, percent white,
and percent black) for the five case study cities. In OLS we will investigate if the distributions of these
random variables all have the same variance and a mean of zero. If so, then the least squares method
may be the best unbiased linear estimator of the model coefficients. Although we think OLS is not
necessarily the best bias estimator in that the coefficients usually lead to having small variance. Finally,
we conclude our analysis with GWR to explore the local spatial relationship among the variables.

3.3. Spatial Autocorrelation (Moran’s I)

Spatial autocorrelation is a common problem in regression models. Tables 4 and 5 provide the
global Moran’s I values for the variables used in the analysis. All of the values showed positive spatial
autocorrelation and significant at the p-values 0.01 (Tables 4 and 5). The black population has the
highest Moran’s I values for Chicago, Detroit, and Dallas. For Philadelphia and Tucson, the highest
value was the poverty rate. It is important to note, that the black population values was essentially
the same as the poverty when the numbers are rounded to two decimal points. The white population
has the highest Moran’s I values for Chicago, Dallas, and Tucson. The poverty rates amongst blacks
were the highest values in Chicago, Detroit, and Philadelphia. The table provided evidence that
a local level analysis may be more appropriate to understand the relationship between vegetation and
socioeconomic inequality in growing and shrinking cities.
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Table 4. Moran’s I for Shrinking Cities in 2010.

Variable Chicago Detroit Philadelphia

Poverty Rate 0.703 ** 0.520 ** 0.759 **
White Poverty Rate 0.486 ** 0.331 ** 0.659 **
Black Poverty Rate 0.623 ** 0.507 ** 0.704 **

Percent White 0.775 ** 0.473 ** 0.588 **
Percent Black 0.815 ** 0.608 ** 0.755 **

** Statistical significant level: p < 0.01.

Table 5. Moran’s I for Growing Cities in 2010.

Variable Dallas Tucson

Poverty Rate 0.591 ** 0.809 **
White Poverty Rate 0.532 ** 0.804 **
Black Poverty Rate 0.467 ** 0.514 **

Percent White 0.688 ** 0.682 **
Percent Black 0.740 ** 0.531 **

** Statistical significant level: p < 0.01.

3.4. LISA Analysis

Based on the global spatial autocorrelation statistics, we computed a local analysis using Local
Indicators of Spatial Association (LISA) maps [47] to evaluate spatial clusters of MAXN, poverty rate,
white poverty rate, black poverty rate, percent white, and percent black. The analysis was executed
using the Contiguity Edges and Corners method to model the spatial relationships. The clusters in the
maps were statistically significant at the 95 percent confidence level.

3.5. OLS and GWR Analysis

The residuals from OLS were spatially correlated, thus providing evidence that the OLS results
were biased. Therefore, we used GWR models to remove the spatial autocorrelation in the residuals.
We used the Akaike Information Criterion (AIC) to consider model complexity, thus facilitating
a comparison between the overall model results from a ‘global’ OLS regression model with those from
the local GWR model. Finally, we calculated local t-values generated from local GWR models:

ti = βi/SE βi (5)

In our analysis, we used the 90% confidence level two-tailed test ti values ≥ 1.64 and/or =

ti values ≤ −1.64 and the 95% confidence level two-tailed test ti values ≥ 1.96 and/or =

ti values ≤ −1.96 to test and compare the significance. In this paper, we limited our visualization of
the results at the 95% confidence levels.

4. Results

4.1. Map Comparisons

The LISA maps showed clusters of similarity and dissimilarity. The maps (Figures 2–6) showed
some interesting patterns. We noticed where the black populations lived they were not randomly
distributed throughout space and it appeared that they were concentrated in certain parts of the cities.
We found similar patterns for the white population. In some of the shrinking and growing cities,
poverty was right on the edge of being in the suburbs. The spatial process locally reflected similarity
next to similarity. In the poverty variables, a similar type of clustering was found. Based on the LISA
maps, there appears to be some correlation between positive high and/or negative high vegetation
and the socioeconomic variables (poverty, white poverty, black poverty, percent white population,
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and percent black population) throughout the shrinking and growing cities. There seemed to be some
evidence in showing the appearance of spatial relationships overlapping. The size and magnitude of
that relationship varied throughout the cities. Our findings suggested that some poverty and white
and black populations living in shrinking and growing cities had access to positive high vegetation
areas, while others shared social inequalities to negative high vegetation areas. Using these maps as
a baseline, we proceeded with our analysis using GWR models.ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  10 of 26 
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4.2. Model results

We tested and assessed the best OLS models (global model) and GWR (local level model)
(Tables 6–10). In the global regression model, the four socioeconomic variables explain less than
50% of the variance in MAXN. The results for GWR models outperformed the OLS models for each
city. This is an important finding suggesting that OLS models may not capture the true relationship
between vegetation and socioeconomic inequality, since OLS assumes that the same spatial process
over the study area.

In the five models, the global r-squared is smaller and the local r-squared is larger. Detroit had
the highest r-squared (0.83), followed by Chicago (0.79) and Philadelphia (0.68). The growing cities
had significantly lower r-squared values. Dallas had a value of (0.58) and Tucson had a value of (0.19).
The largest range of the local coefficients for Chicago for white poverty was 6.49 (Upper Quantile-Lower
Quantile coefficient values), followed by black poverty (6.10), percent white (4.03), and percent black
(5.14) (Table 6). The largest range of the local coefficients for Detroit for white poverty was 9.33
(Upper Quantile-Lower Quantile coefficient values) followed by black poverty (16.99), percent white
(37.63), and percent black (10.24) (Table 7). The largest range of the local coefficients for Philadelphia
for white poverty was 31.43 (Upper Quantile-Lower Quantile coefficient values) followed by black
poverty (24.67), percent white (14.18), and percent black (30.18) (Table 8). The largest range of the local
coefficients for Dallas for white poverty was 63.75 (Upper Quantile-Lower Quantile coefficient values)
followed by black poverty (50.45), percent white (27.92), and percent black (88.09) (Table 9). The largest
range of the local coefficients for Tucson for white poverty was 230.60 (Upper Quantile-Lower Quantile
coefficient values) followed by black poverty (204.80), percent white (47.23) and percent black (342.88)
(Table 10). The black poverty rate were statistically significant in all of the shrinking cities, percent
white populations were statistically significant in Dallas, and white poverty rate were statistically
significant in Tucson. Percent black populations were statistically significant in Chicago and Detroit
(high percentage) and Tucson (low percentage).

The results showed that GWR models improved the reliability of the relationships by reducing the
spatial autocorrelations in residuals, and the GWR model was an improvement of the OLS regression
model. Statistically significant positive spatial autocorrelations between the variables were found for all
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of the OLS regression models. Our results that are presented in the tables indicate that the relationship
between vegetation and socioeconomic inequality was in fact local and fluid. We found an interesting
pattern in the overall fitness of the GWR models. The model worked best for shrinking cities.

Table 6. Global and Local Parameter Estimates of the Geographically Weighted Regression Model for Chicago.

Chicago (n = 719)

Min Lower
Quantile Med Upper

Quantile Max OLS Coefficient
(Standard Error)

Range
GWR

Range
OLS

MAXN 0.40 0.70 0.74 0.77 0.81
White Poverty Rate −607.982 −2.793 0.127 3.693 382.989 0.696124 (1.523800) 6.49 3.0476
Black Poverty Rate −245.962 −3.746 −0.320 2.358 164.400 −3.752281 ** (1.215239) 6.10 2.430478

Percent White −25.380 −3.089 −0.502 0.945 89.020 −0.410517 (0.485762) 4.03 0.971524
Percent Black −699.169 −3.636 −0.965 1.499 663.433 1.560251 ** (0.563758) 5.14 1.127516

Constant 50.980 69.679 73.847 76.421 79.134 72.595456 ** (0.352579) 6.74 0.705158
r-squared 0.79 0.04

AIC 3899.83 4727.73

OLS, ordinary least squares; GWR, geographically weighted regression; Statistical significant level: ** p < 0.01.

Table 7. Global and Local Parameter Estimates of the Geographically Weighted Regression Model for Detroit.

Detroit (n = 441)

Min Lower
Quantile Med Upper

Quantile Max OLS Coefficient
(Standard Error)

Range
GWR

Range
OLS

MAXN 0.32 0.49 0.53 0.58 0.73
White Poverty Rate −28.709 −5.242 0.749 4.084 48.864 −1.058978 (2.045913) 9.33 4.091826
Black Poverty Rate −80.939 −5.211 4.508 11.782 58.737 −13.263758 ** (3.121163) 16.99 6.242326

Percent White −106.330 −16.226 −0.506 21.405 153.381 −3.425044 (3.362862) 37.63 6.725724
Percent Black −46.112 −4.896 −0.692 5.339 39.717 6.375081 ** (1.418651) 10.24 2.837302

Constant 138.536 148.621 153.088 157.869 167.055 153.852570 ** (0.655055) 9.25 1.31011
r-squared 0.83 0.09

AIC 2490.85 2947.94

OLS, ordinary least squares; GWR, geographically weighted regression; Statistical significant level: ** p < 0.01.

Table 8. Global and Local Parameter Estimates of the Geographically Weighted Regression Model for Philadelphia.

Philadelphia (n = 436)

Min Lower
Quantile Med Upper

Quantile Max OLS Coefficient
(Standard Error)

Range
GWR

Range
OLS

MAXN 0.0 0.43 0.55 0.63 0.82
White Poverty Rate −52.566 −14.035 3.810 17.395 110.996 6.671161 (5.065260) 31.43 10.13052
Black Poverty Rate −78.564 −24.478 −9.472 0.189 26.259 −39.490202 ** (5.904831) 24.67 11.809662

Percent White −32.731 −11.911 −4.989 2.271 36.498 −8.922714 * (2.629092) 14.18 5.258184
Percent Black −98.038 −24.970 −4.348 5.213 29.227 3.968352 (2.650614) 30.18 5.301228

Constant 132.030 147.926 156.994 165.542 179.169 161.704702 ** (1.401403) 17.62 2.802806
r-squared 0.68 0.29

AIC 3649.63 3867.64

OLS, ordinary least squares; GWR, geographically weighted regression; Statistical significant level: ** p < 0.01 and
* p < 0.05.

Table 9. Global and Local Parameter Estimates of the Geographically Weighted Regression Model for Dallas.

Dallas (n = 1239)

Min Lower
Quantile Med Upper

Quantile Max OLS Coefficient
(Standard Error)

Range
GWR

Range
OLS

MAXN 0.0 0.53 0.59 0.65 0.84
White Poverty Rate −1873.673 −40.713 −6.886 23.035 971.909 −2.718330 (6.758746) 63.75 13.517492
Black Poverty Rate −803.573 −10.250 8.853 40.199 1920.889 −0.438399 (4.777406) 50.45 9.554812

Percent White −176.229 −14.818 −0.142 13.102 244.523 −5.444700 ** (1.712098) 27.92 3.424196
Percent Black −485.207 −62.438 −11.090 25.648 228.199 −2.716848 (3.758888) 88.09 7.517776

Constant 141.832 153.157 158.332 163.405 176.225 159.715413 ** (0.398456) 10.25 0.796912
r-squared 0.58 0.02

AIC 8489.47 9305.75

OLS, ordinary least squares; GWR, geographically weighted regression; Statistical significant level: ** p < 0.01.
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Table 10. Global and Local Parameter Estimates of the Geographically Weighted Regression Model for Tucson.

Tucson (n = 749)

Min Lower
Quantile Med Upper

Quantile Max OLS Coefficient
(Standard Error)

Range
GWR

Range
OLS

MAXN 0.0 0.26 0.29 0.32 0.48
White Poverty Rate −811.559 −224.012 −79.402 6.591 749.417 −80.683873 ** (22.888327) 230.60 45.776654
Black Poverty Rate −19171.213 −0.340 31.517 204.458 4314.807 −20.451957 (13.799252) 204.80 27.598504

Percent White −327.328 −12.486 5.227 34.746 1340.848 11.409682 (8.119418) 47.23 16.238836
Percent Black −5539.274 −361.155 −138.567 −18.275 1533.558 −156.486062 * (77.096866) 342.88 154.193732

Constant 103.383 122.513 127.968 130.565 151.461 126.701526 ** (1.157176) 8.05 2.314352
r-squared 0.19 0.03

AIC 6856.19 6888.68

OLS, ordinary least squares; GWR, geographically weighted regression; Statistical significant level: ** p < 0.01 and
* p < 0.05.

4.3. Advance Model Comparison Maps

Using the GWR tables as a baseline, we created maps to visualize the parts of the cities that had
significant values. Not all of the coefficients analyzed were significant, so we calculated a t-value
for each independent variable in the equation (Figures 7–16). The colors blue and red were the
significant areas for white poverty rate, black poverty rate, percent white, and percent black in the
cities. The t-values maps depicted some overlap were the independent variables were statically
significant, and as they converged in the same space, there relationships were spatial.
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4.4. Spatial Relationships

We created several maps to visualize the spatial variation of the local r-squared values.
The explanatory models were similar to each other in geographical space (Figures 17–21). The range of
the local r-squared value is blue (0–0.10) green (0.11–0.20), orange (0.21 to 0.30), to red (0.31 to 0.50).

The maps clearly show that the results from the OLS did not capture the true spatial dynamic
in shrinking and growing cities: (1) In Chicago, there were higher residual for the variables, such as
percent white, percent black, white poverty rate, and black poverty rate clusters exhibited a significant
relationship and the residual were spatially autocorrelated. (2) In Detroit, there were higher residual for
the variables, such as percent white, percent black, white poverty rate, and black poverty rate clusters
exhibited a significant relationship and the residual were spatially autocorrelated. (3) In Philadelphia,
there were higher residual for the variables, such as percent white, percent black, white poverty rate,
and black poverty rate clusters exhibited a significant relationship and the residual were spatially
autocorrelated. (4) In Dallas, there were higher residual for the variables, such as percent white, percent
black, white poverty rate, and black poverty rate clusters exhibited a significant relationship with each
other and the residual were spatially autocorrelated. Dallas also had lower residual with significant
relationship for the same variable and the residuals were spatially autocorrelated. (5) In Tucson, there
were lower residual for the variables such as percent white, percent black, white poverty rate, and black
poverty rate clusters exhibited a significant relationship with each other and the residual were spatially
autocorrelated. Tucson also had higher residual with no significant relationship for the same variable
and no spatial autocorrelation. Although the pattern is stronger in shrinking cities, a similar spatial
pattern can be found in growing cities as well.
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5. Discussion

This study investigated and extended the analysis of the relationship between poverty and
vegetation in the five selected cities, by using spatial statistics to investigate the relationship between
U.S. Census Tract level data (i.e., poverty, population, and race) and vegetation from the year 2010,
based on the 1-km grid cells using OLS regression and GWR.

The results of the OLS and GWR models raised some interesting questions regarding the
relationship between vegetation and socioeconomic variables in the shrinking and growing cities.
Results from this study concurred with the discussed literature on inequitable distribution of vegetation
with respect to racial/ethnic minorities [10,11]. According to relevant research [5–7], the United States
Environmental Protection Agency policies, intended to create equitable and sustainable communities;
the lack of access to vegetation at all the scales still experience environmental injustice. (1) Black
poverty rate in relationship to white poverty rate in most cities had a noticeably proportioned higher
increase. (2) White poverty rate in relationship to black poverty rate had a higher increase in Chicago
and Tucson. (3) There were slight differences in Tucson areas were white poverty rate is isolated
from the black poverty rate spatial area. (4) During analysis in the shrinking versus growing cities,
vegetation increased in shrinking cities and decreased in growing cities and vice versa.

However, our study offered new findings when compared to the existing literature. In support of
improvements on environmental justice initiatives and issues on uneven accessibility of vegetation of
all people regardless of race and color, data from our cluster mapping clarified the spatial aspects of
both internal and external correlations for access to positive high and/or negative high vegetation with
the socioeconomic variables for both urban shrinking and growing cities. The socioeconomic variables
and shrinking cities had a relationship to positive high vegetation. White and Black populations in
poverty had some equal access to positive high vegetation as non-poverty White and Black populations.
Impoverished populations shared the same benefits of the positive high vegetation in urban areas cities.
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The spatial autocorrelation results reflected each phenomenon equally. It was interesting to
note that in the five cities (shrinking and growing), in some areas, white poverty and black poverty
shared the same space. In addition, in the shrinking and growing cities, in some areas, percent white,
and percent black populations spatially shared the same space.

Spatial statistics addressed spatial patterns of our shrinking and growing cities [29]. Temporal
analysis was important in the research because of our need to detect observable change and assess how
patterns and relationships changed over time. When quantifying landscape patterns using remotely
sensed data, we recognized that each pixel (i.e., picture element) has a temporal and spatial context.
The pixel’s temporal context refers to its past and present classification, and is often used to model
landscape change [48].

In the past research, vegetation that increased and decreased over time was hypothesized to
occur unevenly across the urban landscape, thereby requiring an integrated spatiotemporal approach.
Analysis of spatial autocorrelation helped us to determine relationship among variables in space [49].
To evaluate the degree of similarity of observation across space, global indices of spatial autocorrelation
were used [50]. We used Moran’s I, a global index of spatial autocorrelation [49–52]. While global
indices like Moran’s I can measure spatial association of the entire data set, we used the local indicators
for association local spatial clusters [47], which identified clusters of high (hot) and low (cold) spots
across space [51–53].

Different types of data (quantitative and qualitative) were obtained from various sources (satellite
imagery, maps, and census data) and mixed methodology (correlation, descriptive, and GWR) were
used to meet the objectives of this research. Fotheringham and colleagues developed GWR into
a convenient yet powerful technique that explores spatial nonstationarity and provides mappable
statistics to visualize the spatial patterns of the relationships between dependent and independent
variables [30].

Limitation of the Study

In our analyses of the 72 cities, we selected five cities for the study area. Future research and
analyses can be accomplished on the same study area or different cities. GWR has limitations, including
issues that are associated with multicollinearity, kernel bandwidth selection, and multiple hypothesis
testing [54]. Some of these issues have been addressed [55,56]. Further detailed statistical analysis
studies would need to be conducted to confirm the findings of this paper.

6. Conclusions

This study of the relationship between poverty and vegetation on the five selected cities using
global and local regression indicated spatially varying relationships across the cities. Our specific
findings: (1) A grid-cell-based spatial relationship using OLS and GWR models showed that the spatial
models provided an enriched framework for understanding detailed spatial patterns of inequality.
(2) The advantages of GWR over OLS (i.e., explored issues of spatial nonstationarity) were further
confirmed. (3) The GWR models showed that relationship among the variables varied spatially,
with highly localized relationships not evident with the global regression models. (4) The GWR
method is a great tool for hot spot analysis. (5) This study suggested that poverty-related areas were
significant and strongly correlated with positive high and/or negative high vegetation in shrinking
cities. NDVI was highly useful in detecting the surface features of the visible areas, which are extremely
beneficial for municipal planning and management. The vegetation analysis can be used as a critical
tool for policy-makers and planners to formulate a plan and/or program to study the quality of
vegetation in shrinking and growing cities and its relationship to socioeconomic inequality. We believe
this paper will provide a framework for other researchers to build on this study to develop the literature
on vegetation and socioeconomic inequality in U.S. cities and suburbs.
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